toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ulu Okudur, F.; Batuk, M.; Hadermann, J.; Safari, M.; De Sloovere, D.; Kumar Mylavarapu, S.; Joos, B.; D'Haen, J.; Van Bael, M.K.; Hardy, A. url  doi
openurl 
  Title Solution-gel-based surface modification of LiNi0.5Mn1.5O4-δ with amorphous Li-Ti-O coating Type (up) A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 47 Pages 33146-33158  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract LNMO (LiNi0.5Mn1.5O4-delta) is a high-energy density positive electrode material for lithium ion batteries. Unfortunately, it suffers from capacity loss and impedance rise during cycling due to electrolyte oxidation and electrode/electrolyte interface instabilities at high operating voltages. Here, a solution-gel synthesis route was used to coat 0.5-2.5 mu m LNMO particles with amorphous Li-Ti-O (LTO) for improved Li conduction, surface structural stability and cyclability. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) analysis coupled with energy dispersive X-ray (EDX) showed Ti-rich amorphous coatings/islands or Ti-rich spinel layers on many of the LTO-modified LNMO facets, with a thickness varying from about 1 to 10 nm. The surface modification in the form of amorphous islands was mostly possible on high-energy crystal facets. Physicochemical observations were used to propose a molecular mechanism for the surface modification, combining insights from metalorganic chemistry with the crystallographic properties of LNMO. The improvements in functional properties were investigated in half cells. The cell impedance increased faster for the bare LNMO compared to amorphous LTO modified LNMO, resulting in R-ct values as high as 1247 Omega (after 1000 cycles) for bare LNMO, against 216 Omega for the modified material. At 10C, the modified material boosted a 15% increase in average discharge capacity. The improvements in electrochemical performance were attributed to the increase in electrochemically active surface area, as well as to improved HF-scavenging, resulting in the formation of protective byproducts, generating a more stable interface during prolonged cycling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001102666700001 Publication Date 2023-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:202091 Serial 9096  
Permanent link to this record
 

 
Author Zamani, M.; Yapicioglu, H.; Kara, A.; Sevik, C. pdf  doi
openurl 
  Title Statistical analysis of porcelain tiles' technical properties : full factorial design investigation on oxide ratios and temperature Type (up) A1 Journal article
  Year 2023 Publication Physica scripta Abbreviated Journal  
  Volume 98 Issue 12 Pages 125953-18  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract This study focuses on optimizing the composition and firing temperature of porcelain tiles using statistical analysis techniques. A full factorial design, including model adequacy checking, analysis of variance, Pareto charts, interaction plots, regression model, and response optimizer is employed. The key factors were the Seger ratios of SiO2/Al2O3, Na2O/K2O, MgO/CaO, and firing temperature. The response variables investigated were bulk density, water absorption, linear shrinkage, coefficient of thermal expansion (at 500 degrees C), and strength. The statistical analysis revealed highly significant results, which were further validated, confirming their reliability for practical use in the production of porcelain tiles. The study demonstrated the effectiveness of utilizing Seger formulas and properties of typical raw materials to accurately predict the final properties of ceramic tiles. By employing SiO2/Al2O3 = 5.2, Na2O/K2O = 1.50, MgO/CaO = 3.0, and firing temperature of 1180 degrees C, optimized properties, such as maximum strength, maximum bulk density, and minimum water absorption, was achieved with a composite desirability of 0.9821.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001105879800001 Publication Date 2023-11-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949; 1402-4896 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.9 Times cited Open Access  
  Notes Approved Most recent IF: 2.9; 2023 IF: 1.28  
  Call Number UA @ admin @ c:irua:202033 Serial 9097  
Permanent link to this record
 

 
Author Menegaldo, B.; Aleccia, D.; Nuyts, G.; Amato, A.; Orsega, E.F.; Moro, G.; Balliana, E.; De Wael, K.; Moretto, L.M.; Beltran, V. pdf  doi
openurl 
  Title Stories of the life of Saint George : materials and techniques from a Barbelli mural painting Type (up) A1 Journal article
  Year 2023 Publication Studies in conservation Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords A1 Journal article; Art; History; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Gian Giacomo Inchiocchio (1604-1656), better known as Barbelli, was one of the main exponents of Lombard painting of the seventeenth century. A large body of work is attributed to him, encompassing a wide range of drawings, murals, and oil paintings. However, despite his broad production, there are still many open questions regarding his painting techniques and materials. In this paper, a multi-analytical study of the cycle Stories of the life of Saint George that originally decorated the presbytery of the parish church of Casaletto Vaprio (Cremona, Italy) was performed, combining non-invasive techniques with the characterisation of selected micro samples. Results show that Barbelli used a very limited number of inorganic pigments, often mixing them together to create different colours and shades. Remains of caseinate and degradation products (i.e. weddellite and whewellite) related to the strappo intervention were also highlighted. The study helped to decipher the materials and technique of this painting, providing data that can be used as a reference to study his extensive production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001080139100001 Publication Date 2023-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-3630; 2047-0584 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 0.8 Times cited Open Access  
  Notes Approved Most recent IF: 0.8; 2023 IF: 0.578  
  Call Number UA @ admin @ c:irua:200302 Serial 9098  
Permanent link to this record
 

 
Author Lauwens, J.; Kerkhofs, L.; Sala, A.; Sorée, B. pdf  doi
openurl 
  Title Superconductor-semiconductor hybrid capacitance with a nonlinear charge-voltage profile Type (up) A1 Journal article
  Year 2024 Publication Journal of physics: D: applied physics Abbreviated Journal  
  Volume 57 Issue 2 Pages 025301-25309  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electronic devices that work in the quantum regime often employ hybrid nanostructures to bring about a nonlinear behaviour. The nonlinearity that these can provide has proven to be useful, in particular, for applications in quantum computation. Here we present a hybrid device that acts as a capacitor with a nonlinear charge-voltage relation. The device consists of a nanowire placed between the plates of a coplanar capacitor, with a co-parallel alignment. At low temperatures, due to the finite density of states on the nanowire, the charge distribution in the capacitor is uneven and energy-dependent, resulting in a charge-dependent effective capacitance. We study this system analytically and numerically, and show that the nonlinearity of the capacitance is significant enough to be utilized in circuit quantum electrodynamics. The resulting nonlinearity can be switched on, modulated, and switched off by an external potential, thus making this capacitive device highly versatile for uses in quantum computation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082883200001 Publication Date 2023-09-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: 2.588  
  Call Number UA @ admin @ c:irua:200300 Serial 9099  
Permanent link to this record
 

 
Author Tran, T.T.; Lee, Y.; Roy, S.; Tran, T.U.; Kim, Y.; Taniguchi, T.; Watanabe, K.; Milošević, M.V.; Lim, S.C.; Chaves, A.; Jang, J.I.; Kim, J. pdf  doi
openurl 
  Title Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS₂ by proximal metal plate and negative electric bias Type (up) A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 18 Issue 1 Pages 220-228  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract The efficiency of light emission is a critical performance factor for monolayer transition metal dichalcogenides (1L-TMDs) for photonic applications. While various methods have been studied to compensate for lattice defects to improve the quantum yield (QY) of 1L-TMDs, exciton-exciton annihilation (EEA) is still a major nonradiative decay channel for excitons at high exciton densities. Here, we demonstrate that the combined use of a proximal Au plate and a negative electric gate bias (NEGB) for 1L-WS2 provides a dramatic enhancement of the exciton lifetime at high exciton densities with the corresponding QY enhanced by 30 times and the EEA rate constant decreased by 80 times. The suppression of EEA by NEGB is attributed to the reduction of the defect-assisted EEA process, which we also explain with our theoretical model. Our results provide a synergetic solution to cope with EEA to realize high-intensity 2D light emitters using TMDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001139516800001 Publication Date 2023-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 17.1 Times cited Open Access  
  Notes Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:202811 Serial 9101  
Permanent link to this record
 

 
Author Zaripov, A.A.; Khalilov, U.B.; Ashurov, K.B. pdf  doi
openurl 
  Title Synergism of the initial stage of removal of dielectric materials during electrical erosion processing in electrolytes Type (up) A1 Journal article
  Year 2023 Publication Surface engineering and applied electrochemistry Abbreviated Journal  
  Volume 59 Issue 6 Pages 712-718  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ceramics and composites, many of whose physicochemical properties significantly exceed similar properties of metals and their alloys, are processed qualitatively mainly by the electroerosion method. Despite the existing works, the mechanism of the initial stage of the removal of materials has not yet been identified. For a comprehensive understanding of the mechanism of the removal of dielectrics, a new model is proposed based on the experimental results obtained on an improved electroerosion installation. It was revealed that the initial stage of the removal of a dielectric material consists of three successive stages that are associated with the synergistic effect on the process of the anionic group of electrolytes, plasma flare, and the cavitation shock. This makes it possible to better understand the mechanism of the removal of composite and ceramic materials, which should contribute to ensuring the machinability of those materials and their wide use in promising technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001126070700009 Publication Date 2023-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3755; 1934-8002 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202754 Serial 9102  
Permanent link to this record
 

 
Author Xiao, H.; Zhang, Z.; Xu, W.; Wang, Q.; Xiao, Y.; Ding, L.; Huang, J.; Li, H.; He, B.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz optoelectronic properties of synthetic single crystal diamond Type (up) A1 Journal article
  Year 2023 Publication Diamond and related materials Abbreviated Journal  
  Volume 139 Issue Pages 110266-110268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A systematic investigation is undertaken for studying the optoelectronic properties of single crystal diamond (SCD) grown by microwave plasma chemical vapor deposition (MPCVD). It is indicated that, without intentional doping and surface treatment during the sample growth, the terahertz (THz) optical conduction in SCD is mainly affected by surface H-terminations, -OH-, O- and N-based functional groups. By using THz time-domain spectroscopy (TDS), we measure the transmittance, the complex dielectric constant and optical conductivity σ(ω) of SCD. We find that SCD does not show typical semiconductor characteristics in THz regime, where σ(ω) cannot be described rightly by the conventional Drude formula. Via fitting the real and imaginary parts of σ(ω) to the Drude-Smith formula, the ratio of the average carrier density to the effective electron mass γ = ne/m*, the electronic relaxation time τ and the electronic backscattering or localization factor can be determined optically. The temperature dependence of these parameters is examined. From the temperature dependence of γ, a metallic to semiconductor transition is observed at about T = 10 K. The temperature dependence of τ is mainly induced by electron coupling with acoustic-phonons and there is a significant effect of photon-induced electron backscattering or localization in SCD. This work demonstrates that THz TDS is a powerful technique in studying SCD which contains H-, N- and O-based bonds and has low electron density and high dc resistivity. The results obtained from this study can benefit us to gain an in-depth understanding of SCD and may provide new guidance for the application of SCD as electronic, optical and optoelectronic materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2023-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-9635 ISBN Additional Links UA library record  
  Impact Factor 4.1 Times cited Open Access  
  Notes Approved Most recent IF: 4.1; 2023 IF: 2.561  
  Call Number UA @ admin @ c:irua:200920 Serial 9103  
Permanent link to this record
 

 
Author Parchomenko, A.; De Smet, S.; Pals, E.; Vanderreydt, I.; Van Opstal, W. url  doi
openurl 
  Title The circular economy potential of reversible bonding in smartphones Type (up) A1 Journal article
  Year 2023 Publication Sustainable Production and Consumption Abbreviated Journal  
  Volume 41 Issue Pages 362-378  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The increased use of adhesive bonding in manufacturing is an important barrier to implement circular economy strategies, including repair, refurbishment, and high-quality recycling. The circular economy potential of reversible adhesives that are debondable on demand, however, remains largely unexplored. In this paper we apply an integrated technology-agnostic framework to smartphones to identify and quantify the circular econ-omy potential of reversible bonding. In this framework we combine insights from Life Cycle Assessment, Life Cycle Costing, and Statistical Entropy Analysis. We find that reversible bonding of smartphones can be an enabler for circular strategies and have a considerable positive impact on preserving higher functionality on a product, component, and material level. The major added value of reversible bonding is its potential to replace and update parts, retaining the main environmental hotspot of a smartphone. Firms, however, will not likely switch to this technology, even though bonding and debonding make up only a small fraction of total lifecycle costs. Therefore, policy recommendations include mandatory policies on repairability and public procurement favouring the use of reversible bonding techniques. This would alter incentives in contexts where consumer preferences for lease markets cannot be taken for granted. The evaluation of different debonding scenarios from three distinct per-spectives provides a comprehensive, more reliable, and robust understanding of the trade-offs related to debonding and its potential contribution to the circular economy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001078407500001 Publication Date 2023-09-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2352-5509 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 12.1 Times cited Open Access  
  Notes Approved Most recent IF: 12.1; 2023 IF: NA  
  Call Number UA @ admin @ c:irua:200307 Serial 9104  
Permanent link to this record
 

 
Author Sargin, G.O.; Sarikurt, S.; Sevincli, H.; Sevik, C. pdf  url
doi  openurl
  Title The peculiar potential of transition metal dichalcogenides for thermoelectric applications : a perspective on future computational research Type (up) A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 133 Issue 15 Pages 150902-150937  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The peculiar potential transition metal dichalcogenides in regard to sensor and device applications have been exhibited by both experimental and theoretical studies. The use of these materials, thermodynamically stable even at elevated temperatures, particularly in nano- and optoelectronic technology, is about to come true. On the other hand, the distinct electronic and thermal transport properties possessing unique coherency, which may result in higher thermoelectric efficiency, have also been reported. However, exploiting this potential in terms of power generation and cooling applications requires a deeper understanding of these materials in this regard. This perspective study, concentrated with this intention, summarizes thermoelectric research based on transition metal dichalcogenides from a broad perspective and also provides a general evaluation of future theoretical investigations inevitable to shed more light on the physics of electronic and thermal transport in these materials and to lead future experimental research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001079329000001 Publication Date 2023-04-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068  
  Call Number UA @ admin @ c:irua:200351 Serial 9105  
Permanent link to this record
 

 
Author Mehmonov, K.; Ergasheva, A.; Yusupov, M.; Khalilov, U. url  doi
openurl 
  Title The role of carbon monoxide in the catalytic synthesis of endohedral carbyne Type (up) A1 Journal article
  Year 2023 Publication Journal of applied physics Abbreviated Journal  
  Volume 134 Issue 14 Pages 144303-144307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The unique physical properties of carbyne, a novel carbon nanostructure, have attracted considerable interest in modern nanotechnology. While carbyne synthesis has been accomplished successfully using diverse techniques, the underlying mechanisms governing the carbon monoxide-dependent catalytic synthesis of endohedral carbyne remain poorly understood. In this simulation-based study, we investigate the synthesis of endohedral carbyne from carbon and carbon monoxide radicals in the presence of a nickel catalyst inside double-walled carbon nanotubes with a (5,5)@(10,10) structure. The outcome of our investigation demonstrates that the incorporation of the carbon atom within the Ni-n@(5,5)@(10,10) model system initiates the formation of an elongated carbon chain. In contrast, upon the introduction of carbon monoxide radicals, the growth of the carbyne chain is inhibited as a result of the oxidation of endohedral nickel clusters by oxygen atoms after the initial steps of nucleation. Our findings align with prior theoretical, simulation, and experimental investigations, reinforcing their consistency and providing valuable insights into the synthesis of carbyne-based nanodevices that hold promising potential for future advancements in nanotechnology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001083993400003 Publication Date 2023-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.2 Times cited Open Access  
  Notes Approved Most recent IF: 3.2; 2023 IF: 2.068  
  Call Number UA @ admin @ c:irua:201233 Serial 9106  
Permanent link to this record
 

 
Author Bathula, G.; Rana, S.; Bandalla, S.; Dosarapu, V.; Mavurapu, S.; Rajeevan, V.V.A.; Sharma, B.; Jonnalagadda, S.B.; Baithy, M.; Vasam, C.S. url  doi
openurl 
  Title The role of WOx and dopants (ZrO₂ and SiO₂) on CeO₂-based nanostructure catalysts in the selective oxidation of benzyl alcohol to benzaldehyde under ambient conditions Type (up) A1 Journal article
  Year 2023 Publication RSC advances Abbreviated Journal  
  Volume 13 Issue 51 Pages 36242-36253  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Herein, the efficacy of WOx-promoted CeO2-SiO2 and CeO2-ZrO2 mixed oxide catalysts in the solvent-free selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as an oxidant is reported. We evaluated the effects of the oxidant and catalyst concentration, reaction duration, and temperature on the reaction with an aim to optimize the reaction conditions. The as-prepared CeO2, CeO2-ZrO2, CeO2-SiO2, WOx/CeO2, WOx/CeO2-ZrO2, and WOx/CeO2-SiO2 catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption-desorption, Raman spectroscopy, temperature-programmed desorption of ammonia (TPD-NH3), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). These characterisation results indicated that the WOx/CeO2-SiO2 catalyst possessed improved physicochemical (i.e., structural, textural, and acidic) properties owing to the strong interactivity between WOx and CeO2-SiO2. A higher number of Ce3+ ions (I-u '''/I-Total) were created with the WOx/CeO2-SiO2 catalyst than those with the other catalysts in this work, indicating the generation of a high number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst exhibited a high conversion of benzyl alcohol (>99%) and a high selectivity (100%) toward benzaldehyde compared to the other promoted catalysts (i.e., WOx/CeO2 and WOx/CeO2-ZrO2), which is attributed to the smaller particle size of the WOx and CeO2 and their high specific surface area, more significant number of acidic sites, and superior number of oxygen vacancies. The WOx/CeO2-SiO2 catalyst could be quickly recovered and utilized at least five times without suffering any appreciable activity loss.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001123102800001 Publication Date 2023-12-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.9 Times cited Open Access  
  Notes Approved Most recent IF: 3.9; 2023 IF: 3.108  
  Call Number UA @ admin @ c:irua:202115 Serial 9107  
Permanent link to this record
 

 
Author Vermeulen, B.B.; Raymenants, E.; Pham, V.T.; Pizzini, S.; Sorée, B.; Wostyn, K.; Couet, S.; Nguyen, V.D.; Temst, K. url  doi
openurl 
  Title Towards fully electrically controlled domain-wall logic Type (up) A1 Journal article
  Year 2024 Publication AIP advances Abbreviated Journal  
  Volume 14 Issue 2 Pages 025030-25035  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Utilizing magnetic tunnel junctions (MTJs) for write/read and fast spin-orbit-torque (SOT)-driven domain-wall (DW) motion for propagation, enables non-volatile logic and majority operations, representing a breakthrough in the implementation of nanoscale DW logic devices. Recently, current-driven DW logic gates have been demonstrated via magnetic imaging, where the Dzyaloshinskii-Moriya interaction (DMI) induces chiral coupling between perpendicular magnetic anisotropy (PMA) regions via an in-plane (IP) oriented region. However, full electrical operation of nanoscale DW logic requires electrical write/read operations and a method to pattern PMA and IP regions compatible with the fabrication of PMA MTJs. Here, we study the use of a Hybrid Free Layer (HFL) concept to combine an MTJ stack with DW motion materials, and He+ ion irradiation to convert the stack from PMA to IP. First, we investigate the free layer thickness dependence of 100-nm diameter HFL-MTJ devices and find an optimal CoFeB thickness, from 7 to 10 angstrom, providing high tunneling magnetoresistance (TMR) readout and efficient spin-transfer torque (STT) writing. We then show that high DMI materials, like Pt/Co, can be integrated into an MTJ stack via interlayer exchange coupling with the CoFeB free layer. In this design, DMI values suitable for SOT-driven DW motion are measured by asymmetric bubble expansion. Finally, we demonstrate that He+ irradiation reliably converts the coupled free layers from PMA to IP. These findings offer a path toward the integration of fully electrically controlled DW logic circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001163573400005 Publication Date 2024-02-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:203823 Serial 9109  
Permanent link to this record
 

 
Author Singh, A.; Yuan, B.; Rahman, M.H.; Yang, H.; De, A.; Park, J.Y.; Zhang, S.; Huang, L.; Mannodi-Kanakkithodi, A.; Pennycook, T.J.; Dou, L. pdf  doi
openurl 
  Title Two-dimensional halide Pb-perovskite-double perovskite epitaxial heterostructures Type (up) A1 Journal article
  Year 2023 Publication Journal of the American Chemical Society Abbreviated Journal  
  Volume 145 Issue 36 Pages 19885-19893  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial heterostructures of two-dimensional (2D) halide perovskites offer a new platform for studying intriguing structural, optical, and electronic properties. However, difficulties with the stability of Pb- and Sn-based heterostructures have repeatedly slowed the progress. Recently, Pb-free halide double perovskites are gaining a lot of attention due to their superior stability and greater chemical diversity, but they have not been successfully incorporated into epitaxial heterostructures for further investigation. Here, we report epitaxial core-shell heterostructures via growing Pb-free double perovskites (involving combinations of Ag(I)-Bi(III), Ag-Sb, Ag-In, Na-Bi, Na-Sb, and Na-In) around Pb perovskite 2D crystals. Distinct from Pb-Pb and Pb-Sn perovskite heterostructures, growths of the Pb-free shell at 45 degrees on the (100) surface of the lead perovskite core are observed in all Pb-free cases. The in-depth structural analysis carried out with electron diffraction unequivocally demonstrates the growth of the Pb-free shell along the [110] direction of the Pb perovskite, which is likely due to the relatively lower surface energy of the (110) surface. Furthermore, an investigation of anionic interdiffusion across heterostructure interfaces under the influence of heat was carried out. Interestingly, halide anion diffusion in the Pb-free 2D perovskites is found to be significantly suppressed as compared to Pb-based 2D perovskites. The great structural tunability and excellent stability of Pb-free perovskite heterostructures may find uses in electronic and optoelectronic devices in the near future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001060980300001 Publication Date 2023-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 15 Times cited Open Access  
  Notes Approved Most recent IF: 15; 2023 IF: 13.858  
  Call Number UA @ admin @ c:irua:200342 Serial 9111  
Permanent link to this record
 

 
Author Van Echelpoel, R.; De Wael, K. doi  openurl
  Title Voltammetric drug testing makes sense at the border Type (up) A1 Journal article
  Year 2024 Publication Nature Reviews Chemistry Abbreviated Journal  
  Volume Issue Pages 1-2  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The European BorderSens project leverages voltammetric sensors, developed with end-users' input, to rapidly and accurately detect illicit drugs. By embracing practicalities and validation, this technology has the potential to combat the illicit drug problem.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001142000900001 Publication Date 2024-01-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-3358 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202646 Serial 9112  
Permanent link to this record
 

 
Author Verbeelen, T.; Fernandez, C.A.; Nguyen, T.H.; Gupta, S.; Aarts, R.; Tabury, K.; Leroy, B.; Wattiez, R.; Vlaeminck, S.E.; Leys, N.; Ganigué, R.; Mastroleo, F. url  doi
openurl 
  Title Whole transcriptome analysis highlights nutrient limitation of nitrogen cycle bacteria in simulated microgravity Type (up) A1 Journal article
  Year 2024 Publication NPJ microgravity Abbreviated Journal  
  Volume 10 Issue 1 Pages 3-19  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Regenerative life support systems (RLSS) will play a vital role in achieving self-sufficiency during long-distance space travel. Urine conversion into a liquid nitrate-based fertilizer is a key process in most RLSS. This study describes the effects of simulated microgravity (SMG) on Comamonas testosteroni, Nitrosomonas europaea, Nitrobacter winogradskyi and a tripartite culture of the three, in the context of nitrogen recovery for the Micro-Ecological Life Support System Alternative (MELiSSA). Rotary cell culture systems (RCCS) and random positioning machines (RPM) were used as SMG analogues. The transcriptional responses of the cultures were elucidated. For CO2-producing C. testosteroni and the tripartite culture, a PermaLifeTM PL-70 cell culture bag mounted on an in-house 3D-printed holder was applied to eliminate air bubble formation during SMG cultivation. Gene expression changes indicated that the fluid dynamics in SMG caused nutrient and O2 limitation. Genes involved in urea hydrolysis and nitrification were minimally affected, while denitrification-related gene expression was increased. The findings highlight potential challenges for nitrogen recovery in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001140007100001 Publication Date 2024-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2373-8065 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:202285 Serial 9113  
Permanent link to this record
 

 
Author Gao, Y.-J.; Jin, H.; Esteban, D.A.; Weng, B.; Saha, R.A.; Yang, M.-Q.; Bals, S.; Steele, J.A.; Huang, H.; Roeffaers, M.B.J. url  doi
openurl 
  Title 3D-cavity-confined CsPbBr₃ quantum dots for visible-light-driven photocatalytic C(sp³)-H bond activation Type (up) A1 Journal article
  Year 2024 Publication Carbon Energy Abbreviated Journal  
  Volume Issue Pages e559  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Metal halide perovskite (MHP) quantum dots (QDs) offer immense potential for several areas of photonics research due to their easy and low-cost fabrication and excellent optoelectronic properties. However, practical applications of MHP QDs are limited by their poor stability and, in particular, their tendency to aggregate. Here, we develop a two-step double-solvent strategy to grow and confine CsPbBr3 QDs within the three-dimensional (3D) cavities of a mesoporous SBA-16 silica scaffold (CsPbBr3@SBA-16). Strong confinement and separation of the MHP QDs lead to a relatively uniform size distribution, narrow luminescence, and good ambient stability over 2 months. In addition, the CsPbBr3@SBA-16 presents a high activity and stability for visible-light-driven photocatalytic toluene C(sp(3))-H bond activation to produce benzaldehyde with similar to 730 mu mol g(-1) h(-1) yield rate and near-unity selectivity. Similarly, the structural stability of CsPbBr3@SBA-16 QDs is superior to that of both pure CsPbBr3 QDs and those confined in MCM-41 with 1D channels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001223583600001 Publication Date 2024-05-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2637-9368 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:206000 Serial 9133  
Permanent link to this record
 

 
Author Yang, C.-Q.; Yin, Z.-W.; Li, W.; Cui, W.-J.; Zhou, X.-G.; Wang, L.-D.; Zhi, R.; Xu, Y.-Y.; Tao, Z.-W.; Sang, X.; Cheng, Y.-B.; Van Tendeloo, G.; Hu, Z.-Y.; Su, B.-L. pdf  doi
openurl 
  Title Atomically deciphering the phase segregation in mixed halide perovskite Type (up) A1 Journal article
  Year 2024 Publication Advanced functional materials Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Mixed-halide perovskites show promising applications in tandem solar cells owing to their adjustable bandgap. One major obstacle to their commercialization is halide phase segregation, which results in large open-circuit voltage deficiency and J-V hysteresis. However, the ambiguous interplay between structural origin and phase segregation often results in aimless and unspecific optimization strategies for the device's performance and stability. An atomic scale is directly figured out the abundant Ruddlesden-Popper anti-phase boundaries (RP-APBs) within a CsPbIBr2 polycrystalline film and revealed that phase segregation predominantly occurs at RP-APB-enriched interfaces due to the defect-mediated lattice strain. By compensating their structural lead halide, such RP-APBs are eliminated, and the decreasing of strain can be observed, resulting in the suppression of halide phase segregation. The present work provides the deciphering to precisely regulate the perovskite atomic structure for achieving photo-stable mixed halide wide-bandgap perovskites of high-efficiency tandem solar cell commercial applications. The phase segregation in mixed halide perovskite film predominantly occurs at Ruddlesden-Popper anti-phase boundaries (RP-APBs)-enriched interfaces due to the defect-mediated lattice strain. The RP-APBs defects can be eliminated by compensating for their structural lead halide deficiency, resulting in the suppression of halide phase segregation. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001200673300001 Publication Date 2024-04-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record; WoS full record  
  Impact Factor 19 Times cited Open Access  
  Notes Approved Most recent IF: 19; 2024 IF: 12.124  
  Call Number UA @ admin @ c:irua:205509 Serial 9134  
Permanent link to this record
 

 
Author Lelouche, S.N.K.; Lemir, I.; Biglione, C.; Craig, T.; Bals, S.; Horcajada, P. url  doi
openurl 
  Title AuNP/MIL-88B-NH₂ nanocomposite for the valorization of nitroarene by green catalytic hydrogenation Type (up) A1 Journal article
  Year 2024 Publication Chemistry: a European journal Abbreviated Journal  
  Volume Issue Pages 1-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The efficiency of a catalytic process is assessed based on conversion, yield, and time effectiveness. However, these parameters are insufficient for evaluating environmentally sustainable research. As the world is urged to shift towards green catalysis, additional factors such as reaction media, raw material availability, sustainability, waste minimization and catalyst biosafety, need to be considered to accurately determine the efficacy and sustainability of the process. By combining the high porosity and versatility of metal organic frameworks (MOFs) and the activity of gold nanoparticles (AuNPs), efficient, cyclable and biosafe composite catalysts can be achieved. Thus, a composite based on AuNPs and the nanometric flexible porous iron(III) aminoterephthalate MIL-88B-NH2 was successfully synthesized and fully characterized. This nanocomposite was tested as catalyst in the reduction of nitroarenes, which were identified as anthropogenic water pollutants, reaching cyclable high conversion rates at short times for different nitroarenes. Both synthesis and catalytic reactions were performed using green conditions, and even further tested in a time-optimizing one-pot synthesis and catalysis experiment. The sustainability and environmental impact of the catalytic conditions were assessed by green metrics. Thus, this study provides an easily implementable synthesis, and efficient catalysis, while minimizing the environmental and health impact of the process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204094600001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0947-6539 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4.3 Times cited Open Access  
  Notes Approved Most recent IF: 4.3; 2024 IF: 5.317  
  Call Number UA @ admin @ c:irua:205426 Serial 9135  
Permanent link to this record
 

 
Author Deben, C.; Freire Boullosa, L.; Rodrigues Fortes, F.; Cardenas De La Hoz, E.; Le Compte, M.; Seghers, S.; Peeters, M.; Vanlanduit, S.; Lin, A.; Dijkstra, K.K.; Van Schil, P.; Hendriks, J.M.H.; Prenen, H.; Roeyen, G.; Lardon, F.; Smits, E. url  doi
openurl 
  Title Auranofin repurposing for lung and pancreatic cancer : low CA12 expression as a marker of sensitivity in patient-derived organoids, with potentiated efficacy by AKT inhibition Type (up) A1 Journal article
  Year 2024 Publication Journal of Experimental and Clinical Cancer Research Abbreviated Journal  
  Volume 43 Issue 1 Pages 88-15  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Center for Oncological Research (CORE)  
  Abstract Background This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. Methods Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. Results The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. Conclusion Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001190581500001 Publication Date 2024-03-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-9966 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:204924 Serial 9136  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title CO₂ conversion to CO via plasma and electrolysis : a techno-economic and energy cost analysis Type (up) A1 Journal article
  Year 2024 Publication Energy & environmental science Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O-2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001218045900001 Publication Date 2024-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 32.5 Times cited Open Access  
  Notes Approved Most recent IF: 32.5; 2024 IF: 29.518  
  Call Number UA @ admin @ c:irua:205986 Serial 9138  
Permanent link to this record
 

 
Author Yao, W.; Hui, C.; Wang, L.; Wang, J.; Gielis, J.; Shi, P. doi  openurl
  Title Comparison of the performance of two polar equations in describing the geometries of elliptical fruits Type (up) A1 Journal article
  Year 2024 Publication Botany letters Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract In nature, the two-dimensional (2D) profiles of fruits from many plants often resemble ellipses. However, it remains unclear whether these profiles strictly adhere to the ellipse equation, as many natural shapes resembling ellipses are actually better described as superellipses. The superellipse equation, which includes an additional parameter n compared to the ellipse equation, can generate a broader range of shapes, with the ellipse being just a special case of the superellipse. To investigate whether the 2D profiles of fruits are better described by ellipses or superellipses, we collected a total of 751 mature and undamaged fruits from 31 naturally growing plants of Cucumis melo L. var. agrestis Naud. Our analysis revealed that most adjusted root-mean-square errors (> 92% of the 751 fruits) for fitting the superellipse equation to the fruit profiles were consistently less than 0.0165. Furthermore, there were 638 of the 751 fruits (ca. 85%) with the 95% confidence intervals of the estimated parameter n in the superellipse equation not including 2. These findings suggest that the profiles of C. melo var. agrestis fruits align more closely with the superellipse equation than with the ellipse equation. This study provides evidence for the existence of the superellipse in fruit profiles, which has significant implications for studying fruit geometries and estimating fruit volumes using the solid of revolution formula. Furthermore, this discovery may contribute to a deeper understanding of the mechanisms driving the evolution of fruit shapes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219634500001 Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2381-8107; 2381-8115 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.5 Times cited Open Access  
  Notes Approved Most recent IF: 1.5; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:205955 Serial 9140  
Permanent link to this record
 

 
Author Blagojević, J.; Mijin, S.D.; Bekaert, J.; Opačić, M.; Liu, Y.; Milošević, M.V.; Petrović, C.; Popović, Z.V.; Lazarević, N. url  doi
openurl 
  Title Competition of disorder and electron-phonon coupling in 2H-TaSe2-xSx (0≤x≤2) as evidenced by Raman spectroscopy Type (up) A1 Journal article
  Year 2024 Publication Physical review materials Abbreviated Journal  
  Volume 8 Issue 2 Pages 024004-24008  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The vibrational properties of 2H-TaSe<sub>2-x</sub>S<sub>x</sub> (0≤x≤2) single crystals were probed using Raman spectroscopy and density functional theory calculations. The end members revealed two out of four symmetry-predicted Raman active modes, together with the pronounced two-phonon structure, attributable to the enhanced electron-phonon coupling. Additional peaks become observable due to crystallographic disorder for the doped samples. The evolution of the E<sub>2</sub>g<sup>2</sup> mode Fano parameter reveals that the disorder has a weak impact on electron-phonon coupling, which is also supported by the persistence of two-phonon structure in doped samples. As such, this research provides thorough insights into the lattice properties, the effects of crystallographic disorder on Raman spectra, and the interplay of this disorder with the electron-phonon coupling in 2H-TaSe<sub>2-x</sub>S<sub>x</sub> compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001171649400004 Publication Date 2024-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.4 Times cited Open Access  
  Notes Approved Most recent IF: 3.4; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:204404 Serial 9141  
Permanent link to this record
 

 
Author Khan, S.U.; Matshitse, R.; Borah, R.; Nemakal, M.; Moiseeva, E.O.; Dubinina, T.V.; Nyokong, T.; Verbruggen, S.W.; De Wael, K. url  doi
openurl 
  Title Coupling of phthalocyanines with plasmonic gold nanoparticles by click chemistry for an enhanced singlet oxygen based photoelectrochemical sensing Type (up) A1 Journal article
  Year 2024 Publication ChemElectroChem Abbreviated Journal  
  Volume Issue Pages 1-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab); Antwerp engineering, PhotoElectroChemistry & Sensing (A-PECS)  
  Abstract Coupling photosensitizers (PSs) with plasmonic nanoparticles increases the photocatalytic activity of PSs as the localized surface plasmon resonance (LSPR) of plasmonic nanoparticles leads to extreme concentration of light in their vicinity known as the near-field enhancement effect. To realize this in a colloidal phase, efficient conjugation of the PS molecules with the plasmonic nanoparticle surface is critical. In this work, we demonstrate the coupling of phthalocyanine (Pc) molecules with gold nanoparticles (AuNPs) in the colloidal phase via click chemistry. This conjugated Pc-AuNPs colloidal system is shown to enhance the photocatalytic singlet oxygen (1O2) production over non-conjugated Pcs and hence improve the photoelectrochemical detection of phenols. The plasmonic enhancement of the 1O2 generation by Pcs was clearly elucidated by complementary experimental and computational classical electromagnetic models. The dependence of plasmonic enhancement on the spectral position of the excitation laser wavelength and the absorbance of the Pc molecules with respect to the wavelength specific near-field enhancement is clearly demonstrated. A high similar to 8 times enhancement is obtained with green laser (532 nm) at the LSPR due to the maximum near-field enhancement at the resonance wavelength. Zinc phthalocyanine is covalently linked to plasmonic AuNPs via click chemistry to investigate the synergistic effect that boosts the overall activity toward the detection of HQ under visible light illumination. The 1O2 quantum yield of ZnPc improved significantly after conjugating with AuNPs, resulting in enhanced photoelectrochemical activity. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001214481000001 Publication Date 2024-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 4 Times cited Open Access  
  Notes Approved Most recent IF: 4; 2024 IF: 4.136  
  Call Number UA @ admin @ c:irua:205962 Serial 9142  
Permanent link to this record
 

 
Author Morad, V.; Stelmakh, A.; Svyrydenko, M.; Feld, L.G.; Boehme, S.C.; Aebli, M.; Affolter, J.; Kaul, C.J.; Schrenker, N.J.; Bals, S.; Sahin, Y.; Dirin, D.N.; Cherniukh, I.; Raino, G.; Baumketner, A.; Kovalenko, M.V. url  doi
openurl 
  Title Designer phospholipid capping ligands for soft metal halide nanocrystals Type (up) A1 Journal article
  Year 2024 Publication Nature Abbreviated Journal  
  Volume 626 Issue Pages 542-548  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission. Phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites and lead-free metal halide nanocrystals, which then exhibit enhanced robustness and optical properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001176943100001 Publication Date 2023-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 64.8 Times cited Open Access  
  Notes Approved Most recent IF: 64.8; 2024 IF: 40.137  
  Call Number UA @ admin @ c:irua:204796 Serial 9144  
Permanent link to this record
 

 
Author Pascucci, F.; Conti, S.; Perali, A.; Tempère, J.; Neilson, D. url  doi
openurl 
  Title Effects of intralayer correlations on electron-hole double-layer superfluidity Type (up) A1 Journal article
  Year 2024 Publication Physical review B Abbreviated Journal  
  Volume 109 Issue 9 Pages 094512-94515  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT)  
  Abstract We investigate the intralayer correlations acting within the layers in a superfluid system of electron -hole spatially separated layers. In this system, superfluidity is predicted to be almost exclusively confined to the Bose-Einstein condensate (BEC) and crossover regimes where the electron -hole pairs are well localized. In this case, Hartree-Fock is an excellent approximation for the intralayer correlations. We find in the BEC regime that the effect of the intralayer correlations on superfluid properties is negligible but in the BCS-BEC crossover regime the superfluid gap is significantly weakened by the intralayer correlations. This is caused by the intralayer correlations boosting the number of low -energy particle -hole excitations that drive the screening. We further find that the intralayer correlations suppress the predicted phenomenon in which the average pair size passes through a minimum as the crossover regime is traversed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001199662600001 Publication Date 2024-03-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.7 Times cited Open Access  
  Notes Approved Most recent IF: 3.7; 2024 IF: 3.836  
  Call Number UA @ admin @ c:irua:205476 Serial 9145  
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R. pdf  doi
openurl 
  Title Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type (up) A1 Journal article
  Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal  
  Volume 12 Issue 13 Pages 5211-5219  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001186347900001 Publication Date 2024-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access  
  Notes Approved Most recent IF: 8.4; 2024 IF: 5.951  
  Call Number UA @ admin @ c:irua:204774 Serial 9146  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type (up) A1 Journal article
  Year 2024 Publication Energy & environment materials Abbreviated Journal  
  Volume Issue Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204495900001 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Ozdemir, I.; Arkin, H.; Milošević, M.V.; V. Barth, J.; Aktuerk, E. pdf  doi
openurl 
  Title Exploring the adsorption mechanisms of neurotransmitter and amino acid on Ti3C2-MXene monolayer : insights from DFT calculations Type (up) A1 Journal article
  Year 2024 Publication Surfaces and interfaces Abbreviated Journal  
  Volume 46 Issue Pages 104169-9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this study, we conducted a systematic density functional theory (DFT) investigation of the interaction between Ti3C2-MXene monolayer and biological molecules dopamine (DA) and serine (Ser) as neurotransmitter and amino acid, respectively. Our calculations show good agreement with previous literature findings for the optimized Ti3C2 monolayer. We found that DA and Ser molecules bind to the Ti3C2 surface with adsorption energies of -2.244 eV and -3.960 eV, respectively. The adsorption of Ser resulted in the dissociation of one H atom. Electronic density of states analyses revealed little changes in the electronic properties of the Ti3C2-MXene monolayer upon adsorption of the biomolecules. We further investigated the interaction of DA and Ser with Ti3C2 monolayers featuring surface -termination with OH functional group, and Ti -vacancy. Our calculations indicate that the adsorption energies significantly decrease in the presence of surface termination, with adsorption energies of -0.097 eV and -0.330 eV for DA and Ser, respectively. Adsorption energies on the Ti -vacancy surface, on the other hand, are calculated to be -3.584 eV and -3.856 eV for DA and Ser, respectively. Our results provide insights into the adsorption behavior of biological molecules on Ti3C2-MXene, demonstrating the potential of this material for biosensing and other biomedical applications. These findings highlight the importance of surface modifications in the development of functional materials and devices based on Ti3C2-MXene, and pave the way for future investigations into the use of 2D materials for biomedical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001206950300001 Publication Date 2024-03-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2468-0230 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.2 Times cited Open Access  
  Notes Approved Most recent IF: 6.2; 2024 IF: NA  
  Call Number UA @ admin @ c:irua:205977 Serial 9150  
Permanent link to this record
 

 
Author Shafiei, M.; Fazileh, F.; Peeters, F.M.; Milošević, M.V. url  doi
openurl 
  Title Floquet engineering of axion and high-Chern number phases in a topological insulator under illumination Type (up) A1 Journal article
  Year 2024 Publication SciPost Physics Core Abbreviated Journal  
  Volume 7 Issue 7 Pages 024-16  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Quantum anomalous Hall, high-Chern number, and axion phases in topological insulators are characterized by its Chern invariant C (respectively, C = 1, integer C > 1, and C = 0 with half-quantized Hall conductance of opposite signs on top and bottom surfaces). They are of recent interest because of novel fundamental physics and prospective applications, but identifying and controlling these phases has been challenging in practice. Here we show that these states can be created and switched between in thin films of Bi2Se3 by Floquet engineering, using irradiation by circularly polarized light. We present the calculated phase diagrams of encountered topological phases in Bi2Se3, as a function of wavelength and amplitude of light, as well as sample thickness, after properly taking into account the penetration depth of light and the variation of the gap in the surface states. These findings open pathways towards energy-efficient optoelectronics, advanced sensing, quantum information processing and metrology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001217885300001 Publication Date 2024-05-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205972 Serial 9151  
Permanent link to this record
 

 
Author Xu, H.; Li, H.; Gauquelin, N.; Chen, X.; Wu, W.-F.; Zhao, Y.; Si, L.; Tian, D.; Li, L.; Gan, Y.; Qi, S.; Li, M.; Hu, F.; Sun, J.; Jannis, D.; Yu, P.; Chen, G.; Zhong, Z.; Radovic, M.; Verbeeck, J.; Chen, Y.; Shen, B. pdf  doi
openurl 
  Title Giant tunability of Rashba splitting at cation-exchanged polar oxide interfaces by selective orbital hybridization Type (up) A1 Journal article
  Year 2024 Publication Advanced materials Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The 2D electron gas (2DEG) at oxide interfaces exhibits extraordinary properties, such as 2D superconductivity and ferromagnetism, coupled to strongly correlated electrons in narrow d-bands. In particular, 2DEGs in KTaO3 (KTO) with 5d t2g orbitals exhibit larger atomic spin-orbit coupling and crystal-facet-dependent superconductivity absent for 3d 2DEGs in SrTiO3 (STO). Herein, by tracing the interfacial chemistry, weak anti-localization magneto-transport behavior, and electronic structures of (001), (110), and (111) KTO 2DEGs, unambiguously cation exchange across KTO interfaces is discovered. Therefore, the origin of the 2DEGs at KTO-based interfaces is dramatically different from the electronic reconstruction observed at STO interfaces. More importantly, as the interface polarization grows with the higher order planes in the KTO case, the Rashba spin splitting becomes maximal for the superconducting (111) interfaces approximately twice that of the (001) interface. The larger Rashba spin splitting couples strongly to the asymmetric chiral texture of the orbital angular moment, and results mainly from the enhanced inter-orbital hopping of the t2g bands and more localized wave functions. This finding has profound implications for the search for topological superconductors, as well as the realization of efficient spin-charge interconversion for low-power spin-orbitronics based on (110) and (111) KTO interfaces. An unambiguous cation exchange is discovered across the interfaces of (001), (110), and (111) KTaO3 2D electron gases fabricated at room temperature. Remarkably, the (111) interfaces with the highest superconducting transition temperature also turn out to show the strongest electron-phonon interaction and the largest Rashba spin splitting. image  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001219658400001 Publication Date 2024-03-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 29.4 Times cited Open Access  
  Notes Approved Most recent IF: 29.4; 2024 IF: 19.791  
  Call Number UA @ admin @ c:irua:206037 Serial 9152  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: