|   | 
Details
   web
Records
Author Bogaerts, A.; Gijbels, R.; Grozeva, M.; Sabotinov, N.
Title (down) Investigation of laser output power saturation in the He-Cu+ IR hollow cathode discharge laser by experiments and numerical modeling Type A1 Journal article
Year 2003 Publication Physica scripta Abbreviated Journal Phys Scripta
Volume T105 Issue Pages 90-97
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000184344900014 Publication Date 2003-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited Open Access
Notes Approved Most recent IF: 1.28; 2003 IF: 0.688
Call Number UA @ lucian @ c:irua:44019 Serial 1733
Permanent link to this record
 

 
Author de Bleecker, K.; Bogaerts, A.; Goedheer, W.; Gijbels, R.
Title (down) Investigation of growth mechanisms of clusters in a silane discharge with the use of a fluid model Type A1 Journal article
Year 2004 Publication IEEE transactions on plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 32 Issue 2 Pages 691-698
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000222278400026 Publication Date 2004-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 29 Open Access
Notes Approved Most recent IF: 1.052; 2004 IF: 1.042
Call Number UA @ lucian @ c:irua:46379 Serial 1732
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title (down) Investigation of etching and deposition processes of Cl2/O2/Ar inductively coupled plasmas on silicon by means of plasmasurface simulations and experiments Type A1 Journal article
Year 2009 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 42 Issue Pages 095204,1-095204,13
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a simulation method is described to predict the etching behaviour of Cl2/O2/Ar inductively coupled plasmas on a Si substrate, as used in shallow trench isolation for the production of electronic devices. The hybrid plasma equipment model (HPEM) developed by Kushner et al is applied to calculate the plasma characteristics in the reactor chamber and two additional Monte Carlo simulations are performed to predict the fluxes, angles and energy of the plasma species bombarding the Si substrate, as well as the resulting surface processes such as etching and deposition. The simulations are performed for a wide variety of operating conditions such as gas composition, chamber pressure, power deposition and substrate bias. It is predicted by the simulations that when the fraction of oxygen in the gas mixture is too high, the oxidation of the Si substrate is superior to the etching of Si by chlorine species, resulting in an etch rate close to zero as is also observed in the experiments.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000265531000030 Publication Date 2009-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 23 Open Access
Notes Approved Most recent IF: 2.588; 2009 IF: 2.083
Call Number UA @ lucian @ c:irua:75601 Serial 1731
Permanent link to this record
 

 
Author Oleshko, V.; Schryvers, D.; Gijbels, R.; Jacob, W.
Title (down) Investigation of Ag, Ag2S and Ag(Br,I) small particles by HREM and AEM Type H3 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 293-294
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:20553 Serial 1729
Permanent link to this record
 

 
Author Liang, Y.-S.; Xue, C.; Zhang, Y.-R.; Wang, Y.-N.
Title (down) Investigation of active species in low-pressure capacitively coupled N-2/Ar plasmas Type A1 Journal article
Year 2021 Publication Physics Of Plasmas Abbreviated Journal Phys Plasmas
Volume 28 Issue 1 Pages 013510
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, a self-consistent fluid model is developed focusing on the plasma parameters in capacitively coupled 20% N 2-80% Ar discharges. Measurements of ion density are performed with the help of a floating double probe, and the emission intensities from Ar(4p) and N 2 ( B ) transitions are detected by an optical emission spectroscopy to estimate their relative densities. The consistency between the numerical and experimental results confirms the reliability of the simulation. Then the plasma characteristics, specifically the reaction mechanisms of active species, are analyzed under various voltages. The increasing voltage leads to a monotonous increase in species density, whereas a less homogeneous radial distribution is observed at a higher voltage. Due to the high concentration of Ar gas, Ar + becomes the main ion, followed by the N 2 +</mml:msubsup> ion. Besides the electron impact ionization of neutrals, the charge transfer processes of Ar +/ N 2 and N 2 +</mml:msubsup>/Ar are found to have an impact on the ionic species. The results indicate that adopting the lower charge transfer reaction rate coefficients weakens the Ar + ion density and yields a higher N 2 +</mml:msubsup> ion density. However, the effect on the species spatial distributions and other species densities is limited. As for the excited-state species, the electron impact excitation of background gases remains overwhelming in the formation of Ar(4p), N 2 ( B ), and N 2 ( a ' ), whereas the <mml:msub> N 2 ( A ) molecules are mainly formed by the decay of <mml:msub> N 2 ( B ). In addition, the dissociation of <mml:msub> N 2 collided by excited-state Ar atoms dominates the N generation, which are mostly depleted to produce N + ions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000629931300002 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.115
Call Number UA @ admin @ c:irua:177669 Serial 6767
Permanent link to this record
 

 
Author Saeed, A.; Khan, A.W.; Shafiq, M.; Jan, F.; Abrar, M.; Zaka-ul-Islam, M.; Zakaullah, M.
Title (down) Investigation of 50 Hz pulsed DC nitrogen plasma with active screen cage by trace rare gas optical emission spectroscopy Type A1 Journal article
Year 2014 Publication Plasma science & technology Abbreviated Journal Plasma Sci Technol
Volume 16 Issue 4 Pages 324-328
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Optical emission spectroscopy is used to investigate the nitrogen-hydrogen with trace rare gas (4% Ar) plasma generated by 50 Hz pulsed DC discharges. The filling pressure varies from 1 mbar to 5 mbar and the current density ranges from 1 mA.cm(-2) to 4 mA.cm(-2). The hydrogen concentration in the mixture plasma varies from 0% to 80%, with the objective of identifying the optimum pressure, current density and hydrogen concentration for active species ([N] and [N-2]) generation. It is observed that in an N-2-H-2 gas mixture, the concentration of N atom density decreases with filling pressure and increases with current density, with other parameters of the discharge kept unchanged. The maximum concentrations of active species were found for 40% H-2 in the mixture at 3 mbar pressure and current density of 4 mA.cm(-2).
Address
Corporate Author Thesis
Publisher Institute of Plasma Physics, the Chinese Academy of Sciences Place of Publication Beijing Editor
Language Wos 000335909600005 Publication Date 2014-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1009-0630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.83 Times cited 5 Open Access
Notes Approved Most recent IF: 0.83; 2014 IF: 0.579
Call Number UA @ lucian @ c:irua:117686 Serial 1728
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title (down) Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma-enhanced CVD system : the effect of processing parameters Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 31 Pages 315203-315203,15
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A parameter study is carried out for an inductively coupled plasma used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs), by means of the Hybrid Plasma Equipment Model. The influence of processing parameters including gas ratio for four different gas mixtures typically used for CNT/CNF growth (i.e. CH4/H2, CH4/NH3, C2H2/H2 and C2H2/NH3), inductively coupled plasma (ICP) power (501000 W), operating pressure (10 mTorr1 Torr), bias power (01000 W) and temperature of the substrate (01000 °C) on the plasma chemistry is investigated and the optimized conditions for CNT/CNF growth are analysed. Summarized, our calculations suggest that a lower fraction of hydrocarbon gases (CH4 or C2H2, i.e. below 20%) and hence a higher fraction of etchant gases (H2 or NH3) in the gas mixture result in more 'clean' conditions for controlled CNT/CNF growth. The same applies to a higher ICP power, a moderate ICP gas pressure above 100 mTorr (at least for single-walled carbon nanotubes), a high bias power (for aligned CNTs) and an intermediate substrate temperature.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000280275200007 Publication Date 2010-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 17 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:88365 Serial 1724
Permanent link to this record
 

 
Author Mao, M.; Bogaerts, A.
Title (down) Investigating the plasma chemistry for the synthesis of carbon nanotubes/nanofibres in an inductively coupled plasma enhanced CVD system : the effect of different gas mixtures Type A1 Journal article
Year 2010 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 43 Issue 20 Pages 205201,1-205201,20
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model (HPEM), was used to study an inductively coupled plasma in gas mixtures of H2 or NH3 with CH4 or C2H2 used for the synthesis of carbon nanotubes or carbon nanofibres (CNTs/CNFs). The plasma properties are discussed for different gas mixtures at low and moderate pressures, and the growth precursors for CNTs/CNFs are analysed. It is found that C2H2, C2H4 and C2H6 are the predominant molecules in CH4 containing plasmas besides the feedstock gas, and serve as carbon sources for CNT/CNF formation. On the other hand, long-chain hydrocarbons are observed in C2H2-containing plasmas. Furthermore, the background gases CH4 and C2H2 show a different decomposition rate with H2 or NH3 addition at moderate pressures.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000277373400009 Publication Date 2010-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 52 Open Access
Notes Approved Most recent IF: 2.588; 2010 IF: 2.109
Call Number UA @ lucian @ c:irua:82067 Serial 1723
Permanent link to this record
 

 
Author Vertes, A.; Gijbels, R.; Adams, F.
Title (down) Introduction Type H3 Book chapter
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 1-6
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Wiley Place of Publication New York Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6122 Serial 1720
Permanent link to this record
 

 
Author Clima, S.; Chen, Y.Y.; Fantini, A.; Goux, L.; Degraeve, R.; Govoreanu, B.; Pourtois, G.; Jurczak, M.
Title (down) Intrinsic tailing of resistive states distributions in amorphous <tex>HfOx </tex> and TaOx based resistive random access memories Type A1 Journal article
Year 2015 Publication IEEE electron device letters Abbreviated Journal Ieee Electr Device L
Volume 36 Issue 36 Pages 769-771
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report on the ineffectiveness of programming oxide-based resistive random access memory (OxRAM) at low current with a program and verify algorithm due to intrinsic relaxation of the verified distribution to the natural state distribution obtained by single-pulse programming without verify process. Based on oxygen defect formation thermodynamics and on their diffusion barriers in amorphous HfOx and TaOx, we describe the intrinsic nature of tailing of the verified low resistive state and high resistive state distributions. We introduce different scenarios to explain fast distribution widening phenomenon, which is a fundamental limitation for OxRAM current scaling and device reliability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358570300011 Publication Date 2015-06-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0741-3106 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.048 Times cited 33 Open Access
Notes Approved Most recent IF: 3.048; 2015 IF: 2.754
Call Number UA @ lucian @ c:irua:134412 Serial 4200
Permanent link to this record
 

 
Author Ignatova, V.A.; Möller, W.; Conard, T.; Vandervorst, W.; Gijbels, R.
Title (down) Interpretation of TOF-SIMS depth profiles from ultrashallow high-k dielectric stacks assisted by hybrid collisional computer simulation Type A1 Journal article
Year 2005 Publication Applied physics A : materials science & processing Abbreviated Journal Appl Phys A-Mater
Volume 81 Issue 1 Pages 71-77
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Heidelberg Editor
Language Wos 000228794000013 Publication Date 2005-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0947-8396;1432-0630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.455 Times cited 4 Open Access
Notes Approved Most recent IF: 1.455; 2005 IF: 1.990
Call Number UA @ lucian @ c:irua:60085 Serial 1711
Permanent link to this record
 

 
Author van Grieken, R.; Gijbels, R.; Speecke, A.; Hoste, J.
Title (down) Internal standard activation analysis of silicon in steel Type A1 Journal article
Year 1968 Publication Analytica chimica acta Abbreviated Journal Anal Chim Acta
Volume 43 Issue Pages 381-395
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract Non-destructive 14-MeV neutron activation analysis for silicon in steel has been applied with 56Mn as internal standard.56Mn is formed from the iron matrix via the 56Fe(n,p)56Mn reaction. Several methods of internal standardisation via56Mn are discussed. The 0.84-MeV photopeak of 56Mn is recommended if steel samples of about the same composition are to be analysed. Chemically analysed steel samples are used as silicon standards. A precision of 0.7% was obtained for an analysis plus standardisation time of 13 min. Special attention was paid to interferences produced by concentration changes of impurity elements. Several possible sources of errors were investigated.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1968C185100003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2670; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.513 Times cited 14 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:116358 Serial 1701
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
Title (down) Interactions of plasma species on nickel catalysts : a reactive molecular dynamics study on the influence of temperature and surface structure Type A1 Journal article
Year 2014 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ
Volume 154 Issue Pages 1-8
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Methane reforming by plasma catalysis is a complex process that is far from understood. It requires a multidisciplinary approach which ideally takes into account all effects from the plasma on the catalyst, and vice versa. In this contribution, we focus on the interactions of CHx (x = {1,2,3}) radicals that are created in the plasma with several nickel catalyst surfaces. To this end, we perform reactive molecular dynamics simulations, based on the ReaxFF potential, in a wide temperature range of 4001600 K. First, we focus on the H2 formation as a function of temperature and surface structure. We observe that substantial H2 formation is obtained at 1400 K and above, while the role of the surface structure seems limited. Indeed, in the initial stage, the type of nickel surface influences the CH bond breaking efficiency of adsorbed radicals; however, the continuous carbon diffusion into the surface gradually diminishes the surface crystallinity and therefore reduces the effect of surface structure on the H2 formation probability. Furthermore, we have also investigated to what extent the species adsorbed on the catalyst surface can participate in surface reactions more in general, for the various surface structures and as a function of temperature. These results are part of the ongoing research on the methane reforming by plasma catalysis, a highly interesting yet complex alternative to conventional reforming processes.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000335098800001 Publication Date 2014-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited 23 Open Access
Notes Approved Most recent IF: 9.446; 2014 IF: 7.435
Call Number UA @ lucian @ c:irua:114607 Serial 1686
Permanent link to this record
 

 
Author Cenian, A.; Chernukho, A.; Leys, C.; Bogaerts, A.
Title (down) Interactions between DC plasma and HF fields Type P3 Proceeding
Year 2001 Publication Abbreviated Journal
Volume Issue Pages 389-392
Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:34142 Serial 1685
Permanent link to this record
 

 
Author Van der Paal, J.; Aernouts, S.; van Duin, A.C.T.; Neyts, E.C.; Bogaerts, A.
Title (down) Interaction of O and OH radicals with a simple model system for lipids in the skin barrier : a reactive molecular dynamics investigation for plasma medicine Type A1 Journal article
Year 2013 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 46 Issue 39 Pages 395201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma medicine has been claimed to provide a novel route to heal wounds and regenerate skin, although very little is currently known about the elementary processes taking place. We carried out a series of ReaxFF-based reactive molecular dynamics simulations to investigate the interaction of O and OH radicals with lipids, more specifically with α-linolenic acid as a model for the free fatty acids present in the upper skin layer. Our calculations predict that the O and OH radicals most typically abstract a H atom from the fatty acids, which can lead to the formation of a conjugated double bond, but also to the incorporation of alcohol or aldehyde groups, thereby increasing the hydrophilic character of the fatty acids and changing the general lipid composition of the skin. Within the limitations of the investigated model, no formation of possibly toxic products was observed.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324810400007 Publication Date 2013-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 36 Open Access
Notes Approved Most recent IF: 2.588; 2013 IF: 2.521
Call Number UA @ lucian @ c:irua:109904 Serial 1684
Permanent link to this record
 

 
Author Beusen, J.-M.; Van 't dack, L.; Gijbels, R.
Title (down) Interaction between rock-forming minerals and fluids under hydrothermal conditions : experiments with emphasis on the chemical composition of the minerals surface and on the trace element content of the aqueous phase Type P3 Proceeding
Year 1985 Publication Abbreviated Journal
Volume Issue Pages 310-317
Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Reidel Place of Publication Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:111510 Serial 1682
Permanent link to this record
 

 
Author Bogaerts, A.; Ameye, L.; Bijlholt, M.; Amuli, K.; Heynickx, D.; Devlieger, R.
Title (down) INTER-ACT : prevention of pregnancy complications through an e-health driven interpregnancy lifestyle intervention: study protocol of a multicentre randomised controlled trial Type A1 Journal article
Year 2017 Publication BMC pregnancy and childbirth Abbreviated Journal Bmc Pregnancy Childb
Volume 17 Issue Pages 154
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Centre for Research and Innovation in Care (CRIC)
Abstract Background Excessive maternal pre-pregnancy and gestational weight gain are related to pregnancy- and birth outcomes. The interpregnancy time window offers a unique opportunity to intervene in order to acquire a healthy lifestyle before the start of a new pregnancy. Methods INTER-ACT is an e-health driven multicentre randomised controlled intervention trial targeting women at high risk of pregnancy- and birth related complications. Eligible women are recruited for the study at day 2 or 3 postpartum. At week 6 postpartum, participants are randomised into the intervention or control arm of the study. The intervention focuses on weight, diet, physical activity and mental well-being, and comprises face-to-face coaching, in which behavioural change techniques are central, and use of a mobile application, which is Bluetooth-connected to a weighing scale and activity tracker. The intervention is rolled out postpartum (4 coaching sessions between week 6 and month 6) and in a new pregnancy (3 coaching sessions, one in each trimester of pregnancy); the mobile app is used throughout the two intervention phases. Data collection includes data from the medical record of the participants (pregnancy outcomes and medical history), anthropometric data (height, weight, waist- and hip circumferences, skinfold thickness and body composition by bio-electrical impedance analysis), data from the mobile app (physical activity and weight; intervention group only) and questionnaires (socio-demographics, breastfeeding, food intake, physical activity, lifestyle, psychosocial factors and process evaluation). Medical record data are collected at inclusion and at delivery of the subsequent pregnancy. All other data are collected at week 6 and month 6 postpartum and every subsequent 6 months until a new pregnancy, and in every trimester in the new pregnancy. Primary outcome is the composite endpoint score of pregnancy-induced hypertension, gestational diabetes mellitus, caesarean section, and large-for-gestational-age infant in the subsequent pregnancy.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000402116300002 Publication Date 2017-05-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-2393 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.263 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 2.263
Call Number UA @ lucian @ c:irua:143234 Serial 4663
Permanent link to this record
 

 
Author Dumpala, S.; Broderick, S.R.; Khalilov, U.; Neyts, E.C.; van Duin, A.C.T.; Provine, J.; Howe, R.T.; Rajan, K.
Title (down) Integrated atomistic chemical imaging and reactive force field molecular dynamic simulations on silicon oxidation Type A1 Journal article
Year 2015 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 106 Issue 106 Pages 011602
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we quantitatively investigate with atom probe tomography, the effect of temperature on the interfacial transition layer suboxide species due to the thermal oxidation of silicon. The chemistry at the interface was measured with atomic scale resolution, and the changes in chemistry and intermixing at the interface were identified on a nanometer scale. We find an increase of suboxide (SiOx) concentration relative to SiO2 and increased oxygen ingress with elevated temperatures. Our experimental findings are in agreement with reactive force field molecular dynamics simulations. This work demonstrates the direct comparison between atom probe derived chemical profiles and atomistic-scale simulations for transitional interfacial layer of suboxides as a function of temperature.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347976900008 Publication Date 2015-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 19 Open Access
Notes Approved Most recent IF: 3.411; 2015 IF: 3.302
Call Number c:irua:122300 Serial 1679
Permanent link to this record
 

 
Author Ghorbanfekr, H.; Behler, J.; Peeters, F.M.
Title (down) Insights into water permeation through hBN nanocapillaries by ab initio machine learning molecular dynamics simulations Type A1 Journal article
Year 2020 Publication Journal Of Physical Chemistry Letters Abbreviated Journal J Phys Chem Lett
Volume 11 Issue 17 Pages 7363-7370
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 A confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 A, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000569375400061 Publication Date 2020-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.7 Times cited 35 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program (Grant Number: G099219N). The authors thank Arham Amouei for the helpful discussion regarding MD simulations. ; Approved Most recent IF: 5.7; 2020 IF: 9.353
Call Number UA @ admin @ c:irua:171996 Serial 6546
Permanent link to this record
 

 
Author Biondo, O.; Fromentin, C.; Silva, T.; Guerra, V.; van Rooij, G.; Bogaerts, A.
Title (down) Insights into the limitations to vibrational excitation of CO2: validation of a kinetic model with pulsed glow discharge experiments Type A1 Journal article
Year 2022 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 31 Issue 7 Pages 074003
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Vibrational excitation represents an efficient channel to drive the dissociation of CO<sub>2</sub>in a non-thermal plasma. Its viability is investigated in low-pressure pulsed discharges, with the intention of selectively exciting the asymmetric stretching mode, leading to stepwise excitation up to the dissociation limit of the molecule. Gas heating is crucial for the attainability of this process, since the efficiency of vibration–translation (V–T) relaxation strongly depends on temperature, creating a feedback mechanism that can ultimately thermalize the discharge. Indeed, recent experiments demonstrated that the timeframe of V–T non-equilibrium is limited to a few milliseconds at ca. 6 mbar, and shrinks to the<italic>μ</italic>s-scale at 100 mbar. With the aim of backtracking the origin of gas heating in pure CO<sub>2</sub>plasma, we perform a kinetic study to describe the energy transfers under typical non-thermal plasma conditions. The validation of our kinetic scheme with pulsed glow discharge experiments enables to depict the gas heating dynamics. In particular, we pinpoint the role of vibration–vibration–translation relaxation in redistributing the energy from asymmetric to symmetric levels of CO<sub>2</sub>, and the importance of collisional quenching of CO<sub>2</sub>electronic states in triggering the heating feedback mechanism in the sub-millisecond scale. This latter finding represents a novelty for the modelling of low-pressure pulsed discharges and we suggest that more attention should be paid to it in future studies. Additionally, O atoms convert vibrational energy into heat, speeding up the feedback loop. The efficiency of these heating pathways, even at relatively low gas temperature and pressure, underpins the lifetime of V–T non-equilibrium and suggests a redefinition of the optimal conditions to exploit the ‘ladder-climbing’ mechanism in CO<sub>2</sub>discharges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000839466500001 Publication Date 2022-07-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access OpenAccess
Notes Fundação para a Ciência e a Tecnologia, PLA/0076/2021 ; H2020 Marie Skłodowska-Curie Actions, 813393 ; This research was supported by the European Union’s Horizon 2020 Research and Innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 813393 (PIONEER). V Guerra and T Silva were partially funded by the Portuguese ‘FCT-Fundação para a Ciência e a Tecnologia’, under Projects UIDB/50010/2020, UIDP/50010/2020, PTDC/FISPLA/1616/2021 and EXPL/FIS-PLA/0076/2021. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 3.8
Call Number PLASMANT @ plasmant @c:irua:190008 Serial 7106
Permanent link to this record
 

 
Author Eckert, M.; Neyts, E.; Bogaerts, A.
Title (down) Insights into the growth of (ultra)nanocrystalline diamond by combined molecular dynamics and Monte Carlo simulations Type A1 Journal article
Year 2010 Publication Crystal growth & design Abbreviated Journal Cryst Growth Des
Volume 10 Issue 7 Pages 3005-3021
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, we present the results of combined molecular dynamics−Metropolis Monte Carlo (MD-MMC) simulations of hydrocarbon species at flat diamond (100)2 × 1 and (111)1 × 1 surfaces. The investigated species are considered to be the most important growth species for (ultra)nanocrystalline diamond ((U)NCD) growth. When applying the MMC algorithm to stuck species at monoradical sites, bonding changes are only seen for CH2. The sequence of the bond breaking and formation as put forward by the MMC simulations mimics the insertion of CH2 into a surface dimer as proposed in the standard growth model of diamond. For hydrocarbon species attached to two adjacent radical (biradical) sites, the MMC simulations give rise to significant changes in the bonding structure. For UNCD, the combinations of C3 and C3H2, and C3 and C4H2 (at diamond (100)2 × 1) and C and C2H2 (at diamond (111)1 × 1) are the most successful in nucleating new crystal layers. For NCD, the following combinations pursue the diamond structure the best: C2H2 and C3H2 (at diamond (100)2 × 1) and CH2 and C2H2 (at diamond (111)1 × 1). The different behaviors of the hydrocarbon species at the two diamond surfaces are related to the different sterical hindrances at the diamond surfaces.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000279422700032 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1528-7483;1528-7505; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.055 Times cited 13 Open Access
Notes Approved Most recent IF: 4.055; 2010 IF: 4.390
Call Number UA @ lucian @ c:irua:83065 Serial 1675
Permanent link to this record
 

 
Author Dhayalan, S.K.; Nuytten, T.; Pourtois, G.; Simoen, E.; Pezzoli, F.; Cinquanta, E.; Bonera, E.; Loo, R.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Vandervorst, W.
Title (down) Insights into the C Distribution in Si:C/Si:C:P and the Annealing Behavior of Si:C Layers Type A1 Journal article
Year 2019 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 8 Issue 4 Pages P209-P216
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Si:C and Si:C:P alloys are potential candidates for source-drain stressor applications in n-type Fin Field Effect Transistors (FinFETs). Increasing the C content to achieve high strain results in the arrangement of C atoms as third nearest neighbors (3nn) in the Si: C lattice. During thermal annealing, the presence of C atoms as 3nn may promote clustering at the interstitial sites, causing loss of stress. The concentration of C atoms as 3nn is reduced by the incorporation of a small amount of Ge atoms during the growth, whereas in-situ P doping does not influence this 3nn distribution [J Solid State Sci. Technol vol 6, p 755, 2017]. Small amounts of Ge are provided during low temperature selective epitaxial growth scheme, which are based on cyclic deposition and etching (CDE). In this work, we aim to provide physical insights into the aforementioned phenomena, to understand the behavior of 3nn C atoms and the types of defects that are formed in the annealed Si: C films. Using ab-initio simulations, the Ge-C interaction in the Si matrix is investigated and this insight is used to explain how the Ge incorporation leads to a reduced 3nn distribution of the C atoms. The interaction between C and P in the Si: C: P films is also investigated to explain why the P incorporation has not led to a reduction in the 3nn distribution. We then report on the Raman characterization of Si: C layers subjected to post epi annealing. As the penetration depth of the laser is dependent on the wavelength, Raman measurements at two different wavelengths enable us to probe the depth distribution of 3nn C atoms after applying different annealing conditions. We observed a homogeneous loss in 3nn C throughout the layer. Whereas in the kinematic modeling of high resolution X-ray diffraction spectra, a gradient in the substitutional C loss was observed close to the epitaxial layer/substrate interface. This gradient can be due to the out diffusion of C atoms into the Si substrate or to the formation of interstitial C clusters, which cannot be distinguished in HR-XRD. Deep Level Transient Spectroscopy indicated that the prominent out-diffusing species was interstitial CO complex while the interstitial C defects were also prevalent in the epi layer. (c) 2019 The Electrochemical Society.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000465069200001 Publication Date 2019-04-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.787 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 1.787
Call Number UA @ admin @ c:irua:160399 Serial 5275
Permanent link to this record
 

 
Author Chen, Y.Y.; Pourtois, G.; Adelmann, C.; Goux, L.; Govoreanu, B.; Degreave, R.; Jurczak, M.; Kittl, J.A.; Groeseneken, G.; Wouters, D.J.
Title (down) Insights into Ni-filament formation in unipolar-switching Ni/HfO2/TiN resistive random access memory device Type A1 Journal article
Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 100 Issue 11 Pages 113513-113513,4
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this letter, CMOS-compatible Ni/HfO2/TiN resistive random access memory stacks demonstrated attractive unipolar switching properties, showing >10(3) endurance and long retention at 150 degrees C. The Ni bottom electrode (BE) improved the switching yield over the NiSiPt BE. To better understand the unipolar forming mechanism, ab initio simulation and time of flight-secondary ion mass spectroscopy were utilized. Compared to the NiSiPt BE, Ni BE gives larger Ni diffusion in the HfO2 and lower formation enthalpy of Ni2+ species during electrical forming. Both the electrical and physical results supported a Ni-injection mechanism for the filament formation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3695078]
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000302204900091 Publication Date 2012-03-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 29 Open Access
Notes Approved Most recent IF: 3.411; 2012 IF: 3.794
Call Number UA @ lucian @ c:irua:98295 Serial 1674
Permanent link to this record
 

 
Author Neyts, E.C.; van Duin, A.C.T.; Bogaerts, A.
Title (down) Insights in the plasma-assisted growth of carbon nanotubes through atomic scale simulations : effect of electric field Type A1 Journal article
Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 134 Issue 2 Pages 1256-1260
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) are nowadays routinely grown in a thermal CVD setup. State-of-the-art plasma-enhanced CVD (PECVD) growth, however, offers advantages over thermal CVD. A lower growth temperature and the growth of aligned freestanding single-walled CNTs (SWNTs) makes the technique very attractive. The atomic scale growth mechanisms of PECVD CNT growth, however, remain currently entirely unexplored. In this contribution, we employed molecular dynamics simulations to focus on the effect of applying an electric field on the SWNT growth process, as one of the effects coming into play in PECVD. Using sufficiently strong fields results in (a) alignment of the growing SWNTs, (b) a better ordering of the carbon network, and (c) a higher growth rate relative to thermal growth rate. We suggest that these effects are due to the small charge transfer occurring in the Ni/C system. These simulations constitute the first study of PECVD growth of SWNTs on the atomic level.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000301084300086 Publication Date 2011-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 56 Open Access
Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
Call Number UA @ lucian @ c:irua:97163 Serial 1673
Permanent link to this record
 

 
Author Adams, F.; Gijbels, R.; van Grieken, R.; Kim, Y.-sang
Title (down) Inorganic mass spectrometry Type ME3 Book as editor
Year 1999 Publication Abbreviated Journal
Volume Issue Pages
Keywords ME3 Book as editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Freedom Academy Press Place of Publication Seoul Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 89-7338-200-4 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:34087 Serial 1669
Permanent link to this record
 

 
Author Adams, F.; Gijbels, R.; Van Grieken, R.; Dachang, Z.
Title (down) Inorganic mass spectrometry Type MA3 Book as author
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 391 p.
Keywords MA3 Book as author; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Fudan University Press Place of Publication Shanghai Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:34086 Serial 4522
Permanent link to this record
 

 
Author Adams, F.; Gijbels, R.; Van Grieken, R.
Title (down) Inorganic mass spectrometry Type ME3 Book as editor
Year 1988 Publication Abbreviated Journal
Volume Issue Pages 404 p.
Keywords ME3 Book as editor; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Wiley Place of Publication Chichester Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:117469 Serial 4523
Permanent link to this record
 

 
Author Živanić, M.; Espona‐Noguera, A.; Verswyvel, H.; Smits, E.; Bogaerts, A.; Lin, A.; Canal, C.
Title (down) Injectable Plasma‐Treated Alginate Hydrogel for Oxidative Stress Delivery to Induce Immunogenic Cell Death in Osteosarcoma Type A1 Journal article
Year 2023 Publication Advanced functional materials Abbreviated Journal Adv Funct Materials
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Cold atmospheric plasma (CAP) is a source of cell‐damaging oxidant molecules that may be used as low‐cost cancer treatment with minimal side effects. Liquids treated with cold plasma and enriched with oxidants are a modality for non‐invasive treatment of internal tumors with cold plasma via injection. However, liquids are easily diluted with body fluids which impedes high and localized delivery of oxidants to the target. As an alternative, plasma‐treated hydrogels (PTH) emerge as vehicles for the precise delivery of oxidants. This study reports an optimal protocol for the preparation of injectable alginate PTH that ensures the preservation of plasma‐generated oxidants. The generation, storage, and release of oxidants from the PTH are assessed. The efficacy of the alginate PTH in cancer treatment is demonstrated in the context of cancer cell cytotoxicity and immunogenicity–release of danger signals and phagocytosis by immature dendritic cells, up to now unexplored for PTH. These are shown in osteosarcoma, a hard‐to‐treat cancer. The study aims to consolidate PTH as a novel cold plasma treatment modality for non‐invasive or postoperative tumor treatment. The results offer a rationale for further exploration of alginate‐based PTHs as a versatile platform in biomedical engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001129424500001 Publication Date 2023-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record
Impact Factor 19 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, 1S67621N ; European Cooperation in Science and Technology, COST Action CA20114 ; Agència de Gestió d'Ajuts Universitaris i de Recerca, SGR2022‐1368 ; Agencia Estatal de Investigación, PID2019‐ 103892RB‐I00/AEI/10.13039/501100011033 ; Instituto de Salud Carlos III, IHRC22/00003 ; Approved Most recent IF: 19; 2023 IF: 12.124
Call Number PLASMANT @ plasmant @c:irua:202030 Serial 8979
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title (down) Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author Aerts, R.; Martens, T.; Bogaerts, A.
Title (down) Influence of vibrational states on CO2 splitting by dielectric barrier discharges Type A1 Journal article
Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 116 Issue 44 Pages 23257-23273
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, the splitting of CO2 in a pulsed plasma system, such as a dielectric barrier discharge (DBD), is evaluated from a chemical point of view by means of numerical modeling. For this purpose, a chemical reaction set of CO2 in an atmospheric pressure plasma is developed, including the vibrational states of CO2, O2, and CO. The simulated pulses are matched to the conditions of a filament (or microdischarge) and repeated with intervals of 1 μs. The influence of vibrationally excited CO2 as well as other neutral species, ions, and electrons on the CO2 splitting is discussed. Our calculations predict that the electrons have the largest contribution to the CO2 splitting at the conditions under study, by electron impact dissociation. The contribution of vibrationally excited CO2 levels in the splitting of CO2 is found be 6.4%, when only considering one microdischarge pulse and its afterglow, but it can be much higher for consecutive discharge pulses, as is typical for a filamentary DBD, when the interpulse time is short enough and accumulation effects in the vibrationally excited CO2 densities can occur.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000310769300012 Publication Date 2012-10-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 112 Open Access
Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
Call Number UA @ lucian @ c:irua:101764 Serial 1659
Permanent link to this record