|   | 
Details
   web
Records
Author Szafran, B.; Nowak, M.P.; Bednarek, S.; Chwiej, T.; Peeters, F.M.
Title (up) Selective suppression of Dresselhaus or Rashba spin-orbit coupling effects by the Zeeman interaction in quantum dots Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 23 Pages 235303,1-235303,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is preserved at high field and consequently the spin polarization of the systems as well as the spatial antisymmetry of the two-electron wave function remain approximate.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000267699500073 Publication Date 2009-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 13 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77691 Serial 2969
Permanent link to this record
 

 
Author Leys, F.E.; March, N.H.; Angilella, G.G.N.; Lamoen, D.
Title (up) Self consistent nonlocal linear-response theory of a relativistic electron gas Type A1 Journal article
Year 2003 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 67 Issue Pages 113105
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000182035100005 Publication Date 2003-04-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record;
Impact Factor 3.836 Times cited Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:45627 Serial 2973
Permanent link to this record
 

 
Author Shi, J.M.; Peeters, F.M.; Devreese, J.T.
Title (up) Shallow donor impurities in GaAs/AlxGa1-xAs superlattices in a magnetic-field Type A1 Journal article
Year 1994 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 50 Issue 20 Pages 15182-15190
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1994PV86500054 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 71 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:99812 Serial 2986
Permanent link to this record
 

 
Author Hao, Y.L.; Djotyan, A.P.; Avetisyan, A.A.; Peeters, F.M.
Title (up) Shallow donor states near a semiconductor-insulator-metal interface Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 3 Pages 035329,1-035329,10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The lowest energy electronic states of a donor located near a semiconductor-insulator-metal interface are investigated within the effective mass approach. The effect of the finite thickness of the insulator between the semiconductor and the metallic gate on the energy levels is studied. The lowest energy states are obtained through a variational approach, which takes into account the influence of all image charges that arise due to the presence of the metallic and the dielectric interfaces. We compare our results with a numerical exact calculation using the finite element technique.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000268617800101 Publication Date 2009-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:77950 Serial 2989
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.
Title (up) Shape resonances in the superconducting order parameter of ultrathin nanowires Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 1 Pages 012510,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235009000033 Publication Date 2006-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:56613 Serial 2990
Permanent link to this record
 

 
Author Tsirlin, A.A.; Abakumov, A.M.; Ritter, C.; Henry, P.F.; Janson, O.; Rosner, H.
Title (up) Short-range order of Br and three-dimensional magnetism in (CuBr)LaNb2O7 Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 21 Pages 214427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present a comprehensive study of the crystal structure, magnetic structure, and microscopic magnetic model of (CuBr)LaNb2O7, the Br analog of the spin-gap quantum magnet (CuCl) LaNb2O7. Despite similar crystal structures and spin lattices, the magnetic behavior and even peculiarities of the atomic arrangement in the Cl and Br compounds are very different. The high- resolution x-ray and neutron data reveal a split position of Br atoms in (CuBr) LaNb2O7. This splitting originates from two possible configurations developed by [CuBr] zigzag ribbons. While the Br atoms are locally ordered in the ab plane, their arrangement along the c direction remains partially disordered. The predominant and energetically more favorable configuration features an additional doubling of the c lattice parameter that was not observed in (CuCl) LaNb2O7. (CuBr) LaNb2O7 undergoes long-range antiferromagnetic ordering at T-N = 32 K, which is nearly 70% of the leading exchange coupling J4 similar or equal to 48 K. The Br compound does not show any experimental signatures of low-dimensional magnetism because the underlying spin lattice is three-dimensional. The coupling along the c direction is comparable to the couplings in the ab plane, even though the shortest Cu-Cu distance along c (11.69 angstrom) is three times larger than nearest-neighbor distances in the ab plane (3.55 angstrom). The stripe antiferromagnetic long-range order featuring columns of parallel spins in the ab plane and antiparallel spins along c is verified experimentally and confirmed by the microscopic analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305557600002 Publication Date 2012-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:100289 Serial 2998
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.
Title (up) Signatures of lateral coupling of double quantum dots in the exciton photoluminescence spectrum Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue Pages 195442,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000251326800147 Publication Date 2007-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 29 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69663 Serial 2999
Permanent link to this record
 

 
Author Chaves, A.; Sousa, G.O.; Khaliji, K.; da Costa, D.R.; Farias, G.A.; Low, T.
Title (up) Signatures of subband excitons in few-layer black phosphorus Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 16 Pages 165428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experimental measurements of light absorption in few-layer black phosphorus (BP) revealed a series of high and sharp peaks, interspersed by pairs of lower and broader features. Here, we propose a theoretical model for these excitonic states in few-layer BP within a continuum approach for the in-plane degrees of freedom and a tight-binding approximation that accounts for interlayer couplings. This yields excitonic transitions between different combinations of the subbands created by the coupled BP layers, which leads to a series of high and low oscillator strength excitonic states, consistent with the experimentally observed bright and dark exciton peaks, respectively. The main characteristics of such subband exciton states, as well as the possibility to control their energies and oscillator strengths via applied electric and magnetic fields, are discussed, towards a full understanding of the excitonic spectrum of few-layer BP and its tunability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000647175200002 Publication Date 2021-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:178384 Serial 8523
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M.
Title (up) Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 165406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the number of stacking layers and the type of stacking on the electronic and optical properties of bilayer and trilayer black phosphorus are investigated by using first-principles calculations within the framework of density functional theory. We find that inclusion of many-body effects (i.e., electron-electron and electron-hole interactions) modifies strongly both the electronic and optical properties of black phosphorus. While trilayer black phosphorus with a particular stacking type is found to be a metal by using semilocal functionals, it is predicted to have an electronic band gap of 0.82 eV when many-body effects are taken into account within the G(0)W(0) scheme. Though different stacking types result in similar energetics, the size of the band gap and the optical response of bilayer and trilayer phosphorene are very sensitive to the number of layers and the stacking type. Regardless of the number of layers and the type of stacking, bilayer and trilayer black phosphorus are direct band gap semiconductors whose band gaps vary within a range of 0.3 eV. Stacking arrangements that are different from the ground state structure in both bilayer and trilayer black phosphorus exhibit significant modified valence bands along the zigzag direction and result in larger hole effective masses. The optical gap of bilayer (trilayer) black phosphorus varies by 0.4 (0.6) eV when changing the stacking type. The calculated binding energy of the bound exciton hardly changes with the type of stacking and is found to be 0.44 (0.30) eV for bilayer (trilayer) phosphorous.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000362435300005 Publication Date 2015-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 127 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C.S. acknowledges support from Turkish Academy of Sciences (TUBA-GEBIP). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:128320 Serial 4242
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Chaves, A.; Peeters, F.M.; Farias, G.A.
Title (up) Simplified model for the energy levels of quantum rings in single layer and bilayer graphene Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 4 Pages 045431,1-045431,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within a minimal model, we present analytical expressions for the eigenstates and eigenvalues of carriers confined in quantum rings in monolayer and bilayer graphene. The calculations were performed in the context of the continuum model by solving the Dirac equation for a zero width ring geometry, i.e., by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and of a nonzero gap in the spectrum. Our minimal model gives insight on the energy spectrum of graphene-based quantum rings and models different aspects of finite width rings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000277186000010 Publication Date 2010-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 76 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Bilateral program between Flanders and Brazil, and the Brazilian Council for Research (CNPq). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:82866 Serial 3005
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title (up) Single and vertically coupled type-II quantum dots in a perpendicular magnetic field: exciton ground-state properties Type A1 Journal article
Year 2002 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 66 Issue 7 Pages 075314,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000177969800106 Publication Date 2002-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 38 Open Access
Notes Approved Most recent IF: 3.836; 2002 IF: NA
Call Number UA @ lucian @ c:irua:62430 Serial 3017
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title (up) Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited 1 Open Access OpenAccess
Notes This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Li, L.L.; Bacaksiz, C.; Nakhaee, M.; Pentcheva, R.; Peeters, F.M.; Yagmurcukardes, M.
Title (up) Single-layer Janus black arsenic-phosphorus (b-AsP): optical dichroism, anisotropic vibrational, thermal, and elastic properties Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 13 Pages 134102-134109
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using density functional theory (DFT) calculations, we predict a puckered, dynamically stable Janus single-layer black arsenic-phosphorus (b-AsP), which is composed of two different atomic sublayers, arsenic and phosphorus atoms. The calculated phonon spectrum reveals that Janus single-layer b-AsP is dynamically stable with either pure or coupled optical phonon branches arising from As and P atoms. The calculated Raman spectrum indicates that due to the relatively strong P-P bonds, As atoms have no contribution to the highfrequency optical vibrations. In addition, the orientation-dependent isovolume heat capacity reveals anisotropic contributions of LA and TA phonon branches to the low-temperature thermal properties. Unlike pristine single layers of b-As and b-P, Janus single-layer b-AsP exhibits additional out-of-plane asymmetry which leads to important consequences for its electronic, optical, and elastic properties. In contrast to single-layer b-As, Janus single-layer b-AsP is found to possess a direct band gap dominated by the P atoms. Moreover, real and imaginary parts of the dynamical dielectric function, including excitonic effects, reveal the highly anisotropic optical feature of the Janus single-layer. A tight-binding (TB) model is also presented for Janus single-layer b-AsP, and it is shown that, with up to seven nearest hoppings, the TB model reproduces well the DFT band structure in the low-energy region around the band gap. This TB model can be used in combination with the Green's function approach to study, e.g., quantum transport in finite systems based on Janus single-layer b-AsP. Furthermore, the linear-elastic properties of Janus single-layer b-AsP are investigated, and the orientation-dependent in-plane stiffness and Poisson ratio are calculated. It is found that the Janus single layer exhibits strong in-plane anisotropy in its Poisson ratio much larger than that of single-layer b-P. This Janus single layer is relevant for promising applications in optical dichroism and anisotropic nanoelasticity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000524531900001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 39 Open Access
Notes ; This work was supported by the German Science Foundation (DFG) within SFB/TRR80 (project G3) and the FLAGERA project TRANS-2D-TMD. M.Y. was supported by a postdoctoral fellowship from the Flemish Science Foundation (FWO-Vl). Computational resources were provided by the Flemish Supercomputer Center (VSC) and Leibniz Supercomputer Centrum (project pr87ro). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:168554 Serial 6602
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title (up) Size effects and strain state of Ga1-xInxAs/GaAs multiple quantum wells: Monte Carlo study Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 78 Issue 16 Pages 165326,1-165326,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of the size of the GaAs barrier and the Ga1−xInxAs well on the structural properties of a Ga1−xInxAs/GaAs multiple quantum well structure is investigated using the Metropolis Monte Carlo approach based on a well-parametrized Tersoff potential. It is found that within the well the Ga-As and In-As bond lengths undergo contractions whose magnitude increases with increasing In content in sharp contrast with bond-length variations in the bulk Ga1−xInxAs systems. For fixed barrier size and In content, the contraction of the bonds is also found to increase with increasing size of the well. Using the local atomic structure of the heterostructures, a more local analysis of the strain state of the systems is given and comparison with the prediction of macroscopic continuum elasticity theory shows deviations from the latter.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574500084 Publication Date 2008-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:72920 Serial 3036
Permanent link to this record
 

 
Author Maignan, A.; Martin, C.; Van Tendeloo, G.; Hervieu, M.; Raveau, B.
Title (up) Size mismatch : a crucial factor for generating a spin-glass insulator in manganites Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 60 Issue 22 Pages 15214-15219
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thr structural, electronic, and magnetic properties of the highly mismatched perovskite oxides, Th(0.35)A(0.65)MnO(3), where Ais for the alkaline earth divalent cations (Ca, Ba, Sr), which are all characterized by the same large tolerance factor (t=0.934), have been investigated by using electron microscopy, electrical resistivity, magnetic susceptibility, and magnetization. It is clearly established that a transition from ferromagnetic metallic towards spin-glass insulator samples is induced as the A-site cationic size mismatch is increased. Moreover, the magnetoresistance (MR) properties of these manganites are strongly reduced for the spin-glass insulators, demonstrating that the A-sire cationic disorder is detrimental for the colossal MR properties. Based on these results, a new electronic and magnetic diagram is established that shows that the A-site disorder, rather than the A-site average cationic size (or t) is the relevant factor for generating spin-glass insulating manganites. [S0163-1829(99)01746-4].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000084631600039 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 75 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:104280 Serial 3038
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Zgirski, M.; Peeters, F.M.; Arutyunov, K.
Title (up) Size-dependent enhancement of superconductivity in Al and Sn nanowires: shape-resonance effect Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 5 Pages 052502,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000240238400015 Publication Date 2007-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 95 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60806 Serial 3034
Permanent link to this record
 

 
Author van Duijn, F.; Osca, J.; Sorée, B.
Title (up) Skyrmion elongation, duplication, and rotation by spin-transfer torque under spatially varying spin current Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 104 Issue 9 Pages 094426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of the spatially varying spin current on a skyrmion is numerically investigated. It is shown that an inhomogeneous current density induces an elongation of the skyrmion. This elongation can be controlled using current pulses of different strength and duration. Long current pulses lead to a splitting that forms two replicas of the initial skyrmion while for short pulses the elongated skyrmion relaxes back to its initial circular state through rotation in the MHz-GHz frequency range. The frequency is dependent on the strength of the damping coefficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704236000002 Publication Date 2021-09-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:182467 Serial 7018
Permanent link to this record
 

 
Author Osca, J.; Sorée, B.
Title (up) Skyrmion spin transfer torque due to current confined in a nanowire Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 12 Pages 125436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this work we compute the torque field present in a ferromagnet in contact with a metallic nanowire when a skyrmion is present. If the nanowire is narrow enough, then the current is carried by a single conduction band. In this regime the classical torque model breaks down and we show that a skyrmion driven by spin transfer torque moves in a different direction than predicted by the classical model. However, the amount of charge current required to move a skyrmion with a certain velocity in the single-band regime is similar to a classical model of torque where it is implicitly assumed current transport by many conduction bands. The single-band regime is more efficient creating spin current from charge current because of the perfect polarization of the single band but is less efficient creating torque from spin current. Nevertheless, it is possible to take profit of the single-band regime to move skyrmions even with no net charge or spin current flowing between the device contacts. We have also been able to recover the classical limit considering an ensemble of only a few electronic states. In this limit we have discovered that electron diffusion needs to be considered even in ballistic nanowires due the effect of the skyrmion structure on the electron current.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000573775300004 Publication Date 2020-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes ; The authors thanks Llorenc Serra for useful discussion on the conduction electron quantum model. We also want to show gratitude to Dimitrios Andrikopoulos for sharing his knowledge about the available bibliography and to F. J. P. van Duijn for his comments on earlier versions of this manuscript. We acknowledge the Horizon 2020 project SKYTOP “Skyrmion-Topological Insulator and Weyl Semimetal Technology” (FETPROACT-2018-01, No. 824123). Finally, J.O. also acknowledges the postdoctoral fellowship provided by KU Leuven. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:172727 Serial 6604
Permanent link to this record
 

 
Author Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.
Title (up) Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 6 Pages 064501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510745600005 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 7 Open Access
Notes ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:166507 Serial 6605
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M., Jr.; Peeters, F.M.; Farias, G.A.
Title (up) Snake states in graphene quantum dots in the presence of a p-n junction Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the magnetic interface states of graphene quantum dots that contain p-n junctions. Within a tight-binding approach, we consider rectangular quantum dots in the presence of a perpendicular magnetic field containing p-n as well as p-n-p and n-p-n junctions. The results show the interplay between the edge states associated with the zigzag terminations of the sample and the snake states that arise at the p-n junction due to the overlap between electron and hole states at the potential interface. Remarkable localized states are found at the crossing of the p-n junction with the zigzag edge having a dumb-bell-shaped electron distribution. The results are presented as a function of the junction parameters and the applied magnetic flux. DOI: 10.1103/PhysRevB.87.035426
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000313941000003 Publication Date 2013-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 16 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110087 Serial 3048
Permanent link to this record
 

 
Author Komendová, L.; Milošević, M.V.; Peeters, F.M.
Title (up) Soft vortex matter in a type-I/type-II superconducting bilayer Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 9 Pages 094515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnetic flux patterns are known to strongly differ in the intermediate state of type-I and type-II superconductors. Using a type-I/type-II bilayer we demonstrate hybridization of these flux phases into a plethora of unique new ones. Owing to a complicated multibody interaction between individual fluxoids, many different intriguing patterns are possible under applied magnetic field, such as few-vortex clusters, vortex chains, mazes, or labyrinthal structures resembling the phenomena readily encountered in soft-matter physics. However, in our system the patterns are tunable by sample parameters, magnetic field, current, and temperature, which reveals transitions from short-range clustering to long-range ordered phases such as parallel chains, gels, glasses, and crystalline vortex lattices, or phases where lamellar type-I flux domains in one layer serve as a bedding potential for type-II vortices in the other, configurations clearly beyond the soft-matter analogy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324689900008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). Insightful discussions with Arkady Shanenko and Edith Cristina Euan Diaz are gratefully acknowledged. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111167 Serial 3050
Permanent link to this record
 

 
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A.
Title (up) Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 22 Pages 224409-224412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823038900004 Publication Date 2022-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189671 Serial 7209
Permanent link to this record
 

 
Author Michel, K.H.; Scuracchio, P.; Peeters, F.M.
Title (up) Sound waves and flexural mode dynamics in two-dimensional crystals Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 9 Pages 094302
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from a Hamiltonian with anharmonic coupling between in-plane acoustic displacements and outof-plane (flexural) modes, we derived coupled equations of motion for in-plane displacements correlations and flexural mode density fluctuations. Linear response theory and time-dependent thermal Green's functions techniques are applied in order to obtain different response functions. As external perturbations we allow for stresses and thermal heat sources. The displacement correlations are described by a Dyson equation where the flexural density distribution enters as an additional perturbation. The flexural density distribution satisfies a kinetic equation where the in-plane lattice displacements act as a perturbation. In the hydrodynamic limit this system of coupled equations is at the basis of a unified description of elastic and thermal phenomena, such as isothermal versus adiabatic sound motion and thermal conductivity versus second sound. The general theory is formulated in view of application to graphene, two-dimensional h-BN, and 2H-transition metal dichalcogenides and oxides.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000409246200003 Publication Date 2017-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145630 Serial 4751
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title (up) Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Szafran, B.; Peeters, F.M.; Bednarek, S.; Chwiej, T.; Adamowski, J.
Title (up) Spatial ordering of charge and spin in quasi-one-dimensional Wigner molecules Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 035401,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222996700089 Publication Date 2004-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69390 Serial 3063
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M.
Title (up) Spectral properties of classical two-dimensional clusters Type A1 Journal article
Year 1995 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 51 Issue Pages 7700-7713
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995QQ59800034 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 237 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:12198 Serial 3072
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.
Title (up) Spectrum of exciton states in monolayer transition metal dichalcogenides : angular momentum and Landau levels Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A four-band exciton Hamiltonian is constructed starting from the single-particle Dirac Hamiltonian for charge carriers in monolayer transition metal dichalcogenides (TMDs). The angular part of the exciton wave function can be separated from the radial part, in the case of zero center of mass momentum excitons, by exploiting the eigenstates of the total exciton angular momentum operator with which the Hamiltonian commutes. We explain why this approach fails for excitons with finite center of mass momentum or in the presence of a perpendicular magnetic field and present an approximation to resolve this issue. We calculate the (binding) energy and average interparticle distance of different excited exciton states in different TMDs and compare these with results available in the literature. Remarkably, we find that the intervalley exciton ground state in the -/+ K valley has angular momentum j = +/- 1, which is due to the pseudospin of the separate particles. The exciton mass and the exciton Landau levels are calculated and we find that the degeneracy of exciton states with opposite relative angular momentum is altered by a magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000462896400004 Publication Date 2019-03-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access
Notes ; This work was supported by the Research Foundation of Flanders (FWO-Vl) through an aspirant research grant for MVDD and by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:159406 Serial 5230
Permanent link to this record
 

 
Author Van Duppen, B.; Vasilopoulos, P.; Peeters, F.M.
Title (up) Spin and valley polarization of plasmons in silicene due to external fields Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 3 Pages 035142
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of the two-dimensional material silicene are strongly influenced by the application of a perpendicular electric field E-z and of an exchange field M due to adatoms positioned on the surface or a ferromagnetic substrate. Within the random phase approximation, we investigate how electron-electron interactions are affected by these fields and present analytical and numerical results for the dispersion of plasmons, their lifetime, and their oscillator strength. We find that the combination of the fields E-z and M brings a spin and valley texture to the particle-hole excitation spectrum and allows the formation of spin-and valley-polarized plasmons. When the Fermi level lies in the gap of one spin in one valley, the intraband region of the corresponding spectrum disappears. For zero E-z and finite M the spin symmetry is broken and spin polarization is possible. The lifetime and oscillator strength of the plasmons are shown to depend strongly on the number of spin and valley type electrons that form the electron-hole pairs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000339974700001 Publication Date 2014-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 49 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl) by an aspirant grant to B.V.D., the Methusalem Foundation of the Flemish Government, and by the Canadian NSERC Grant No. OGP0121756. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:118776 Serial 3080
Permanent link to this record
 

 
Author Tsirlin, A.A.; Shpanchenko, R.V.; Antipov, E.V.; Bougerol, C.; Hadermann, J.; Van Tendeloo, G.; Schnelle, W.; Rosner, H.
Title (up) Spin ladder compound Pb0.55Cd0.45V2O5: synthesis and investigation Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 10 Pages 104429,1-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249786300074 Publication Date 2007-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:65594 Serial 3091
Permanent link to this record
 

 
Author Papp, G.; Vasilopoulos, P.; Peeters, F.M.
Title (up) Spin polarization in a two-dimensional electron gas modulated periodically by ferromagnetic and Schottky metal stripes Type A1 Journal article
Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 72 Issue Pages 115315,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000232229100096 Publication Date 2005-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 51 Open Access
Notes Approved Most recent IF: 3.836; 2005 IF: 3.185
Call Number UA @ lucian @ c:irua:69415 Serial 3095
Permanent link to this record