toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dabaghmanesh, S.; Sarmadian, N.; Neyts, E.C.; Partoens, B. url  doi
openurl 
  Title (down) A first principles study of p-type defects in LaCrO3 Type A1 Journal article
  Year 2017 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 19 Issue 34 Pages 22870-22876  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, Sr-doped LaCrO3 has been experimentally introduced as a new p-type transparent conducting oxide. It is demonstrated that substituting Sr for La results in inducing p-type conductivity in LaCrO3. Performing first principles calculations we study the electronic structure and formation energy of various point defects in LaCrO3. Our results for the formation energies show that in addition to Sr, two more divalent defects, Ca and Ba, substituting for La in LaCrO3, behave as shallow acceptors in line with previous experimental reports. We further demonstrate that under oxygen-poor growth conditions, these shallow acceptors will be compensated by intrinsic donor-like defects (an oxygen vacancy and Cr on an oxygen site), but in the oxygen-rich growth regime the shallow acceptors have the lowest formation energies between all considered defects and will lead to p-type conductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000408671600026 Publication Date 2017-08-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 16 Open Access OpenAccess  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services were provided by the Flemish Supercomputer Center and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government. ; Approved Most recent IF: 4.123  
  Call Number UA @ lucian @ c:irua:145621 Serial 4735  
Permanent link to this record
 

 
Author Ren, X.-N.; Wu, L.; Jin, J.; Liu, J.; Hu, Z.-Y.; Li, Y.; Hasan, T.; Yang, X.-Y.; Van Tendeloo, G.; Su, B.-L. pdf  url
doi  openurl
  Title (down) 3D interconnected hierarchically macro-mesoporous TiO2networks optimized by biomolecular self-assembly for high performance lithium ion batteries Type A1 Journal article
  Year 2016 Publication RSC advances Abbreviated Journal Rsc Adv  
  Volume 6 Issue 6 Pages 26856-26862  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomolecular self-assembly is an effective synthesis strategy for materials fabrication with unique structural complexity and properties. For the first time, we intergrate inner-particle mesoporosity in a three-dimensional (3D) interconnected macroporous TiO2 structure via the mediation of biomolecular self-assembly of the lipids and proteins from rape pollen coats and P123 to optimize the structure for high performance lithium storage. Benefitting from the hierarchically 3D interconnected macro-mesoporous structure with high surface area, small nanocrystallites and good electrolyte permeation, such unique porous structure demonstrates superior electrochemical performance, with high initial coulombic efficiency (94.4% at 1C) and a reversible discharge capacity of 161, 145, 127 and 97 mA h g-1 at 2, 5, 10 and 20C for 1000 cycles, with 79.3%, 89.9%, 90.1% and 87.4% capacity retention, respectively. Using SEM, TEM and HRTEM observations on the TiO2 materials before and after cycling, we verify that the inner-particle mesoporosity and the Li2Ti2O4 nanocrystallites formed during the cycling process in interconnected macroporous structure largely enhance the cycle life and rate performance. Our demonstration here offers opportunities towards developing and optimizing hierarchically porous structures for energy storage applications via biomolecular self-assembly.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372253700043 Publication Date 2016-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.108 Times cited 16 Open Access  
  Notes G. Van Tendeloo and Z. Y. Hu acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483).; esteem2_jra4 Approved Most recent IF: 3.108  
  Call Number c:irua:131915 c:irua:131915 c:irua:131915 Serial 4022  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: