|   | 
Details
   web
Records
Author Tian, X.; Xie, X.; Li, J.; Kong, X.; Gong, W.-J.; Peeters, F.M.; Li, L.
Title Multiferroic ScLaX₂ (X = P, As, and Sb) monolayers : bidirectional negative Poisson's ratio effects and phase transformations driven by rare-earth (main-group) elements Type (up) A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 8 Pages 084407-84411
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The combination of auxetic property, ferroelasticity, and ferroelectricity in two-dimensional materials offers new avenues for next-generation multifunctional devices. However, two-dimensional materials that simultaneously exhibit those properties are rarely reported. Here, we present a class of two-dimensional Janus-like structures ScLaX2 X 2 (X X = P, As, and Sb) with a rectangular lattice based on first-principles calculations. We predict that those ScLaX2 X 2 monolayers are stable semiconductors with both intrinsic in-plane and out-of-plane auxetic properties, showing a bidirectional negative Poisson's ratio effect. The value of the out-of-plane negative Poisson's ratio effect can reach – 2.28 /- 3.06 /- 3.89. By applying uniaxial strain engineering, two transition paths can be found, including the VA main group element path and the rare-earth metal element path, corresponding to the ferroelastic and the multiferroic (ferroelastic and ferroelectric) phase transition, respectively. For the ScLaSb2 2 monolayer, the external force field can not only control the ferroelastic phase transition, but it can also lead to the reversal of the out-of-plane polarization, exhibiting potential multiferroicity. The coupling between the bidirectional negative Poisson's ratio effect and multiferroicity makes the ScLaX2 X 2 monolayers promising for future device applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001293 Publication Date 2024-08-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207592 Serial 9306
Permanent link to this record
 

 
Author Tunca, S.; Parrilla, M.; Raj, K.; Nuyts, G.; Verbruggen, S.W.; De Wael, K.
Title Nickel hydroxide nanosphere decorated reduced-TiO₂ nanotubes as supercapacitor electrodes Type (up) A1 Journal article
Year 2024 Publication Electrochimica acta Abbreviated Journal
Volume 505 Issue Pages 144990-11
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract A straightforward electrochemical method was developed to modify titanium dioxide nanotubes (TiO2 NTs), creating oxygen vacancies via electrochemical reduction (ER) and depositing nickel hydroxide nanospheres (Ni (OH)2 NSs). This was done to discover the electrochemical properties of a TiO2 NTs based binder-free supercapacitor electrode. The improved conductivity of the reduced TiO2 NTs (R-TiO2 NTs) electrode provided a 90fold increase in the specific capacitance compared to that of pristine TiO2 NTs. R-TiO2 NTs were further decorated with Ni(OH)2 NSs by an electrodeposition method to further improve the supercapacitive performance. Fabricated R-TiO2 NTs/Ni(OH)2 electrodes exhibited a high areal specific capacitance value of 305.91 mF/cm2 at a current density of 0.75 mA/cm2. The modified electrode shows an improved charge-storage capacity compared to the TiO2 NTs/Ni(OH)2 electrodes, and to previously reported 1D-TiO2/Ni(OH)2 nanocomposite structures. Furthermore, the proposed electrode showed good cyclic stability by retaining 71% of its initial capacitance after 1500 cycles and a promising rate capability with a capacitive retention of 86% while increasing the current density from 0.75 to 5 mA/cm2. Overall, the ER step proved to improve the conductivity of the R-TiO2 NTs, which favors the deposition of the Ni(OH)2 NSs and promotes the Faradaic reactions at the electrode-electrolyte interface demonstrating a promising supercapacitor electrode material.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001309 Publication Date 2024-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access
Notes Approved Most recent IF: 6.6; 2024 IF: 4.798
Call Number UA @ admin @ c:irua:208529 Serial 9308
Permanent link to this record
 

 
Author Kandemir, Z.; D'Amico, P.; Sesti, G.; Cardoso, C.; Milošević, M.V.; Sevik, C.
Title Optical properties of metallic MXene multilayers through advanced first-principles calculations Type (up) A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 075201-75210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Having a strong electromagnetic absorption, MXene multilayers are readily envisaged for applications in electromagnetic shields and related prospective technology. However, an ab initio characterization of the optical properties of MXenes is still lacking, due in part to major difficulties with the treatment of metallicity in the first-principles approaches. Here we addressed the latter challenge, after a careful treatment of intraband transitions, to present a thorough analysis of the electronic and optical properties of a selected set of metallic MXene layers based on density functional theory (DFT) and many-body perturbation theory calculations. Our results reveal that the GW corrections are particularly important in regions of the band structure where d and p states hybridize. For some systems, we show that GW corrections open a gap between occupied states, resulting in a band structure that closely resembles that of an intrinsic transparent conductor, thereby opening an additional line of prospective applications for the MXenes family. Nevertheless, GW and Bethe-Salpeter corrections have a minimal influence on the absorption spectra, in contrast to what is typically observed in semiconductor layers. Our present results suggest that calculations within the independent particle approximation (IPA) calculations are sufficiently accurate for assessing the optical characteristics of bulk-layered MXene materials. Finally, our calculated dielectric properties and absorption spectra, in agreement with existing experimental data, confirm the potential of MXenes as effective infrared emitters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001275 Publication Date 2024-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207597 Serial 9309
Permanent link to this record
 

 
Author Bacaksiz, C.; Fyta, M.
Title Phthalocyanine adsorbed on monolayer CrI₃ : tailoring their magnetic properties Type (up) A1 Journal article
Year 2024 Publication ACS Omega Abbreviated Journal
Volume 9 Issue 32 Pages 34589-34596
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Metallo-phthalocyanines molecules, especially ironphthalocyanines (Fe-Pc), are often examined due to their rich chemical, magnetic, and optoelectronic features. Due to these, Fe-Pc molecules are promising for applications in gas sensors, field-effect transistors, organic LEDs, and data storage. Motivated by this potential, this study investigates Fe-Pc molecules adsorbed on a magnetic monolayer, CrI3. Using quantum-mechanical simulations, the aim of this work was to find pathways to selectively tune and engineer the magnetic and electronic properties of the molecules when they form hybrid complexes. The results quantitatively underline how adsorption alters the magnetic properties of the Fe-Pc molecules. Interestingly, the analysis points to changes in the molecular magnetic anisotropy when comparing the magnetic moment of the isolated molecule to that of the molecule/monolayer complex formed after adsorption. The presence of iodine vacancies was shown to enhance the magnetic interactions between the iron of the Fe-Pc molecule and the chromium of the monolayer. Our findings suggest ways to control oxygen capture-release properties through material choice and defect creation. Insights into the stability and charge density depletion on the molecule provide critical information for selective tuning of the magnetic properties and engineering of the functionalities of these molecule/material complexes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2024 IF: NA
Call Number UA @ admin @ c:irua:207512 Serial 9310
Permanent link to this record
 

 
Author Yari, S.; Bird, L.; Rahimisheikh, S.; Reis, A.C.; Mohammad, M.; Hadermann, J.; Robinson, J.; Shearing, P.R.; Safari, M.
Title Probing charge transport and microstructural attributes in solvent- versus water-based electrodes with a spotlight on Li-S battery cathode Type (up) A1 Journal article
Year 2024 Publication Advanced energy materials Abbreviated Journal
Volume Issue Pages 2402163
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In the quest for environmentally benign battery technologies, this study examines the microstructural and transport properties of water-processed electrodes and compares them to conventionally formulated electrodes using the toxic solvent, N-Methyl-2-pyrrolidone (NMP). Special focus is placed on sulfur electrodes utilized in lithium-sulfur batteries for their sustainability and compatibility with diverse binder/solvent systems. The characterization of the electrodes by X-ray micro-computed tomography reveals that in polyvinylidene fluoride (PVDF) Lithium bis(trifluoromethanesulfonyl)imide/NMP, sulfur particles tend to remain in large clusters but break down into finer particles in carboxymethyl cellulose-styrene butadiene rubber (CMC-SBR)/water and lithium polyacrylate (LiPAA)/water dispersions. The findings reveal that in the water-based electrodes, the binder properties dictate the spatial arrangement of carbon particles, resulting in either thick aggregates with short-range connectivity or thin films with long-range connectivity among sulfur particles. Additionally, cracking is found to be particularly prominent in thicker water-based electrodes, propagating especially in regions with larger particle agglomerates and often extending to cause local delamination of the electrodes. These microstructural details are shown to significantly impact the tortuosity and contact resistance of the sulfur electrodes and thereby affecting the cycling performance of the Li-S battery cells. The choice of solvent and binder is crucial in determining particle surface charge, which directly influences active material dispersion and carbon-binder arrangement within the battery porous electrodes. This, in turn, affects ionic and electronic transport properties, ultimately impacting electrochemical performance. Meticulous engineering of the slurry to control these factors is essential for efficient and sustainable water-based electrode processing. image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001291 Publication Date 2024-08-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1614-6832; 1614-6840 ISBN Additional Links UA library record; WoS full record
Impact Factor 27.8 Times cited Open Access
Notes Approved Most recent IF: 27.8; 2024 IF: 16.721
Call Number UA @ admin @ c:irua:207624 Serial 9311
Permanent link to this record
 

 
Author Ghosh, S.; Pradhan, B.; Bandyopadhyay, A.; Skvortsova, I.; Zhang, Y.; Sternemann, C.; Paulus, M.; Bals, S.; Hofkens, J.; Karki, K.J.; Materny, A.
Title Rashba-type band splitting effect in 2D (PEA)₂PbI₄ perovskites and its impact on exciton-phonon coupling Type (up) A1 Journal article
Year 2024 Publication The journal of physical chemistry letters Abbreviated Journal
Volume 15 Issue 31 Pages 7970-7978
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Despite a few recent reports on Rashba effects in two-dimensional (2D) Ruddlesden-Popper (RP) hybrid perovskites, the precise role of organic spacer cations in influencing Rashba band splitting remains unclear. Here, using a combination of temperature-dependent two-photon photoluminescence (2PPL) and time-resolved photoluminescence spectroscopy, alongside density functional theory (DFT) calculations, we contribute to significant insights into the Rashba band splitting found for 2D RP hybrid perovskites. The results demonstrate that the polarity of the organic spacer cation is crucial in inducing structural distortions that lead to Rashba-type band splitting. Our investigations show that the intricate details of the Rashba band splitting occur for organic cations with low polarity but not for more polar ones. Furthermore, we have observed stronger exciton-phonon interactions due to the Rashba-type band splitting effect. These findings clarify the importance of selecting appropriate organic spacer cations to manipulate the electronic properties of 2D perovskites.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record
Impact Factor 5.7 Times cited Open Access
Notes Approved Most recent IF: 5.7; 2024 IF: 9.353
Call Number UA @ admin @ c:irua:207672 Serial 9313
Permanent link to this record
 

 
Author Thomen, D.M.N.; Sevik, C.; Milošević, M.V.; Teles, L.K.; Chaves, A.
Title Strain and stacking registry effects on the hyperbolicity of exciton polaritons in few-layer black phosphorus Type (up) A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 109 Issue 24 Pages 245413-245419
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We analyze, from first -principles calculations, the excitonic properties of monolayer black phosphorus (BP) under strain, as well as of bilayer BP with different stacking registries, as a base platform for the observation and use of hyperbolic polaritons. In the unstrained case, our results confirm the in -plane hyperbolic behavior of polaritons coupled to the ground -state excitons in both mono- and bilayer systems, as observed in recent experiments. With strain, we reveal that the exciton-polariton hyperbolicity in monolayer BP is enhanced (reduced) by compressive (tensile) strain in the zig-zag direction of the crystal. In the bilayer case, different stacking registries are shown to exhibit hyperbolic exciton polaritons with different dispersion, while also peaking at different frequencies. This renders both mechanical stress and stacking registry control as practical tools for tuning physical properties of hyperbolic exciton polaritons in black phosphorus, which facilitates detection and further optoelectronic use of these quasiparticles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247621000008 Publication Date 2024-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:206631 Serial 9316
Permanent link to this record
 

 
Author Gonzalez-Garcia, A.; Bacaksiz, C.; Frauenheim, T.; Milošević, M.V.
Title Strong spin-lattice coupling and high-temperature magnetic ordering in monolayer chromium dichalcogenides Type (up) A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 6 Pages 064001-64009
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We detail the magnetic properties of monolayer CrX2 and its Janus counterparts CrXY (X, Y = S, Se, Te, with X not equal Y) using ab initio methods and Landau-Lifshitz-Gilbert magnetization dynamics, and uncover the pronouncedly strong interplay between their structure symmetry and the magnetic order. The relaxation of nonmagnetic chalcogen atoms, that carry large spin-orbit coupling, changes the energetically preferential magnetic order between in-plane antiferromagnetic and tilted ferromagnetic one. The considered Janus monolayers exhibit sizable Dzyaloshinskii-Moriya interaction, in some cases above 20% of the isotropic exchange, and critical temperature of the long-range magnetic order in the vicinity or even significantly above the room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001247462600001 Publication Date 2024-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:206660 Serial 9317
Permanent link to this record
 

 
Author Mazurkow, J.M.; Montiel, F.N.; Van Echelpoel, R.; Kusior, A.; De Wael, K.
Title The potential of electrochemical sensors to unveil counterfeits : Xanax as a case study Type (up) A1 Journal article
Year 2024 Publication Electrochimica acta Abbreviated Journal
Volume 494 Issue Pages 144458-8
Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)
Abstract The illicit drug market has been constantly evolving in the last decades, with a significant rise in counterfeit medicines posing serious public health risks. Benzodiazepines (BZDs) such as alprazolam (generally sold under the brand name Xanax), have particularly become the target of counterfeiting efforts due to their addictive nature and upsurge of unregulated designer BZDs. These counterfeit versions frequently resemble legitimate products but contain harmful adulterants or other potent illicit substances. Few methods have been developed to tackle counterfeit pills, usually limited to accurate and sophisticated laboratory equipment. This study explores the feasibility of combining electrochemical fingerprinting with data analysis to overcome the limitations of traditional methods. First, the electrochemical behavior of selected BZDs is studied, and analytical parameters such as pH are optimized. Then, the electroanalysis of common adulterants and illicit drugs is addressed and integrated into a user-friendly app, including a flowchart system. The proposed electrochemical strategy enables the detection of counterfeit Xanax by identifying the presence or absence of alprazolam. It also allows determination of the alprazolam content within a pill while meeting the fundamental requirements of the end users. This study represents an on-site methodology to address the growing challenges posed by BZDs, easily transferable to counterfeit medicines from other drug groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001244860300001 Publication Date 2024-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record
Impact Factor 6.6 Times cited Open Access
Notes Approved Most recent IF: 6.6; 2024 IF: 4.798
Call Number UA @ admin @ c:irua:206519 Serial 9321
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V.
Title Tuning the quantum phase transition of an ultrathin magnetic topological insulator Type (up) A1 Journal article
Year 2024 Publication Physical review materials Abbreviated Journal
Volume 8 Issue 7 Pages 074201-74208
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We explore the effect of thickness, magnetization direction, strain, and gating on the topological quantum phase transition of a thin-film magnetic topological insulator. Reducing the film thickness to the ultrathin regime couples the edge states on the two surfaces, opening a gap known as the hybridization gap, and causing a phase transition from a topological insulator to a normal insulator (NI). An out-of-plane/in-plane magnetization of size proportional to the hybridization gap triggers a phase transition from a normal insulator state to a quantum anomalous Hall (QAH)/semimetal state. A magnetization tilt by angle 0 from the out-of-plane axis influences the topological phase transition in a way that for sufficiently large 0, no phase transition from NI to QAH can be observed regardless of the sample thickness or magnetization, and for 0 close to pi /2 the system transits to a semimetal phase. Furthermore, we demonstrate that compressive/tensile strain can be used to decrease/increase the magnetization threshold for the topological phase transition. Finally, we reveal the effect of a vertical potential acting on the film, be it due to the substrate or applied gating, which breaks inversion symmetry and raises the magnetization threshold for the transition from NI to QAH state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001281 Publication Date 2024-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.4 Times cited Open Access
Notes Approved Most recent IF: 3.4; 2024 IF: NA
Call Number UA @ admin @ c:irua:207598 Serial 9324
Permanent link to this record
 

 
Author Lavor, I.R.; Tao, Z.H.; Dong, H.M.; Chaves, A.; Peeters, F.M.; Milošević, M.V.
Title Ultrasensitive acoustic graphene plasmons in a graphene-transition metal dichalcogenide heterostructure : strong plasmon-phonon coupling and wavelength sensitivity enhanced by a metal screen Type (up) A1 Journal article
Year 2024 Publication Carbon Abbreviated Journal
Volume 228 Issue Pages 119401-119409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Acoustic plasmons in graphene exhibit strong confinement induced by a proximate metal surface and hybridize with phonons of transition metal dichalcogenides (TMDs) when these materials are combined in a van der Waals heterostructure, thus forming screened graphene plasmon-phonon polaritons (SGPPPs), a type of acoustic mode. While SGPPPs are shown to be very sensitive to the dielectric properties of the environment, enhancing the SGPPPs coupling strength in realistic heterostructures is still challenging. Here we employ the quantum electrostatic heterostructure model, which builds upon the density functional theory calculations for monolayers, to show that the use of a metal as a substrate for graphene-TMD heterostructures (i) vigorously enhances the coupling strength between acoustic plasmons and the TMD phonons, and (ii) markedly improves the sensitivity of the plasmon wavelength on the structural details of the host platform in real space, thus allowing one to use the effect of environmental screening on acoustic plasmons to probe the structure and composition of a van der Waals heterostructure down to the monolayer resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001267 Publication Date 2024-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS full record
Impact Factor 10.9 Times cited Open Access
Notes Approved Most recent IF: 10.9; 2024 IF: 6.337
Call Number UA @ admin @ c:irua:207077 Serial 9325
Permanent link to this record
 

 
Author Zhang, Y.; Grunewald, L.; Cao, X.; Abdelbarey, D.; Zheng, X.; Rugeramigabo, E.P.; Verbeeck, J.; Zopf, M.; Ding, F.
Title Unveiling the 3D morphology of epitaxial GaAs/AlGaAs quantum dots Type (up) A1 Journal article
Year 2024 Publication Nano letters Abbreviated Journal
Volume 24 Issue 33 Pages 10106-10113
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Strain-free GaAs/AlGaAs semiconductor quantum dots (QDs) grown by droplet etching and nanohole infilling (DENI) are highly promising candidates for the on-demand generation of indistinguishable and entangled photon sources. The spectroscopic fingerprint and quantum optical properties of QDs are significantly influenced by their morphology. The effects of nanohole geometry and infilled material on the exciton binding energies and fine structure splitting are well-understood. However, a comprehensive understanding of GaAs/AlGaAs QD morphology remains elusive. To address this, we employ high-resolution scanning transmission electron microscopy (STEM) and reverse engineering through selective chemical etching and atomic force microscopy (AFM). Cross-sectional STEM of uncapped QDs reveals an inverted conical nanohole with Al-rich sidewalls and defect-free interfaces. Subsequent selective chemical etching and AFM measurements further reveal asymmetries in element distribution. This study enhances the understanding of DENI QD morphology and provides a fundamental three-dimensional structural model for simulating and optimizing their optoelectronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001280 Publication Date 2024-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access
Notes Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ admin @ c:irua:207525 Serial 9326
Permanent link to this record
 

 
Author Cadorim, L.R.; Sardella, E.; Milošević, M.V.
Title Vortical versus skyrmionic states in the topological phase of a twisted bilayer with d-wave superconducting pairing Type (up) A1 Journal article
Year 2024 Publication Physical review B Abbreviated Journal
Volume 110 Issue 6 Pages 064508-64511
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract It was recently shown that a chiral topological phase emerges from the coupling of two twisted monolayers of superconducting Bi2Sr2CaCu2O8+delta for 2 Sr 2 CaCu 2 O 8 +delta for certain twist angles. In this work, we reveal the behavior of such twisted superconducting bilayers with d x 2 – y 2 pairing symmetry in the presence of an applied magnetic field. Specifically, we show that the emergent vortex matter can serve as a smoking gun for the detection of topological superconductivity in such bilayers. Moreover, we report two distinct skyrmionic states that characterize the chiral topological phase and provide a full account of their experimental signatures and their evolution with the twist angle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001290 Publication Date 2024-08-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited Open Access
Notes Approved Most recent IF: 3.7; 2024 IF: 3.836
Call Number UA @ admin @ c:irua:208602 Serial 9327
Permanent link to this record
 

 
Author Zani, V.; Renero-Lecuna, C.; Jimenez de Aberasturi, D.; di Silvio, D.; Kavak, S.; Bals, S.; Signorini, R.; Liz-Marzán, L.M.
Title Core–Shell Colloidal Nanocomposites for Local Temperature Monitoring during Photothermal Heating Type (up) A1 Journal Article
Year 2024 Publication The Journal of Physical Chemistry C Abbreviated Journal J. Phys. Chem. C
Volume Issue Pages
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Determining temperature changes at the heating site to accurately control thermal treatments has been a major goal in the field of nanothermometry. In this study, we address the need to effectively monitor local temperature during the application of photothermal therapies, which is essential to prevent uncontrolled heating induced by nanoparticle sensitizers used in such treatments. For this purpose, we developed a synthetic protocol to produce a nanocomposite probe that allows local photothermal heating and simultaneous in situ optical nanothermometry, within the biological transparency windows. The nanocomposite material comprises gold nanorods for light-to-heat conversion and neodymium (Nd3+)-based nanoparticles for local temperature monitoring. An inert spacer made of mesoporous silica provides a core-shell structure and ensures uniform separation between both functionalities to prevent photoluminescence quenching. By using an 808 nm laser as the source for both heating and photoluminescence excitation, we demonstrate a direct correlation between local temperature and near infrared Nd3+ emission intensities, thereby providing precise local temperature monitoring. Different levels of local heating were studied by varying the incident laser power, resulting in a maximum temperature increase of 47 °C detected with the nanothermometers. Albeit presented here as a proof of concept, this concept can be translated to the design of materials for photothermal therapy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-10-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links
Impact Factor 3.7 Times cited Open Access
Notes L.L.L.-M. acknowledges financial support by the Spanish Agencia Estatal de Investigación and FEDER (PID2023-151281OB-I00), S.K. acknowledges the Flemish Fund for Scientific Research (FWO Vlaanderen) through a PhD research grant (Project numbers: 1181122N & 1181124N) and the European Research Council (CoG 815128, REALNANO). Approved Most recent IF: 3.7; 2024 IF: 4.536
Call Number EMAT @ emat @ Serial 9328
Permanent link to this record
 

 
Author Sun, J.; Qu, Z.; Gao, Y.; Li, T.; Hong, J.; Zhang, T.; Zhou, R.; Liu, D.; Tu, X.; Chen, G.; Brüser, V.; Weltmann, K.-D.; Mei, D.; Fang, Z.; Borras, A.; Barranco, A.; Xu, S.; Ma, C.; Dou, L.; Zhang, S.; Shao, T.; Chen, G.; Liu, D.; Lu, X.; Bo, Z.; Chiang, W.-H.; Vasilev, K.; Keidar, M.; Nikiforov, A.; Jalili, A.R.; Cullen, P.J.; Dai, L.; Hessel, V.; Bogaerts, A.; Murphy, A.B.; Zhou, R.; Ostrikov, K.(K.)
Title Plasma power-to-X (PP2X): status and opportunities for non-thermal plasma technologies Type (up) A1 Journal Article
Year 2024 Publication Journal of Physics D: Applied Physics Abbreviated Journal J. Phys. D: Appl. Phys.
Volume 57 Issue 50 Pages 503002
Keywords A1 Journal Article; plasma power-to-X, non-thermal plasma, gas conversion, plasma catalysis, renewable energy; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract This article discusses the ‘power-to-X’ (P2X) concept, highlighting the integral role of non-thermal plasma (NTP) in P2X for the eco-friendly production of chemicals and valuable fuels. NTP with unique thermally non-equilibrium characteristics, enables exotic reactions to occur under ambient conditions. This review summarizes the plasma-based P2X systems, including plasma discharges, reactor configurations, catalytic or non-catalytic processes, and modeling techniques. Especially, the potential of NTP to directly convert stable molecules including CO<sub>2</sub>, CH<sub>4</sub>and air/N<sub>2</sub>is critically examined. Additionally, we further present and discuss hybrid technologies that integrate NTP with photocatalysis, electrocatalysis, and biocatalysis, broadening its applications in P2X. It concludes by identifying key challenges, such as high energy consumption, and calls for the outlook in plasma catalysis and complex reaction systems to generate valuable products efficiently and sustainably, and achieve the industrial viability of the proposed plasma P2X strategy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links
Impact Factor 3.4 Times cited Open Access
Notes Alexander von Humboldt Foundation; National Science Foundation, 1747760 ; Australian Research Council; Approved Most recent IF: 3.4; 2024 IF: 2.588
Call Number PLASMANT @ plasmant @ Serial 9330
Permanent link to this record
 

 
Author Heirman, P.; Verswyvel, H.; Bauwens, M.; Yusupov, M.; De Waele, J.; Lin, A.; Smits, E.; Bogaerts, A.
Title Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach Type (up) A1 Journal Article
Year 2024 Publication Redox Biology Abbreviated Journal Redox Biology
Volume 77 Issue Pages 103381
Keywords A1 Journal Article; Non-thermal plasma Natural killer cells Immune checkpoints Cancer immunotherapy Umbrella sampling Oxidative stress; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHCI complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with

experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2213-2317 ISBN Additional Links
Impact Factor 11.4 Times cited Open Access
Notes This research was funded by the Impuls project of the University of Antwerp, grant number 46381. We acknowledge financial support from the Fund for Scientific Research (FWO) Flanders (Grant ID 1100421N (Pepijn Heirman), 1S67621N (Hanne Verswyvel), G044420N (Abraham Lin) and G033020N (Pepijn Heirman, Annemie Bogaerts)). M.Y. ac knowledges the Agency for Innovative Development of the Republic of Uzbekistan, grant number AL-4821012320. The computational sources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish percomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. This article is based upon work from COST Action CA20114 PlasTHER “Therapeutical Applications of Cold Plasmas”, supported by COST (European Cooperation in Science and Technology). We would also like to thank several patrons, as part of this research was funded by donations from different donors, including Dedert Schilde vzw, Mr Willy Floren, and the Vereycken family. Finally, we thank Robin De Meyer, Rani Vertongen and Louize Brants for their valuable input. Approved Most recent IF: 11.4; 2024 IF: 6.337
Call Number PLASMANT @ plasmant @ Serial 9331
Permanent link to this record
 

 
Author Van Loenhout, J.; Freire Boullosa, L.; Quatannens, D.; De Waele, J.; Merlin, C.; Lambrechts, H.; Lau, H.W.; Hermans, C.; Lin, A.; Lardon, F.; Peeters, M.; Bogaerts, A.; Smits, E.; Deben, C.
Title Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma Type (up) A1 Journal Article;oxidative stress
Year 2021 Publication Cells Abbreviated Journal Cells
Volume 10 Issue 11 Pages 2936
Keywords A1 Journal Article;oxidative stress; auranofin; cold atmospheric plasma; glioblastoma; cancer cell death; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000807134000001 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4409 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access OpenAccess
Notes Olivia Hendrickx Research Fund, 21OCL06 ; University of Antwerp, FFB160231 ; The authors would express their gratitude to Hans de Reu for technical assistance with flow cytometry. Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:182915 Serial 6826
Permanent link to this record
 

 
Author Bal, K.M.; Neyts, E.C.
Title Quantifying the impact of vibrational nonequilibrium in plasma catalysis: insights from a molecular dynamics model of dissociative chemisorption Type (up) A1 Journal Article;plasma catalysis
Year 2021 Publication Journal Of Physics D-Applied Physics Abbreviated Journal J Phys D Appl Phys
Volume 54 Issue 39 Pages 394004
Keywords A1 Journal Article;plasma catalysis; vibrational nonequilibrium; dissociative chemisorption; free energy barriers; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The rate, selectivity and efficiency of plasma-based conversion processes is strongly affected by nonequilibrium phenomena. High concentrations of vibrationally excited molecules are such a plasma-induced effect. It is frequently assumed that vibrationally excited molecules are important in plasma catalysis because their presence lowers the apparent activation energy of dissociative chemisorption reactions and thus increases the conversion rate. A detailed atomic-level understanding of vibrationally stimulated catalytic reactions in the context of plasma catalysis is however lacking. Here, we couple a recently developed statistical model of a plasma-induced vibrational nonequilibrium to molecular dynamics simulations, enhanced sampling methods, and machine learning techniques. We quantify the impact of a vibrational nonequilibrium on the dissociative chemisorption barrier of H2 and CH4 on nickel catalysts over a wide range of vibrational temperatures. We investigate the effect of surface structure and compare the role of different vibrational modes of methane in the dissociation process. For low vibrational temperatures, very high vibrational efficacies are found, and energy in bend vibrations appears to dominate the dissociation of methane. The relative impact of vibrational nonequilibrium is much higher on terrace sites than on surface steps. We then show how our simulations can help to interpret recent experimental results, and suggest new paths to a better understanding of plasma catalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000674464100001 Publication Date 2021-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, 12ZI420N ; K M B was funded as a junior postdoctoral fellow of the FWO (Research Foundation—Flanders), Grant 12ZI420N. The computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Government. HLDA calculations were performed with a script provided by G Piccini. Approved Most recent IF: 2.588
Call Number PLASMANT @ plasmant @c:irua:179830 Serial 6808
Permanent link to this record
 

 
Author Van Alphen, S.; Slaets, J.; Ceulemans, S.; Aghaei, M.; Snyders, R.; Bogaerts, A.
Title Effect of N2 on CO2-CH4 conversion in a gliding arc plasmatron: Can this major component in industrial emissions improve the energy efficiency? Type (up) A1 Journal Article;Plasma-based CO2-CH4 conversion
Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util
Volume 54 Issue Pages 101767
Keywords A1 Journal Article;Plasma-based CO2-CH4 conversion; Effect of N2; Plasma chemistry; Computational modelling; Gliding arc plasmatron; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma-based CO2 and CH4 conversion is gaining increasing interest, and a great portion of research is dedicated to adapting the process to actual industrial conditions. In an industrial context, the process needs to be able to process N2 admixtures, since most industrial gas emissions contain significant amounts of N2, and gas separations are financially costly. In this paper we therefore investigate the effect of N2 on the CO2 and CH4 conversion in a gliding arc plasmatron reactor. The addition of 20 % N2 reduces the energy cost of the conversion process by 21 % compared to a pure CO2/CH4 mixture, from 2.9 down to 2.2 eV/molec (or from 11.5 to 8.7 kJ/L), yielding a CO2 and CH4 (absolute) conversion of 28.6 and 35.9 % and an energy efficiency of 58 %. These results are among the best reported in literature for plasma-based DRM, demonstrating the benefits of N2 present in the mix. Compared to DRM results in different plasma reactor types, a low energy cost was achieved. To understand the underlying mechanisms of N2 addition, we developed a combination of four different computational models, which reveal that the beneficial effect of N2 addition is attributed to (i) a rise in the electron density (increasing the plasma conductivity, and therefore reducing the plasma power needed to sustain the plasma, which reduces the energy cost), as well as (ii) a rise in the gas temperature, which accelerates the CO2 and CH4 conversion reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000715057300005 Publication Date 2021-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.292 Times cited Open Access OpenAccess
Notes This research was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innova­ tion programme (grant agreement No 810182 – SCOPE ERC Synergy project), the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), and through long-term structural fund­ing (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Ant­werpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 4.292
Call Number PLASMANT @ plasmant @c:irua:184044 Serial 6827
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Cordeiro, R.M.; Bogaerts, A.
Title Unraveling the permeation of reactive species across nitrated membranes by computer simulations Type (up) A1 Journal Article;Reactive oxygen and nitrogen species
Year 2021 Publication Computers In Biology And Medicine Abbreviated Journal Comput Biol Med
Volume 136 Issue Pages 104768
Keywords A1 Journal Article;Reactive oxygen and nitrogen species; Nitro-oxidative stress; Molecular dynamics simulations; Nitrated membranes; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Reactive oxygen and nitrogen species (RONS) are involved in many biochemical processes, including nitrooxidative stress that causes cancer cell death, observed in cancer therapies such as photodynamic therapy and cold atmospheric plasma. However, their mechanisms of action and selectivity still remain elusive due to the complexity of biological cells. For example, it is not well known how RONS generated by cancer therapies permeate the cell membrane to cause nitro-oxidative damage. There are many studies dedicated to the perme­ation of RONS across native and oxidized membranes, but not across nitrated membranes, another lipid product also generated during nitro-oxidative stress. Herein, we performed molecular dynamics (MD) simulations to calculate the free energy barrier of RONS permeation across nitrated membranes. Our results show that hy­drophilic RONS, such as hydroperoxyl radical (HO2) and peroxynitrous acid (ONOOH), have relatively low barriers compared to hydrogen peroxide (H2O2) and hydroxyl radical (HO), and are more prone to permeate the membrane than for the native or peroxidized membranes, and similar to aldehyde-oxidized membranes. Hy­drophobic RONS like molecular oxygen (O2), nitrogen dioxide (NO2) and nitric oxide (NO) even have insignif­icant barriers for permeation. Compared to native and peroxidized membranes, nitrated membranes are more permeable, suggesting that we must not only consider oxidized membranes during nitro-oxidative stress, but also nitrated membranes, and their role in cancer therapies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000696938800003 Publication Date 2021-08-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4825 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.836 Times cited Open Access OpenAccess
Notes We thank University of Antwerp and Coordination of Superior Level Staff Improvement (CAPES, Brazil) for the scholarship granted and for providing the computational resources needed for completion of this work. M. Yusupov acknowledges the Flanders Research Foundation (grant 1200219N) for financial support. Approved Most recent IF: 1.836
Call Number PLASMANT @ plasmant @c:irua:181082 Serial 6807
Permanent link to this record
 

 
Author Sorée, B.; Magnus, W.; Szepieniec, M.; Vandenbreghe, W.; Verhulst, A.; Pourtois, G.; Groeseneken, G.; de Gendt, S.; Heyns, M.
Title Novel device concepts for nanotechnology : the nanowire pinch-off FET and graphene tunnelFET Type (up) A2 Journal article
Year 2010 Publication ECS transactions Abbreviated Journal
Volume 28 Issue Pages 15-26
Keywords A2 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We explain the basic operation of a nanowire pinch-off FET and graphene nanoribbon tunnelFET. For the nanowire pinch-off FET we construct an analytical model to obtain the threshold voltage as a function of radius and doping density. We use the gradual channel approximation to calculate the current-voltage characteristics of this device and we show that the nanowire pinch-off FET has a subthreshold slope of 60 mV/dec and good ION and ION/IOFF ratios. For the graphene nanoribbon tunnelFET we show that an improved analytical model yields more realistic results for the transmission probability and hence the tunneling current. The first simulation results for the graphene nanoribbon tunnelFET show promising subthreshold slopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1938-5862 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89510 Serial 2375
Permanent link to this record
 

 
Author Van Eynde, E.; Tytgat, T.; Smits, M.; Verbruggen, S.; Hauchecorne, B.; Blust, R.; Lenaerts, S.
Title Diatom silica-titania materials for photocatalytic air purification Type (up) A2 Journal article
Year 2013 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 1 Issue 1 Pages 141-147
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:105334 Serial 5943
Permanent link to this record
 

 
Author Smits, M.; Vanpachtenbeke, F.; Hauchecorne, B.; van Langenhove, H.; Demeestere, K.; Lenaerts, S.
Title Exhaust composition of a small diesel engine Type (up) A2 Journal article
Year 2012 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 77 Issue 1 Pages 85-88
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:94166 Serial 5949
Permanent link to this record
 

 
Author Ilgrande, C.; Christiaens, M.; Clauwaert, P.; Vlaeminck, S.E.; Boon, N.
Title Can nitrification bring us to Mars? The role of microbial interactions on nitrogen recovery in Life Support Systems Type (up) A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 74-79
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract The development cost-effective life support technologies is a highly relevant topic for space biology. Currently, food and water supply during space flights is currently restricted by technical and economic constraints: daily water consumption of an average crew of 6 members is about 72 L, with an estimated cost of 2,160,000 d-1. To reduce these costs and sustain long term space missions, the European Space Agency designed MELiSSA, an artificial ecosystem based on 5 compartments for the recycling gas, liquid and solid waste (Lasseur et al., 2011). In the CI stage, crew and inedible solid waste is fermented by thermophilic anaerobic bacteria, producing volatile fatty acids (VFAs), CO2 and ammonium (NH4+). In the CII compartment the VFAs are converted into edible biomass, using the photoheterotroph Rodospirillum rubrum. Afterwards, the nitrifying CIII unit converts toxic levels of ammonia/ammonium into nitrate, which enables the effluent to be fed to the photoautotrohopic CIV stage, that provides food and oxygen for the crew (Godia et al., 2002). The highest nitrogen flux in a Life Support System is human urine. As nitrate is the preferred form of nitrogen fertilizer for hydroponic plant cultivation, urine nitrification is an essential process in the MELiSSA loop. The development of the Additional Unit for Water Treatment or Urine NItrification ConsortiUM (UNICUM) requires the selection and characterization of the microorganisms that will be used. The key microorganisms in the biological treatment of urine are heterotrophs, for the hydrolysis of urea into ammonia and carbon dioxide, Ammonia Oxidizing Bacteria (AOB), for the ammonia oxidation into nitrite and Nitrite Oxidizing Bacteria (NOB), for the conversion of nitrite into nitrate. The strains were selected according to predefined safety (non sporogenic and BSL 1) and metabolic (Ks, μmax) criteria. To evaluate functional consortia for space applications, ureolysis, nitritation and nitratation of the selected microorganisms and synthetic communities were elucidated. Additionally, urine is a matrix with a high salt content. Unhydrolised urine's EC ranges from 1.1 to 33.9 mS/cm, the mean value being 21.5 mS/cm (Marickar, 2010), while hydrolysed urine can reach higher levels, up to 75 mS/cm. This conditions could inhibit microbial metabolism, therefore the effect of salinity on urine nitrification was also elucidated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151151 Serial 7573
Permanent link to this record
 

 
Author De Vis, K.; Jembrih-Simbürger, D.; Schalm, O.; Schreiner, M.; Caen, J.
Title Einfluss verschiedener Silbersalze auf die Farbintensität von Silbergelb : analytische Untersuchungen Type (up) A2 Journal article
Year 2002 Publication Zeitschrift für Kunsttechnologie und Konservierung Abbreviated Journal
Volume 16 Issue 1 Pages 147-157
Keywords A2 Journal article; Art; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0931-7198 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:107748 Serial 7855
Permanent link to this record
 

 
Author Silva, F.S.; Godoi, R.H.M.; Tauler, R.; de André, P.A.; Saldiva, P.H.N.; Van Grieken, R.; de Marchi, M.R.R.
Title Elemental composition of PM2.5 in Araraquara City (Southeast Brazil) during seasons with and without sugar cane burning Type (up) A2 Journal article
Year 2015 Publication Journal of environmental protection Abbreviated Journal
Volume 6 Issue 5 Pages 426-434
Keywords A2 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Particulate matter with an aerodynamic diameter below 2.5 μm (PM2.5), present in polluted air, has been associated with a large spectrum of health impairments, mainly because of its deep deposition into the lungs. Araraquara City (Southeast Brazil) is surrounded by sugar-cane plantations, which are burned to facilitate the harvesting; this process causes environmental pollution due to the large amounts of soot that are released into the atmosphere. In this work, the elemental composition of PM2.5 was studied in two scenarios, namely in sugar-cane harvesting (HV) and in non-harvesting (NHV) seasons. The sampling strategy included one campaign in each season. PM2.5 was collected using a dichotomous sampler (10 L·min-1, 24 h) with PTFE filters. Information concerning the bulk elemental concentration was provided by energy-dispersive X-ray fluorescence. Enrichment factor analysis indicated that S, Cl, K, Cr, Ni, Cu, Zn, As, Cd and Pb were highly enriched relative to their crustal ratios (to Al). Principal component analysis was used to get some insight about the sources of the elements. Principal component 1 (PC1) explained 30.5% of data variance. The elements that had high loading (>0.7) were: S, Cr, As, and Pb; these are associated with combustion of fossil fuels. In principal component 2 (PC2), Cl, Cu, Zn, and Cd showed high loadings; these elements are associated with biomass burning. The Ni concentration found is three times larger than the threshold of risk for lung cancer, as recommended by the World Health Organization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2015-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2152-2197 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:125885 Serial 7891
Permanent link to this record
 

 
Author Van Grieken, R.; Stranger, M.
Title Fijn stof en pollutiegassen in de binnenlucht Type (up) A2 Journal article
Year 2006 Publication ARGUS milieumagazine Abbreviated Journal
Volume 4 Issue 2 Pages 18
Keywords A2 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-4957 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:58863 Serial 7967
Permanent link to this record
 

 
Author Muys, M.; Derese, S.; Verliefde, A.; Vlaeminck, S.E.
Title Solubilization of struvite as a sustainable nutrient source for single cell protein production Type (up) A2 Journal article
Year 2016 Publication Communications in agricultural and applied biological sciences Abbreviated Journal
Volume 81 Issue 1 Pages 179-184
Keywords A2 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract By 2050, the world population will have considerably expanded and the life standard of many will increase, yielding a 50% higher demand in protein (FAO, 2011), and even increases of 82 and 102% for diary and meat products, respectively (Boland et al., 2013). To provide in this increasing demand we are highly dependent on our classical fertilizer to food chain which has a high environmental impact and lacks efficiency. Nutrient losses cause eutrophication and biodiversity loss and the input of resources is already beyond the boundaries of environmental sustainability (Steffen et al., 2015). Phosphate fertilizers are made from phosphate rock (apatite), of which the reserves are predicted to be depleted within 50 100 years if we continue business as usual (Cordell et al., 2009). Next to problems related to the unbalanced geopolitical distribution with dominance in China and Morocco, the decreasing quality of the remaining apatite will result in an increasing environmental impact of fertilizer production. Finally, our traditional food production model requires 30% of all ice-free land, 70% of all available freshwater and produces up to one third of the global greenhouse gas emission, of which 80 to 86% is linked to agricultural production (Vermeulen et al., 2012). To ensure food security, nutrient recovery from waste streams can provide an important strategy. In this context, struvite ( ) crystallisation may be applied to recover phosphorus, along with some nitrogen. Reusing these nutrients as agricultural fertilizer on the field will lead to considerable losses to the environment. In contrast, their use to cultivate micro-organisms, e.g. for single cell protein (SCP), offers to potential of a near perfect conversion efficiency (Moed et al., 2015). At this moment, microalgae represent the most developed type of SCP, and are a promising protein source due to their growth rate, high nutritional quality and extremely high nutrient usage efficiency (Becker, 2007). Reliable solubilisation data are essential to design a technological strategy for struvite dosage in bioreactors for SCP production. The effect on solubility and solubilisation rate of relevant physicochemical parameters was studied experimentally in aqueous solutions. Because pH and temperature greatly affect solubilisation kinetics they were set at a constant value of 7 and 20°C respectively. The effect of some parameters on struvite solubility was already studied (Bhuiyan et al., 2007; Ariyanto et al., 2014; Roncal-Herrero and Oelkers, 2011), but solubilisation rates were not yet considered and pH was not controlled at a constant value. The chemical parameters considered in this study include the concentration of different common ions ( and ), foreign ions ( and the chelating agent ethylenediaminetetraacetic acid, EDTA) present in micro-algal cultivation media as well as ionic strength (as set by NaCl). The main physical parameter included was contact surface, through variation in initial particle size and as well as in struvite dosage concentration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1379-1176 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:151150 Serial 8550
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A.
Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type (up) A2 Journal article
Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal
Volume 17 Issue 7 Pages 54-58
Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2030-2738 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202271 Serial 9004
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Echert, M.; Soltani, A.; d' Haen, J.; Douheret, O.; Moreau, M.; Osswald, S.; Neyts, E.; Troadec, D.; Wagner, P.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.
Title Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition Type (up) A3 Journal article
Year 2009 Publication Materials Research Society symposium proceedings Abbreviated Journal
Volume Issue 1203 Pages
Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.
Address
Corporate Author Thesis
Publisher Place of Publication Wuhan Editor
Language Wos Publication Date 2010-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1946-4274; ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:81646 Serial 327
Permanent link to this record