toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type (down) A1 Journal article
  Year 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author Liu, J.; Jin, J.; Deng, Z.; Huang, S.Z.; Hu, Z.Y.; Wang, L.; Wang, C.; Chen, L.H.; Li, Y.; Van Tendeloo, G.; Su, B.L.; doi  openurl
  Title Tailoring CuO nanostructures for enhanced photocatalytic property Type (down) A1 Journal article
  Year 2012 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 384 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on one-pot synthesis of various morphologies of CuO nanostructures. PEG200 as a structure directing reagent under the synergism of alkalinity by hydrothermal method has been employed to tailor the morphology of CuO nanostructures. The CuO products have been characterized by XRD, SEM, and TEM. The morphologies of the CuO nanostructures can be tuned from 10 (nanoseeds, nanoribbons) to 2D (nanoleaves) and to 3D (shuttle-like, shrimp-like, and nanoflowers) by changing the volume of PEG200 and the alkalinity in the reaction system. At neutral and relatively low alkalinity (OH-/Cu2+ <= 3), the addition of PEG200 can strongly influence the morphologies of the CuO nanostructures. At high alkalinity (OH/Cu2+ >= 4), PEG200 has no influence on the morphology of the CuO nanostructure. The different morphologies of the CuO nanostructures have been used for the photodecomposition of the pollutant rhodamine B (RhB) in water. The photocatalytic activity has been correlated with the different nanostructures of CuO. The 10 CuO nanoribbons exhibit the best performance on the RhB photodecomposition because of the exposed high surface energy {-121} crystal plane. The photocatalytic results show that the high energy surface planes of the CuO nanostructures mostly affect the photocatalytic activity rather than the morphology of the CuO nanostructures. Our synthesis method also shows it is possible to control the morphologies of nanostructures in a simple way. (C) 2012 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000308337700001 Publication Date 2012-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 105 Open Access  
  Notes Approved Most recent IF: 4.233; 2012 IF: 3.172  
  Call Number UA @ lucian @ c:irua:101796 Serial 3468  
Permanent link to this record
 

 
Author Li, Y.; Yang, X.-Y.; Rooke, J.; Van Tendeloo, G.; Su, B.-L. doi  openurl
  Title Ultralong Cu(OH)(2) and CuO nanowire bundles: PEG200-directed crystal growth for enhanced photocatalytic performance Type (down) A1 Journal article
  Year 2010 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 348 Issue 2 Pages 303-312  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Ultralong Cu(OH)(2) and CuO nanowire bundles with lengths ranging from tens to hundreds of micrometers have been selectively synthesized on a large scale by a facile solution-phase method, using PEG200 as growth-directing agent. The growth mechanisms were investigated by monitoring the nanowire evolution process. The results showed that under the action of PEG200 molecules, the Cu(OH)(2) and CuO nanowires were first formed through oriented attachment of colloidal particles, then through side self-assembly leading to nanowire bundles, and finally to CuO nanoleaves. PEG200 plays a critical role in the synthesis of nanowires as it not only prevents the random aggregation of colloidal particles toward CuO nanoleaves but also helps to orientate nanowire growth by the coalescence and alignment in one direction of the colloidal particles. The concentration of OH(-) in the reaction system is also important for nanowire growth. In the absence of PEG200, nanoleaves are formed by an Ostwald ripening process. The band-gap value estimated from a UV-Vis absorption spectrum of CuO nanowire bundles is 2.32 eV. The photodegradation of a model pollutant, rhodamine B, by CuO nanowires and nanoleaves was compared with commercial nanopowders, showing that the as-synthesized ultralong CuO polycrystalline nanowire bundles have an enhanced photocatalytic activity with 87% decomposition of rhodamine B after an 8-h reaction, which was much higher than that of single-crystal nanoleaves (61%) and commercial nanopowders (32%). The origin of the high photocatalytic activity of these new polycrystalline CuO nanowire bundles has been discussed. This present work reveals that the (0 0 2) crystallographic surface is more favorable for photocatalytic decomposition of organic compounds and that these ultralong CuO nanowire bundles are potential candidates for photocatalysts in wastewater treatment. (C) 2010 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000279968700002 Publication Date 2010-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 70 Open Access  
  Notes Approved Most recent IF: 4.233; 2010 IF: 3.068  
  Call Number UA @ lucian @ c:irua:95589 Serial 3795  
Permanent link to this record
 

 
Author Zhao, H.; Li, C.-F.; Hu, Z.-Y.; Liu, J.; Li, Y.; Hu, J.; Van Tendeloo, G.; Chen, L.-H.; Su, B.-L. pdf  doi
openurl 
  Title Size effect of bifunctional gold in hierarchical titanium oxide-gold-cadmium sulfide with slow photon effect for unprecedented visible-light hydrogen production Type (down) A1 Journal article
  Year 2021 Publication Journal Of Colloid And Interface Science Abbreviated Journal J Colloid Interf Sci  
  Volume 604 Issue Pages 131-139  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Gold nanoparticles (Au NPs) with surface plasmonic resonance (SPR) effect and excellent internal electron transfer ability have widely been combined with semiconductors for photocatalysis. However, the in-depth effects of Au NPs in multicomponent photocatalysts have not been completely understood. Herein, ternary titanium oxide-gold-cadmium sulfide (TiO2-Au-CdS, TAC) photocatalysts, based on hierarchical TiO2 inverse opal photonic crystal structure with different Au NPs sizes have been designed to reveal the SPR effect and internal electron transfer of Au NPs in the presence of slow photon effect. It appears that the SPR effect and internal electron transfer ability of Au NPs, depending on their sizes, play a synergistic effect on the photocatalytic enhancement. The ternary TAC-10 photocatalyst with – 10 nm Au NPs demonstrates an unprecedented hydrogen evolution rate of 47.6 mmolh-1g 1 under visible-light, demonstrating- 48% enhancement comparing to the sample without slow photon effect. In particular, a 9.83% apparent quantum yield under 450 nm monochromatic light is achieved for TAC-10. A model is proposed and finite-difference time-domain (FDTD) simulations reveal the size influence of Au NPs in ternary TAC photocatalysts. This work suggests that the rational design of bifunctional Au NPs coupling with slow photon effect could largely promote hydrogen production from visible-light driven water splitting. (c) 2021 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000704428600004 Publication Date 2021-07-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.233  
  Call Number UA @ admin @ c:irua:182531 Serial 6886  
Permanent link to this record
 

 
Author Ding, Y.; Wang, C.; Bandaru, S.; Pei, L.; Zheng, R.; Hau Ng, Y.; Arenas Esteban, D.; Bals, S.; Zhong, J.; Hofkens, J.; Van Tendeloo, G.; Roeffaers, M.B.J.; Chen, L.-H.; Su, B.-L. pdf  url
doi  openurl
  Title Cs3Bi2Br9 nanoparticles decorated C3N4 nanotubes composite photocatalyst for highly selective oxidation of benzylic alcohol Type (down) A1 Journal Article
  Year 2024 Publication Journal of Colloid and Interface Science Abbreviated Journal Journal of Colloid and Interface Science  
  Volume 672 Issue Pages 600-609  
  Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;  
  Abstract Solar-light driven oxidation of benzylic alcohols over photocatalysts endows significant prospects in value-added organics evolution owing to its facile, inexpensive and sustainable process. However, the unsatisfactory performance of actual photocatalysts due to the inefficient charge separation, low photoredox potential and sluggish surface reaction impedes the practical application of this process. Herein, we developed an innovative Z-Scheme Cs3BiBr9 nanoparticles@porous C3N4 tubes (CBB-NP@P-tube-CN) heterojunction photocatalyst for highly selective benzyl alcohol oxidation. Such composite combining increased photo-oxidation potential, Z-Scheme charge migration route as well as the structural advantages of porous tubular C3N4 ensures the accelerated mass and ions diffusion kinetics, the fast photoinduced carriers dissociation and sufficient photoredox potentials. The CBB-NP@P-tube-CN photocatalyst demonstrates an exceptional performance for selective photo-oxidation of benzylic alcohol into benzaldehyde with 19, 14 and 3 times higher benzylic alcohols conversion rate than those of C3N4 nanotubes, Cs3Bi2Br9 and Cs3Bi2Br9@bulk C3N4 photocatalysts, respectively. This work offers a sustainable photocatalytic system based on lead-free halide perovskite toward large scale solar-light driven value-added chemicals production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001251644100001 Publication Date 2024-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.9 Times cited Open Access  
  Notes This work is financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LQ24E020011), and National Natural Science Foundation of China (No. 12374372, 52072101)., Program for Changjiang Scholars and Innovative Research Team in University (IRT_15R52) of the Chinese Ministry of Education and Program of Introducing Talents of Discipline to Universities-Plan 111 (Grant No. B20002) from the Ministry of Science and Technology and the Ministry of Education of China. This research is also supported by the European Commission Interreg V France-Wallonie-Vlaanderen project “DepollutAir”. Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number EMAT @ emat @c:irua:206675 Serial 9250  
Permanent link to this record
 

 
Author Yuan, M.-M.; Wang, L.-D.; Zhang, J.; Ran, M.-J.; Wang, K.; Hu, Z.-Y.; Van Tendeloo, G.; Li, Y.; Su, B.-L. pdf  doi
openurl 
  Title Cut-off voltage influencing the voltage decay of single crystal lithium-rich manganese-based cathode materials in lithium-ion batteries Type (down) A1 Journal article
  Year 2024 Publication Journal of colloid and interface science Abbreviated Journal  
  Volume 674 Issue Pages 238-248  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The voltage decay of Li -rich layered oxide cathode materials results in the deterioration of cycling performance and continuous energy loss, which seriously hinders their application in the high-energy – density lithium -ion battery (LIB) market. However, the origin of the voltage decay mechanism remains controversial due to the complex influences of transition metal (TM) migration, oxygen release, indistinguishable surface/bulk reactions and the easy intra/inter-crystalline cracking during cycling. We investigated the direct cause of voltage decay in micrometer -scale single -crystal Li 1.2 Mn 0.54 Ni 0.13 Co 0.13 O 2 (SC-LNCM) cathode materials by regulating the cut-off voltage. The redox of TM and O 2- ions can be precisely controlled by setting different voltage windows, while the cracking can be restrained, and surface/bulk structural evaluation can be monitored because of the large single crystal size. The results show that the voltage decay of SC-LNCM is related to the combined effect of cation rearrangement and oxygen release. Maintaining the discharge cutoff voltage at 3 V or the charging cutoff voltage at 4.5 V effectively mitigates the voltage decay, which provides a solution for suppressing the voltage decay of Lirich and Mn-based layered oxide cathode materials. Our work provides significant insights into the origin of the voltage decay mechanism and an easily achievable strategy to restrain the voltage decay for Li -rich and Mn-based cathode materials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=brocade2&SrcAuth=WosAPI&KeyUT=WOS:001261 Publication Date 2024-06-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; 1095-7103 ISBN Additional Links UA library record; WoS full record; WoS full record  
  Impact Factor 9.9 Times cited Open Access  
  Notes Approved Most recent IF: 9.9; 2024 IF: 4.233  
  Call Number UA @ admin @ c:irua:207026 Serial 9281  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: