toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Weill; Chevalier; Chambon; Tressaud; Darriet; Etourneau; Van Tendeloo, G.
  Title (down) Electron-microscopy investigation of superconducting la2cu(o, f)4+y oxyfluoride Type A1 Journal article
  Year 1993 Publication European journal of solid state and inorganic chemistry Abbreviated Journal
  Volume 30 Issue 11 Pages 1095-1108
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The fluorination of La2CuO4 can lead to different oxyfluoride compounds depending on the TF2 temperature of the fluorine gas treatment. When 150-degrees-C T(F2) less-than-or-equal-to 200-degrees-c less-than-or-equal-to 200-degrees-C a superconducting material is obtained. Previous neutron diffraction experiments as well as the EXAFS measurements at the La L(III) edge indicate that extra anions lie in an interstitial site between the two (LaO) layers. Electron diffraction patterns clearly show the existence of an incommensurate modulation due to the presence of shear planes. A second phase is also pointed out which can be obtained as a major component when the fluorination temperature is raised to 230-degrees-C. This phase which is not a superconductor crystallizes with the monoclinic symmetry.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos A1993MX13500006 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0992-4361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:95476 Serial 954
Permanent link to this record
 

 
Author Bernaerts, D.; Amelinckx, S.; Van Tendeloo, G.; van Landuyt, J.
  Title (down) Electron microscopy of carbon nanotubes and related structures Type A1 Journal article
  Year 1997 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
  Volume 58 Issue 11 Pages 1807-1813
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000071510100029 Publication Date 2003-04-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.059 Times cited 12 Open Access
  Notes Approved Most recent IF: 2.059; 1997 IF: 1.083
  Call Number UA @ lucian @ c:irua:21425 Serial 959
Permanent link to this record
 

 
Author Huvé, M.; Renard, C.; Abraham, F.; Van Tendeloo, G.; Amelinckx, S.
  Title (down) Electron microscopy of a family of hexagonal perovskites: one-dimensional structures related to Sr4Ni3O9 Type A1 Journal article
  Year 1998 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 135 Issue Pages 1-16
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000072523100001 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 30 Open Access
  Notes Approved Most recent IF: 2.299; 1998 IF: 1.432
  Call Number UA @ lucian @ c:irua:25656 Serial 958
Permanent link to this record
 

 
Author Weill, F.; Chevalier, B.; Chambon, M.; Tressaud, A.; Darriet, B.; Etourneau, J.; Van Tendeloo, G.
  Title (down) Electron microscopy investigation of superconducting La2Cu(O,F)4+y oxyfluoride Type A1 Journal article
  Year 1993 Publication European journal of solid state and inorganic chemistry Abbreviated Journal
  Volume 30 Issue Pages 1095-1108
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Paris Editor
  Language Wos A1993MX13500006 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0992-4361 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 2 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:7505 Serial 955
Permanent link to this record
 

 
Author Volkov, V.V.; van Landuyt, J.; Amelinckx, S.; Pervov, V.S.; Makhonina, E.V.
  Title (down) Electron microscopic and X-ray structural analysis of the layered crystals TaReSe4: structure, defect structure, and microstructure, including rotation twins Type A1 Journal article
  Year 1998 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
  Volume 135 Issue Pages 235-255
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000072900200008 Publication Date 2002-10-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.299 Times cited 3 Open Access
  Notes Approved Most recent IF: 2.299; 1998 IF: 1.432
  Call Number UA @ lucian @ c:irua:29672 Serial 938
Permanent link to this record
 

 
Author Bottari, F.; De Wael, K.
  Title (down) Electrodeposition of gold nanoparticles on boron doped diamond electrodes for the enhanced reduction of small organic molecules Type A1 Journal article
  Year 2017 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
  Volume 801 Issue Pages 521-526
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The performance of gold nanoparticles electrodeposited on boron doped diamond (BDD) electrodes was investigated in respect to the reduction of chloramphenicol (CAP), an antibiotic of the phenicols family. The chosen deposition protocol, three nucleation-growing pulses, shows a remarkable surface coverage, with an even distribution of average-sized gold particles (~ 50 nm), and it was proven capable of generating a three-fold increase in the CAP reduction current. A calibration plot for CAP detection was obtained in the micromolar range (535 μM) with good correlation coefficient (0.9959) and an improved sensitivity of 0.053 μA μM− 1 mm− 2 compared to the electrochemistry of CAP at a bare BDD electrode.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000411847500065 Publication Date 2017-08-02
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1572-6657 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.012 Times cited 4 Open Access
  Notes ; This work was financially supported by the University of Antwerp (BOF) and the Research Foundation Flanders (FWO) (project G037415N). ; Approved Most recent IF: 3.012
  Call Number UA @ admin @ c:irua:146372 Serial 5600
Permanent link to this record
 

 
Author Ustarroz, J.; Gupta, U.; Hubin, A.; Bals, S.; Terryn, H.
  Title (down) Electrodeposition of Ag nanoparticles onto carbon coated TEM grids : a direct approach to study early stages of nucleation Type A1 Journal article
  Year 2010 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 12 Issue 12 Pages 1706-1709
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract An innovative experimental approach to study the electrodeposition of small nanoparticles and the early stages of electrochemical nucleation and growth is presented. Carbon coated gold TEM grids are used as substrates for the electrodeposition of silver nanoparticles so that electrochemical data, FESEM, HAADFSTEM and HRTEM data can be acquired from the same sample without the need to remove the particles from the substrate. It is shown that the real distribution of nanoparticles cannot be resolved by FESEM whereas HAADFSTEM analysis confirms that a distribution of small nanoparticles (d ≈ 12 nm) coexist with large nanoparticles corresponding to a bimodal size distribution. Besides, particles grown under the same conditions have been found to present different structures such as monocrystals, polycrystals or aggregates of smaller particles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000285904700010 Publication Date 2010-10-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.396 Times cited 52 Open Access
  Notes Fwo Approved Most recent IF: 4.396; 2010 IF: 4.287
  Call Number UA @ lucian @ c:irua:87612 Serial 900
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K.
  Title (down) Electrochemistry of intact versus degraded cephalosporin antibiotics facilitated by LC–MS analysis Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem
  Volume 93 Issue 4 Pages 2394-2402
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre
  Abstract The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000618089100063 Publication Date 2021-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 6.32
  Call Number UA @ admin @ c:irua:176206 Serial 7864
Permanent link to this record
 

 
Author Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M.
  Title (down) Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun
  Volume 77 Issue Pages 81-84
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000399510400019 Publication Date 2017-02-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396
  Call Number UA @ lucian @ c:irua:143648 Serial 4650
Permanent link to this record
 

 
Author Florea, A.; De Jong, M.; De Wael, K.
  Title (down) Electrochemical strategies for the detection of forensic drugs Type A1 Journal article
  Year 2018 Publication Current opinion in electrochemistry Abbreviated Journal
  Volume 11 Issue 11 Pages 34-40
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Illicit drugs consumption and trafficking is spread worldwide and remains an increasing challenge for local authorities. Forensic drugs and their metabolites are released into wastewaters due to human excretion after illegal consumption of drugs and occasionally due to disposal of clandestine laboratory wastes into sewage systems, being recently classified as the latest group of emerging pollutants. Hence, it is essential to have efficient and accurate methods to detect these type of compounds in seized street samples, biological fluids and wastewaters in order to reduce and prevent trafficking and consumption and negative effects on aquatic systems. Electrochemical strategies offer a fast, portable, low-cost and accurate alternative to chromatographic and spectrometric methods, for the analysis of forensic drugs and metabolites in different matrices. Recent electrochemical strategies applied to the detection of illicit drugs in wastewaters, biological fluids and street samples are presented in this review, together with the impact of drug consumption on the environment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000453710900007 Publication Date 2018-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge financial support from BELSPO, IOF-SBO and UAntwerp. ; Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:152366 Serial 5597
Permanent link to this record
 

 
Author Florea, A.; Schram, J.; De Jong, M.; Eliaerts, J.; Van Durme, F.; Kaur, B.; Samyn, N.; De Wael, K.
  Title (down) Electrochemical strategies for adulterated heroin samples Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 91 Issue 12 Pages 7920-7928
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Electrochemical strategies to selectively detect heroin in street samples without the use of complicated electrode modifications were developed for the first time. For this purpose, heroin, mixing agents (adulterants, cutting agent, and impurities), and their binary mixtures were subjected to square wave voltammetry measurements at bare graphite electrodes at pH 7.0 and pH 12.0, in order to elucidate the unique electrochemical fingerprint of heroin and mixing agents as well as possible interferences or reciprocal influences. Adjusting the pH from pH 7.0 to pH 12.0 allowed a more accurate detection of heroin in the presence of most common mixing agents. Furthermore, the benefit of introducing a preconditioning step prior to running square wave voltammetry on the electrochemical fingerprint enrichment was explored. Mixtures of heroin with other drugs (cocaine, 3,4-methylenedioxymethamphetamine, and morphine) were also tested to explore the possibility of their discrimination and simultaneous detection. The feasibility of the proposed electrochemical strategies was tested on realistic heroin street samples from forensic cases, showing promising results for fast, on-site detection tools of drugs of abuse.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472682000056 Publication Date 2019-05-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 2 Open Access
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge IOF (UAntwerp) and Belspo for financial support. ; Approved Most recent IF: 6.32
  Call Number UA @ admin @ c:irua:160061 Serial 5596
Permanent link to this record
 

 
Author Pilehvar, S.; Dardenne, F.; Blust, R.; De Wael, K.
  Title (down) Electrochemical sensing of phenicol antibiotics at gold Type A1 Journal article
  Year 2012 Publication International journal of electrochemical science Abbreviated Journal Int J Electrochem Sc
  Volume 7 Issue 6 Pages 5000-5011
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Phenicols are an effective and a broad spectrum class of antibiotics which has lost favour due to their side effects on human health. A rapid and sensitive electrochemical detection system is developed for the simultaneous detection of chloramphenicol (CAP), thiamphenicol (TAP) and florfenicol (FF). The electrochemical behaviour of CAP in the presence of its derivatives was investigated by cyclic voltammetry (CV) and square wave voltammetry (SWV). At a gold electrode, CAP gives rise to a sensitive cathodic peak at −0.68V (versus SCE) in a tris buffer solution (pH 7.6). This behavior gives us the opportunity to introduce a method for sensing CAP electrochemically in the presence of its derivatives. Calibration graphs were linear in the 2.5-7.4 μmol L-1 concentration range. Deviations from linearity were observed for higher concentrations and this was interpreted to be due to kinetic limitation caused by the saturation of CAP and its reduction products onto the gold electrode surface. A limit of detection of 1 μmol L-1 was found.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1452-3981 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.469 Times cited Open Access
  Notes ; ; Approved Most recent IF: 1.469; 2012 IF: NA
  Call Number UA @ admin @ c:irua:98344 Serial 5595
Permanent link to this record
 

 
Author Anaf, W.; Trashin, S.; Schalm, O.; van Dorp, D.; Janssens, K.; De Wael, K.
  Title (down) Electrochemical photodegradation study of semiconductor pigments : influence of environmental parameters Type A1 Journal article
  Year 2014 Publication Analytical chemistry Abbreviated Journal Anal Chem
  Volume 86 Issue 19 Pages 9742-9748
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Cultural Heritage Sciences (ARCHES)
  Abstract Chemical transformations in paintings often induce discolorations, disturbing the appearance of the image. For an appropriate conservation of such valuable and irreplaceable heritage objects, it is important to have a good know-how on the degradation processes of the (historical) materials: which pigments have been discolored, what are the responsible processes, and which (environmental) conditions have the highest impact on the pigment degradation and should be mitigated. Pigment degradation is already widely studied, either by analyzing historical samples or by accelerated weathering experiments on dummies. However, in historic samples several processes may have taken place, increasing the complexity of the current state, while aging experiments are time-consuming due to the often extended aging period. An alternative method is proposed for a fast monitoring of degradation processes of semiconductor pigments, using an electrochemical setup mimicking the real environment and allowing the identification of harmful environmental parameters for each pigment. Examples are given for the pigments cadmium yellow (CdS) and vermilion (α-HgS).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000343017100058 Publication Date 2014-08-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.32 Times cited 18 Open Access
  Notes ; ; Approved Most recent IF: 6.32; 2014 IF: 5.636
  Call Number UA @ admin @ c:irua:118834 Serial 5593
Permanent link to this record
 

 
Author Barich, H.; Cánovas, R.; De Wael, K.
  Title (down) Electrochemical identification of hazardous phenols and their complex mixtures in real samples using unmodified screen-printed electrodes Type A1 Journal article
  Year 2022 Publication Journal of electroanalytical chemistry : an international journal devoted to all aspects of electrode kynetics, interfacial structure, properties of electrolytes, colloid and biological electrochemistry. Abbreviated Journal J Electroanal Chem
  Volume 904 Issue Pages 115878
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract The electrochemical behavior of some of the most relevant endocrine-disrupting phenols using unmodified carbon screen-printed electrodes (SPEs) is described for the first time. Experiments were made to assess the electrochemical behavior of phenol (PHOH), pentachlorophenol (PCP), 4-tert octylphenol (OP) and bisphenol A (BPA) and their determination in the most favorable conditions, using voltammetric methods such as cyclic voltammetry (CV), linear sweep voltammetry (LSV) and square wave voltammetry (SWV) in Britton Robinson (BR) buffer. Further, the usefulness of the electrochemical approach was validated with real samples from a local river and was compared to commercial phenols test kit, which is commonly used for on-site screening in industrial streams and wastewaters. Finally, the approach was compared with a lab-bench standard method using real samples, i.e., high-performance liquid chromatography with a photodiode array detector (HPLC-DAD).
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000741151200005 Publication Date 2021-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1572-6657; 1873-2569 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.5 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.5
  Call Number UA @ admin @ c:irua:184384 Serial 7150
Permanent link to this record
 

 
Author Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R.
  Title (down) Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
  Year 2021 Publication Frontiers In Chemistry Abbreviated Journal Front Chem
  Volume 9 Issue Pages 641147
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000634708900001 Publication Date 2021-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.994 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 3.994
  Call Number UA @ admin @ c:irua:177704 Serial 7861
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K.
  Title (down) Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci
  Volume Issue Pages 1-7
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000371021900094 Publication Date 2016-01-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 37 Open Access
  Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668
  Call Number UA @ admin @ c:irua:130404 Serial 5591
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K.
  Title (down) Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
  Year 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem
  Volume 291 Issue 36 Pages 18959-18966
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000383242300031 Publication Date 2016-07-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.125 Times cited 11 Open Access
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved Most recent IF: 4.125
  Call Number UA @ admin @ c:irua:134340 Serial 5590
Permanent link to this record
 

 
Author De Wael, K.; Bashir, Q.; van Vlierberghe, S.; Dubruel, P.; Heering, H.A.; Adriaens, A.
  Title (down) Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel Type A1 Journal article
  Year 2012 Publication Bioelectrochemistry: an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry Abbreviated Journal Bioelectrochemistry
  Volume 83 Issue Pages 15-18
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract A novel and versatile method, based on a membrane-free enzyme electrode in which both the enzyme and a mediator protein are entrapped in a gelatine hydrogel was developed for the fabrication of biosensors. As a proof of principle, we prepared a hydrogen peroxide biosensor by successfully entrapping both horse heart cytochrome c (HHC) and Saccharomyces cerevisae cytochrome c peroxidase (CCP) in a gelatin matrix which is immobilized on a gold electrode. This electrode was first pretreated with 6-mercaptohexanol. The biosensor displayed a rapid response and an expanded linear response range from 0 to 0.3 mM (R = 0.987) with a detection limit of 1 × 10− 5 M in a HEPES buffer solution (pH 7.0). This method of encapsulation is now further investigated for industrial biosensor applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000297962500003 Publication Date 2011-08-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1567-5394 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.346 Times cited 31 Open Access
  Notes ; Karolien De Wael is grateful to the Research Foundation-Flanders (FWO, Belgium) for her postdoctoral fellowship. ; Approved Most recent IF: 3.346; 2012 IF: 3.947
  Call Number UA @ admin @ c:irua:92067 Serial 5589
Permanent link to this record
 

 
Author Van Echelpoel, R.; Kranenburg, R.; van Asten, A.; De Wael, K.
  Title (down) Electrochemical detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement strategy by in-situ derivatization Type A1 Journal article
  Year 2022 Publication Forensic chemistry Abbreviated Journal
  Volume 27 Issue Pages 100383
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
  Abstract Forensic drug laboratories are confronted with increasing amounts of drugs and a demand for faster results that are directly available on-site. In addition, the drug market is getting more complex with hundreds of new psychoactive substances (NPS) entering the market in recent years. Rapid and on-scene presumptive drug testing therefore faces a shift from manual colorimetric tests towards approaches that can detect a wider range of components and process results automatically. Electrochemical detection offers these desired characteristics, making it a suitable candidate for on-site drug detection. In this study, a two-step electrochemical sensor is introduced for the detection of MDMA and 2C-B. Firstly, a direct electrochemical analysis was performed to detect MDMA. Validation experiments on over 70 substances revealed that 2C-B was the only frequently encountered drug that gave a false positive result for MDMA in this first analysis. A second step using in-situ derivatization was subsequently introduced. To this end, formaldehyde was used for N-methylation of 2C-B thereby enhancing its electrochemical profile. The enriched electrochemical fingerprint in the second step allowed for clear differentiation between MDMA and 2C-B. The applicability of this approach was demonstrated with 71 ecstasy tablets seized by the Amsterdam Police. The MDMA/2C-B sensor correctly identified all 39 MDMA-containing tablets and 10 out of 11 tablets containing 2C-B. Most notably, correct results were also obtained for dark colored tablets in which both spectroscopic analysis and colorimetric tests failed due to obscured signals.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000725708200002 Publication Date 2021-11-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2468-1709 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.7
  Call Number UA @ admin @ c:irua:183340 Serial 7149
Permanent link to this record
 

 
Author Elia, A.; De Wael, K.; Dowsett, M.; Adriaens, A.
  Title (down) Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor Type A1 Journal article
  Year 2011 Publication Journal of solid state electrochemistry Abbreviated Journal J Solid State Electr
  Volume 16 Issue 1 Pages 143-148
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper, we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper carboxylates onto the electrode. The modified electrodes have been characterised with infrared spectroscopy. In addition, the corrosion resistance of the film has been investigated using polarisation resistance and Tafel plot measurements.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000298651700018 Publication Date 2011-01-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1432-8488 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.316 Times cited 8 Open Access
  Notes ; Authors would like to acknowledge the Research Foundation-Flanders (FWO) for funding assistance (A. Elia is a FWO aspirant) and V. Vermeersch and S. Van Vlierberghe (Ghent University, Polymer Chemistry and Biomaterials Research Group) for the FTIR-ATR measurements. ; Approved Most recent IF: 2.316; 2011 IF: 2.131
  Call Number UA @ admin @ c:irua:89618 Serial 5588
Permanent link to this record
 

 
Author Mirbagheri, N.; Campos, R.; Ferapontova, E.E.
  Title (down) Electrocatalytic oxidation of water by OH- – and H₂O-capped IrOx nanoparticles electrophoretically deposited on graphite and basal plane HOPG : effect of the substrate electrode Type A1 Journal article
  Year 2021 Publication Chemelectrochem Abbreviated Journal Chemelectrochem
  Volume 8 Issue 9 Pages 1632-1641
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Iridium oxide (IrOx) is one of the most efficient electrocatalysts for water oxidation reaction (WOR). Here, WOR electrocatalysis by 1.6 nm IrOx nanoparticles (NPs) electrophoretically deposited onto spectroscopic graphite (Gr) and basal plane highly ordered pyrolytic graphite (HOPG) was studied as a function of NPs' capping ligands and electrodeposition substrate. On Gr, OH-- and H2O-capped NPs exhibited close sub-monolayer surface coverages and specific electrocatalytic activity of 18.9-23.5 mA nmol(-1) of Ir-IV/V sites, at 1 V and pH 7. On HOPG, OH--capped NPs produced films with a diminished WOR activity of 5.17 +/- 2.40 mA nmol(-1). Electro-wettability-induced changes impeded electrophoretic deposition of H2O-capped NPs on HOPG, WOR currents being 25-fold lower than observed for OH--capped ones. The electrocatalysis efficiency correlated with hydrophilic properties of the substrate electrodes, affecting morphological and as a result catalytic properties of the formed IrOx films. These results, important both for studied and related carbon nanomaterials systems, allow fine-tuning of electrocatalysis by a proper choice of the substrate electrode.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000664219100012 Publication Date 2021-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2196-0216 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.136 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.136
  Call Number UA @ admin @ c:irua:179719 Serial 7859
Permanent link to this record
 

 
Author Manaigo, F.; Bahnamiri, O.S.; Chatterjee, A.; Panepinto, A.; Krumpmann, A.; Michiels, M.; Bogaerts, A.; Snyders, R.
  Title (down) Electrical stability and performance of a nitrogen-oxygen atmospheric pressure gliding arc plasma Type A1 Journal article
  Year 2024 Publication ACS Sustainable Chemistry and Engineering Abbreviated Journal
  Volume 12 Issue 13 Pages 5211-5219
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonthermal plasmas are currently being studied as a green alternative to the Haber-Bosch process, which is, today, the dominant industrial process allowing for the fixation of nitrogen and, as such, a fundamental component for the production of nitrogen-based industrial fertilizers. In this context, the gliding arc plasma (GAP) is considered a promising choice among nonthermal plasma options. However, its stability is still a key parameter to ensure industrial transfer of the technology. Nowadays, the conventional approach to stabilize this plasma process is to use external resistors. Although this indeed allows for an enhancement of the plasma stability, very little is reported about how it impacts the process efficiency, both in terms of NOx yield and energy cost. In this work, this question is specifically addressed by studying a DC-powered GAP utilized for nitrogen fixation into NOx at atmospheric pressure stabilized by variable external resistors. Both the performance and the stability of the plasma are reported as a function of the utilization of the resistors. The results confirm that while the use of a resistor indeed allows for a strong stabilization of the plasma without impacting the NOx yield, especially at high plasma current, it dramatically impacts the energy cost of the process, which increases from 2.82 to 7.9 MJ/mol. As an alternative approach, we demonstrate that the replacement of the resistor by an inductor is promising since it allows for decent stabilization of the plasma, while it does not affect either the energy cost of the process or the NOx yield.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001186347900001 Publication Date 2024-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2168-0485 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access
  Notes Approved Most recent IF: 8.4; 2024 IF: 5.951
  Call Number UA @ admin @ c:irua:204774 Serial 9146
Permanent link to this record
 

 
Author Ao, Z.M.; Peeters, F.M.
  Title (down) Electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene Type A1 Journal article
  Year 2010 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 114 Issue 34 Pages 14503-14509
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Graphane, hydrogenated graphene, was very recently synthesized and predicted to have great potential applications. In this work, we propose a new promising approach for hydrogenation of graphene based on density functional theory (DFT) calculations through the application of a perpendicular electric field after substitutionally doping by nitrogen atoms. These DFT calculations show that the doping by nitrogen atoms into the graphene layer and applying an electrical field normal to the graphene surface induce dissociative adsorption of hydrogen. The dissociative adsorption energy barrier of an H2 molecule on a pristine graphene layer changes from 2.7 to 2.5 eV on N-doped graphene, and to 0.88 eV on N-doped graphene under an electric field of 0.005 au. When increasing the electric field above 0.01 au, the reaction barrier disappears. Therefore, N doping and applying an electric field have catalytic effects on the hydrogenation of graphene, which can be used for hydrogen storage purposes and nanoelectronic applications.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000281129100027 Publication Date 2010-08-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 110 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.536; 2010 IF: 4.524
  Call Number UA @ lucian @ c:irua:84588 Serial 882
Permanent link to this record
 

 
Author Van Alphen, S.; Ahmadi Eshtehardi, H.; O'Modhrain, C.; Bogaerts, J.; Van Poyer, H.; Creel, J.; Delplancke, M.-P.; Snyders, R.; Bogaerts, A.
  Title (down) Effusion nozzle for energy-efficient NOx production in a rotating gliding arc plasma reactor Type A1 Journal article
  Year 2022 Publication Chemical Engineering Journal Abbreviated Journal Chem Eng J
  Volume 443 Issue Pages 136529
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Plasma-based NOx production is of interest for sustainable N2 fixation, but more research is needed to improve its performance. One of the current limitations is recombination of NO back into N2 and O2 molecules immediately after the plasma reactor. Therefore, we developed a novel so-called “effusion nozzle”, to improve the perfor­mance of a rotating gliding arc plasma reactor for NOx production, but the same principle can also be applied to other plasma types. Experiments in a wide range of applied power, gas flow rates and N2/O2 ratios demonstrate an enhancement in NOx concentration by about 8%, and a reduction in energy cost by 22.5%. In absolute terms, we obtain NOx concentrations up to 5.9%, at an energy cost down to 2.1 MJ/mol, which are the best values reported to date in literature. In addition, we developed four complementary models to describe the gas flow, plasma temperature and plasma chemistry, aiming to reveal why the effusion nozzle yields better performance. Our simulations reveal that the effusion nozzle acts as very efficient heat sink, causing a fast drop in gas tem­perature when the gas molecules leave the plasma, hence limiting the recombination of NO back into N2 and O2. This yields an overall higher NOx concentration than without the effusion nozzle. This immediate quenching right at the end of the plasma makes our effusion nozzle superior to more conventional cooling options, like water cooling In addition, this higher NOx concentration can be obtained at a slightly lower power, because the effusion nozzle allows for the ignition and sustainment of the plasma at somewhat lower power. Hence, this also explains the lower energy cost. Overall, our experimental results and detailed modeling analysis will be useful to improve plasma-based NOx production in other plasma reactors as well.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000800010600003 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 15.1 Times cited Open Access OpenAccess
  Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (depart­ment EWI) and the UAntwerpen. Approved Most recent IF: 15.1
  Call Number PLASMANT @ plasmant @c:irua:188283 Serial 7057
Permanent link to this record
 

 
Author Kontozova-Deutsch, V.; Krata, A.; Deutsch, F.; Bencs, L.; Van Grieken, R.
  Title (down) Efficient separation of acetate and formate by ion chromatography: application to air samples in a cultural heritage environment Type A1 Journal article
  Year 2008 Publication Talanta : the international journal of pure and applied analytical chemistry Abbreviated Journal
  Volume 75 Issue 2 Pages 418-423
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000255270700015 Publication Date 2007-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0039-9140; 1873-3573 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:67547 Serial 7854
Permanent link to this record
 

 
Author Cabana, L.; Gonzalez-Campo, A.; Ke, X.; Van Tendeloo, G.; Nunez, R.; Tobias, G.
  Title (down) Efficient Chemical Modification of Carbon Nanotubes with Metallacarboranes Type A1 Journal article
  Year 2015 Publication Chemistry: a European journal Abbreviated Journal Chem-Eur J
  Volume 21 Issue 21 Pages 16792-16795
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract As-produced single-walled carbon nanotubes (SWCNTs) tend to aggregate in bundles due to pi-pi interactions. Several approaches are nowadays available to debundle, at least partially, the nanotubes through surface modification by both covalent and noncovalent approaches. Herein, we explore different strategies to afford an efficient covalent functionalization of SWCNTs with cobaltabisdicarbollide anions. Aberration-corrected HRTEM analysis reveals the presence of metallacarboranes along the walls of the SWCNTs. This new family of materials presents an outstanding water dispersibility that facilitates its processability for potential applications.
  Address Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus Universitari de la UAB. 08193, Bellaterra (Spain). gerard.tobias@icmab.es
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000366501600011 Publication Date 2015-10-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0947-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.317 Times cited 5 Open Access
  Notes The research leading to these results received financial support from MINECO (MAT2014-53500-R; CTQ2013-44670-R), Generalitat de Catalunya (2014/SGR/149), and from the European Commission under the FP7 ITN Marie-Curie Network programme RADDEL (grant agreement 290023), the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure (ESMI) and the European Research Council, ERC Grant No 246791-COUNTATOMS. A.G.C. thanks the CSIC for the JAE-DOC grant. Approved Most recent IF: 5.317; 2015 IF: 5.731
  Call Number c:irua:129215 Serial 3964
Permanent link to this record
 

 
Author Gjerding, M.N.; Cavalcante, L.S.R.; Chaves, A.; Thygesen, K.S.
  Title (down) Efficient Ab initio modeling of dielectric screening in 2D van der Waals materials : including phonons, substrates, and doping Type A1 Journal article
  Year 2020 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C
  Volume 124 Issue 21 Pages 11609-11616
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract The quantum electrostatic heterostructure (QEH) model allows for efficient computation of the dielectric screening properties of layered van der Waals (vdW)-bonded heterostructures in terms of the dielectric functions of the individual two-dimensional (2D) layers. Here, we extend the QEH model by including (1) contributions to the dielectric function from infrared active phonons in the 2D layers, (2) screening from homogeneous bulk substrates, and (3) intraband screening from free carriers in doped 2D semiconductor layers. We demonstrate the potential of the extended QEH model by calculating the dispersion of coupled phonons in multilayer stacks of hexagonal boron-nitride (hBN), the strong hybridization of plasmons and optical phonons in graphene/hBN heterostructures, the effect of substrate screening on the exciton series of monolayer MoS2, and the properties of hyperbolic plasmons in a doped phosphorene sheet. The new QEH code is distributed as a Python package with a simple command line interface and a comprehensive library of dielectric building blocks for the most common 2D materials, providing an efficient open platform for dielectric modeling of realistic vdW heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000614615900022 Publication Date 2020-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited Open Access
  Notes Approved Most recent IF: 3.7; 2020 IF: 4.536
  Call Number UA @ admin @ c:irua:176187 Serial 7852
Permanent link to this record
 

 
Author Sui, Y.; Vlaeminck, S.E.
  Title (down) Effects of salinity, pH and growth phase on the protein productivity by Dunaliella salina Type A1 Journal article
  Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal
  Volume 94 Issue 4 Pages 1032-1040
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract BACKGROUND Microalgae have long been adopted for use as human food, animal feed and high‐value products. For carotenogenesis, Dunaliella salina is one of the most studied microalgae, yet its protein synthesis has been limitedly reported. In this study, D. salina was cultivated at different NaCl and pH levels to optimize its protein productivity. RESULTS The biomass protein content followed an increasedecrease pattern throughout the growth phases, with a maximum in the exponential phase (6080% over ash‐free dry weight). Adversely, the biomass pigment contents were at relatively stable levels (around 0.5% carotenoids, 1.3% chlorophyll a and 0.5% chlorophyll b over ash‐free dry weight). Among the tested conditions (13 mol L−1 salinity, pH 7.59.5), the highest protein productivity (43.5 mg L−1 day−1) was achieved at 2 mol L−1 salinity and pH 7.5 during the exponential phase, which surpassed others by 1697%. Additionally, table salts were tested to be equivalent and cost‐efficient salt sources for the growth medium. CONCLUSION This study highlighted the suitability of D. salina as a protein source, providing guidelines for 70% cheaper medium formulation in the lab and for maximum protein productivity at larger scale.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000461237300004 Publication Date 2018-10-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:157955 Serial 7849
Permanent link to this record
 

 
Author van Espen, P.; Van 't dack, L.; Adams, F.; Van Grieken, R.
  Title (down) Effective sample weight from scatter peaks in energy-dispersive x-ray fluorescence Type A1 Journal article
  Year 1979 Publication Analytical chemistry Abbreviated Journal
  Volume 51 Issue 7 Pages 961-967
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Chemometrics (Mitac 3)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1979GW66100047 Publication Date 2005-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:111404 Serial 7841
Permanent link to this record
 

 
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Wright, A.J.; Greaves, C.
  Title (down) Effect of the substitution Ba\leftrightarrow Sr on the Ga-1222 superstructure : an electron diffraction study Type A1 Journal article
  Year 1995 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 7 Issue 9 Pages 1709-1715
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The superstructure of the RE(2)(Sr0.85-xBaxNd0.15)(2)GaCU2O9 compound is found to change significantly with increasing substitution of Ba for Sr. Most of the changes take place in the (Sr0.85-xBaxNd0.15)O-GaO-(Sr0.85-xBaxNd0.15)O lamella, the rest of the basic structure being hardly affected. The structural changes for O less than or equal to x less than or equal to 0.65 are studied by electron diffraction. The arrangement of the chains of GaO4 tetrahedra in the Ba-free compound becomes disordered at x > 0.25. At x similar to 0.65 a rearrangement of the chains in the GaO layers takes place; they form a meandering arrangement, which can be described on a 4a(p) x 2a(p) x c(p) superlattice. This rearrangement is accompanied by ordering of Ba and Sr atoms in the adjacent (ST0.85-xBaxNd0.15)O layers. A simple scheme is proposed to explain the influence of the substitution of Ba for Sr on the linking of the GaO4 tetrahedra and on the geometry of the ''chains'' in the GaO layer.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos A1995RW21200021 Publication Date 2005-03-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.354 Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:13326 Serial 850
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: