|   | 
Details
   web
Records
Author Schryvers, D.; Van Tendeloo, G.; van Landuyt, J.; Amelinckx, S.
Title (down) Some examples of electron microscopy studies of microstructures and phase transitions in solids Type A1 Journal article
Year 1995 Publication Meccanica Abbreviated Journal Meccanica
Volume 30 Issue Pages 433-438
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Milano Editor
Language Wos A1995TD08800003 Publication Date 2005-04-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-6455;1572-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.949 Times cited 1 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:13170 Serial 3054
Permanent link to this record
 

 
Author Shi, H.; Frenzel, J.; Martinez, G.T.; Van Rompaey, S.; Bakulin, A.; Kulkova, A.; Van Aert, S.; Schryvers, D.
Title (down) Site occupation of Nb atoms in ternary Ni-Ti-Nb shape memory alloys Type A1 Journal article
Year 2014 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 74 Issue Pages 85-95
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nb occupancy in the austenite B2-NiTi matrix and Ti2Ni phase in NiTiNb shape memory alloys was investigated by aberration-corrected scanning transmission electron microscopy and precession electron diffraction. In both cases, Nb atoms were found to prefer to occupy the Ti rather than Ni sites. A projector augmented wave method within density functional theory was used to calculate the atomic and electronic structures of the austenitic B2-NiTi matrix phase and the Ti2Ni precipitates both with and without addition of Nb. The obtained formation energies and analysis of structural and electronic characteristics explain the preference for Ti sites for Nb over Ni sites.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338621400009 Publication Date 2014-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 21 Open Access
Notes Approved Most recent IF: 5.301; 2014 IF: 4.465
Call Number UA @ lucian @ c:irua:118334 Serial 3028
Permanent link to this record
 

 
Author Yang, M.; Orekhov, A.; Hu, Z.-Y.; Feng, M.; Jin, S.; Sha, G.; Li, K.; Samaee, V.; Song, M.; Du, Y.; Van Tendeloo, G.; Schryvers, D.
Title (down) Shearing and rotation of β'' and β' precipitates in an Al-Mg-Si alloy under tensile deformation : in-situ and ex-situ studies Type A1 Journal article
Year 2021 Publication Acta Materialia Abbreviated Journal Acta Mater
Volume 220 Issue Pages 117310
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The interaction between dislocations and nano-precipitates during deformation directly influences hardening response of precipitation-strengthening metals such as Al-Mg-Si alloys. However, how coherent and semi-coherent nano-precipitates accommodate external deformation applied to an Al alloy remains to be elucidated. In-situ tensile experiments in a transmission electron microscope (TEM) were conducted to study the dynamic process of dislocations cutting through coherent needle-like beta '' precipitates with diameters of 3 similar to 8 nm. Comprehensive investigations using in-situ, ex-situ TEM and atom probe tomography uncovered that beta '' precipitates were firstly sheared into small fragments, and then the rotation of the fragments, via sliding along precipitate/matrix interfaces, destroyed their initially coherent interface with the Al matrix. In contrast, semi-coherent beta' precipitates with sizes similar to beta '' were more difficult to be fragmented and accumulation of dislocations at the interface increased interface misfit between beta' and the Al matrix. Consequently, beta' precipitates could basically maintain their needle-like shape after the tensile deformation. This research gains new insights into the interaction between nano-precipitates and dislocations. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000705535300005 Publication Date 2021-09-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ admin @ c:irua:182528 Serial 6884
Permanent link to this record
 

 
Author Schryvers, D.
Title (down) SAED and HREM results suggest a NiTi B19' based superstructure for CuZr martensite Type A1 Journal article
Year 1995 Publication Journal de physique: colloques, suppléments Abbreviated Journal
Volume 5 Issue 8 Pages 1047-1052
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos A1995TX21300085 Publication Date 2014-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:13168 Serial 2939
Permanent link to this record
 

 
Author Idrissi, H.; Amin-Ahmadi, B.; Wang, B.; Schryvers, D.
Title (down) Review on TEM analysis of growth twins in nanocrystalline palladium thin films : toward better understanding of twin-related mechanisms in high stacking fault energy metals Type A1 Journal article
Year 2014 Publication Physica status solidi: B: basic research Abbreviated Journal Phys Status Solidi B
Volume 251 Issue 6 Pages 1111-1124
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Various modes of transmission electron microscopy including aberration corrected imaging were used in order to unravel the fundamental mechanisms controlling the formation of growth twins and the evolution of twin boundaries under mechanical and hydrogen loading modes in nanocrystalline (nc) palladium thin films. The latter were produced by electron-beam evaporation and sputter deposition and subjected to uniaxial tensile deformation as well as hydriding/dehydriding cycles. The results show that the twins form by dissociation of grain boundaries. The coherency of Σ3{111} coherent twin boundaries considerably decreases with deformation due to dislocation/twin boundary interactions while Σ3{112} incoherent twin boundaries dissociate under hydrogen cycling into two-phase boundaries bounding a new and unstable 9R phase. The effect of these elementary mechanisms on the macroscopic behavior of the palladium films is discussed and compared to recent experimental and simulation works in the literature. The results provide insightful information to guide the production of well-controlled population of growth twins in high stacking fault energy nc metallic thin films. The results also indicate directions for further enhancement of the mechanical properties of palladium films as needed for instance in palladium-based membranes in hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000337608600001 Publication Date 2014-02-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.674 Times cited 7 Open Access
Notes Iap P7/21; Fwo G012012n Approved Most recent IF: 1.674; 2014 IF: 1.489
Call Number UA @ lucian @ c:irua:114580 Serial 2905
Permanent link to this record
 

 
Author Tanner, L.E.; Shapiro, S.M.; Schryvers, D.; Noda, Y.
Title (down) Review of phonon behaviour and microstructural development leading to martensitic transformations in NixAl100-x alloys Type A3 Journal article
Year 1992 Publication Shape memory materials and phenomena: fundamental aspects and applications Abbreviated Journal
Volume 246 Issue Pages 265-276
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992BW94E00038 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:4368 Serial 2904
Permanent link to this record
 

 
Author Gaouyat, L.; He, Z.; Colomer, J.-F.; Lambin, P.; Mirabella, F.; Schryvers, D.; Deparis, O.
Title (down) Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets Type A1 Journal article
Year 2014 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C
Volume 122 Issue Pages 303-308
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Conversion of solar energy into thermal energy helps reducing consumption of non-renewable energies. Cermets (ceramicmetal composites) are versatile materials suitable, amongst other applications, for solar selective absorbers. Although the presence of metallic Ni particles in the dielectric matrix is a prerequisite for efficient solar selective absorption in NiCrOx cermets, no clear evidence of such particles is reported so far. By combining comprehensive chemical and structural analyses, we reveal the presumed nanostructure which is at the origin of the remarkable optical properties of this cermet material. Using sputtered NiCrOx layers in a solar absorber multilayer stack on aluminium substrate allows us to achieve solar absorptance as high as α=96.1% while keeping thermal emissivity as low as ε=2.2%, both values being comparable to best values recorded so far. With the nanostructure of sputtered NiCrOx cermets eventually revealed, further optimization of solar absorbers can be anticipated and technological exploitation of cermet materials in other applications can be foreseen.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000331494200040 Publication Date 2013-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.784 Times cited 12 Open Access
Notes Approved Most recent IF: 4.784; 2014 IF: 5.337
Call Number UA @ lucian @ c:irua:113086 Serial 2902
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Cordier, P.; Demouchy, S.; Bollinger, C.; Gasc, J.; Mussi, A.; Schryvers, D.; Idrissi, H.
Title (down) Research data supporting for Stress-induced amorphization triggers deformation in the lithospheric mantle Type Dataset
Year 2020 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:180668 Serial 6881
Permanent link to this record
 

 
Author Zelaya, E.; Schryvers, D.
Title (down) Reducing the formation of FIB-induced FCC layers on Cu-Zn-Al austenite Type A1 Journal article
Year 2011 Publication Microscopy research and technique Abbreviated Journal Microsc Res Techniq
Volume 74 Issue 1 Pages 84-91
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The irradiation effects of thinning a sample of a Cu-Zn-Al shape memory alloy to electron transparency by a Ga+ focused ion beam were investigated. This thinning method was compared with conventional electropolishing and Ar+ ion milling. No implanted Ga was detected but surface FCC precipitation was found as a result of the focused ion beam sample preparation. Decreasing the irradiation dose by lowering the energy and current of the Ga+ ions did not lead to a complete disappearance of the FCC structure. The latter could only be removed after gentle Ar+ ion milling of the sample. It was further concluded that the precipitation of the FCC is independent of the crystallographic orientation of the surface.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000285976000012 Publication Date 2010-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1059-910X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.147 Times cited 2 Open Access
Notes Approved Most recent IF: 1.147; 2011 IF: 1.792
Call Number UA @ lucian @ c:irua:85994 Serial 2852
Permanent link to this record
 

 
Author Samajdar, I.; Ratchev, P.; Verlinden, B.; Schryvers, D.
Title (down) Recrystallization and grain growth in a B2 iron aluminide alloy Type A1 Journal article
Year 1998 Publication Intermetallics Abbreviated Journal Intermetallics
Volume 6 Issue Pages 419-425
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Chicago, Ill. Editor
Language Wos 000074235500009 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0966-9795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.14 Times cited 17 Open Access
Notes Approved Most recent IF: 3.14; 1998 IF: 1.785
Call Number UA @ lucian @ c:irua:48366 Serial 2846
Permanent link to this record
 

 
Author Grieten, E.; Schalm, O.; Tack, P.; Bauters, S.; Storme, P.; Gauquelin, N.; Caen, J.; Patelli, A.; Vincze, L.; Schryvers, D.
Title (down) Reclaiming the image of daguerreotypes: Characterization of the corroded surface before and after atmospheric plasma treatment Type A1 Journal article
Year 2017 Publication Journal of cultural heritage Abbreviated Journal J Cult Herit
Volume Issue Pages
Keywords A1 Journal article; Art; History; Electron microscopy for materials research (EMAT); Antwerp Cultural Heritage Sciences (ARCHES)
Abstract Technological developments such as atmospheric plasma jets for industry can be adapted for the conservation of cultural heritage. This application might offer a potential method for the removal or transformation of the corrosion on historical photographs. We focus on daguerreotypes and present an in-depth study of the induced changes by a multi-analytical approach using optical microscopy, scanning electron microscopy, different types of transmission electron microscopy and X-ray absorption fine structure. The H2-He afterglow removes S from an Ag2S or Cu2S layer which results in a nano-layer of metallic Ag or Cu on top of the deteriorated microstructure. In case the corrosion layer is composed of Cu-Ag-S compounds, our proposed setup can be used to partially remove the corrosion. These alterations of the corrosion results in an improvement in the readability of the photographic image.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000414230700007 Publication Date 2017-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1296-2074 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.838 Times cited 9 Open Access Not_Open_Access
Notes The authors thank Herman Maes for the daguerreotypes used in this study. The authors also acknowledge the opportunity to perform XAFS measurements at the DUBBLE beamline of the ESRF storage ring under the approval of the advisory Committee (beam time nr. 26-01-990) and acknowledge the DUBBLE beamline staff for their support. They are also grateful for the financial support by the EU-FP7 grant PANNA no. 282998 and the STIMPRO project FFB150215 of the University of Antwerp. Pieter Tack is funded by a Ph.D. grant of the Agency for Innovation by Science and Technology (IWT). Approved Most recent IF: 1.838
Call Number EMAT @ emat @c:irua:144430 Serial 4625
Permanent link to this record
 

 
Author Schryvers, D.; Cao, S.; Pourbabak; Shi, H.; Lu
Title (down) Recent EM investigations on nano-and micro-defect structures in SMAs Type A1 Journal article
Year 2013 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd
Volume 577 Issue s:[1] Pages S705-S709
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The present contribution reviews some recent electron microscopy investigations on different shape memory systems in which a variety of nano- and micro-defect structures play an essential role in the functional behaviour of the material. (NiTi3)-Ti-4 precipitates in Ni-Ti are a well-known example for which the focus is now on the 3D configurations, in Ni-Ti-Nb Nb-rich nanoprecipitates are thought to have a large impact on the hysteresis, in Co-Ni-Al an Al-enriched zone nearby the y'-precipitates yields a small sandwiched austenite while some first signs of quasidynamical lattice deformation in non-frozen Ni-Ti strain glass are measured by Cs-aberration-corrected transmission electron microscopy. (C) 2011 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Elsevier science sa Place of Publication Lausanne Editor
Language Wos 000329891400146 Publication Date 2011-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0925-8388; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.133 Times cited 7 Open Access
Notes Approved Most recent IF: 3.133; 2013 IF: 2.726
Call Number UA @ lucian @ c:irua:114832 Serial 2839
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
Title (down) Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
Year 2018 Publication Materials Abbreviated Journal Materials
Volume 11 Issue 11 Pages 1304
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000444112800041 Publication Date 2018-07-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.654 Times cited 15 Open Access OpenAccess
Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Wang, X.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title (down) R-phase transition and related mechanical properties controlled by low-temperature aging treatment in a Ti50.8 at.% Ni thin wire Type A1 Journal article
Year 2014 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 72-73 Issue Pages 21-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A cold-drawn Ti50.8 at.% Ni wire was annealed at 600 °C for 30 min, followed by aging at 250 °C for different times. A microstructure with small grains and nanoscaled precipitates was obtained. The thermally induced martensite transformation is suppressed in the samples aged for 4 h or longer, leaving a one-stage R-phase transition between −150 and +150 °C. The transformation behavior, work output and recovery stress associated with the R-phase transition are presented.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000329148500006 Publication Date 2013-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 27 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2014 IF: 3.224
Call Number UA @ lucian @ c:irua:111847 Serial 2806
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.L.
Title (down) R-phase structure refinement using electron diffraction data Type A1 Journal article
Year 2002 Publication Materials transactions Abbreviated Journal Mater Trans
Volume 43 Issue 5 Pages 774-779
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000176212100002 Publication Date 2005-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1345-9678; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.713 Times cited 25 Open Access
Notes Approved Most recent IF: 0.713; 2002 IF: 0.841
Call Number UA @ lucian @ c:irua:48772 Serial 2805
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Li, K.; Lu, Q.; Wang, Y.; Du, Y.; Schryvers, D.
Title (down) Quasicrystalline clusters transformed from C14-MgZn₂ nanoprecipitates in Al alloys Type A1 Journal article
Year 2023 Publication Materials characterization Abbreviated Journal
Volume 199 Issue Pages 112772-112777
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Ultrafine faulty C14-MgZn2 Laves phase precipitates containing quasicrystalline clusters and demonstrating the formation of binary quasicrystalline precipitates with Penrose-like random-tiling were observed in the over-aged FCC matrix of a commercial 7N01 Al-Zn-Mg alloy, using high angle annular dark field scanning transmission electron microscopy. The evolution from C14-Laves phase to quasicrystalline clusters is illustrated, and five-fold symmetry can be found in both real and reciprocal spaces. Our findings reveal the possibility of quasicrystalline formation from Laves phase in a highly plastic metal matrix like Al and demonstrate the structural relationship between Laves phase and quasicrystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000954788800001 Publication Date 2023-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
Call Number UA @ admin @ c:irua:196106 Serial 8446
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title (down) Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1780-1789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000287265100045 Publication Date 2010-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:85533 Serial 2766
Permanent link to this record
 

 
Author Tang, Y.; Chen, Z.; Borbely, A.; Ji, G.; Zhong, S.Y.; Schryvers, D.; Ji, V.; Wang, H.W.
Title (down) Quantitative study of particle size distribution in an in-situ grown Al-TiB2 composite by synchrotron X-ray diffraction and electron microscopy Type A1 Journal article
Year 2015 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 102 Issue 102 Pages 131-136
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Synchrotron X-ray diffraction and transmission electron microscopy (TEM) were applied to quantitatively characterize the average particle size and size distribution of free-standing TiB2 particles and TiB2 particles in an insitu grown Al–TiB2 composite. The detailed evaluations were carried out by X-ray line profile analysis using the restrictedmoment method and multiplewhole profile fitting procedure (MWP). Both numericalmethods indicate that the formed TiB2 particles are well crystallized and free of crystal defects. The average particle size determined from different Bragg reflections by the restricted moment method ranges between 25 and 55 nm, where the smallest particle size is determined using the 110 reflection suggesting the highest lateral-growth velocity of (110) facets. TheMWP method has shown that the in-situ grown TiB2 particles have a very low dislocation density (~1011 m−2) and their size distribution can be described by a log-normal distribution. Good agreement was found between the results obtained from the restricted moment and MWP methods, which was further confirmed by TEM.
Address
Corporate Author Thesis
Publisher Place of Publication New York Editor
Language Wos 000355335200017 Publication Date 2015-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 41 Open Access
Notes This work is financially supported by the National Natural Science Foundation of China (Grant No. 51201099 and No. 51301108) and the China Postdoctoral Science Foundation (Grant No. 2013T60443 and No. 2012M520891). The authors are grateful for the project 2013BB03 supported by NPL, CAEP. Many thanks are also due to the faculty of BL14B beamline at the Shanghai Synchrotron Radiation Facility for their help on synchrotron experiments. Approved Most recent IF: 2.714; 2015 IF: 1.845
Call Number c:irua:126443 Serial 2764
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D.
Title (down) Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
Year 2016 Publication Materials characterization Abbreviated Journal Mater Charact
Volume 118 Issue 118 Pages 352-362
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383292000042 Publication Date 2016-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited 9 Open Access
Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714
Call Number EMAT @ emat @ c:irua:137171 Serial 4334
Permanent link to this record
 

 
Author Salje, E.K.H.; Zhang, H.; Schryvers, D.; Bartova, B.
Title (down) Quantitative Landau potentials for the martensitic transformation in Ni-Al Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue 22 Pages 221903,1-3
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000246909900020 Publication Date 2007-05-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 9 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:64777 Serial 2757
Permanent link to this record
 

 
Author Samaeeaghmiyoni, V.; Idrissi, H.; Groten, J.; Schwaiger, R.; Schryvers, D.
Title (down) Quantitative in-situ TEM nanotensile testing of single crystal Ni facilitated by a new sample preparation approach Type A1 Journal article
Year 2017 Publication Micron Abbreviated Journal Micron
Volume 94 Issue 94 Pages 66-73
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Twin-jet electro-polishing and Focused Ion Beam (FIB) were combined to produce small size Nickel single crystal specimens for quantitative in-situ nanotensile experiments in the transmission electron microscope. The combination of these techniques allows producing samples with nearly defect-free zones in the centre in contrast to conventional FIB-prepared samples. Since TEM investigations can be performed on the electro-polished samples prior to in-situ TEM straining, specimens with desired crystallographic orientation and initial microstructure can be prepared. The present results reveal a dislocation nucleation controlled plasticity, in which small loops induced by FIB near the edges of the samples play a central role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000393247300008 Publication Date 2016-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 11 Open Access OpenAccess
Notes This research has been performed with the financial support of the Belgian Science Policy (Belspo) under the framework of the interuniversity attraction poles program, IAP7/21. Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaeeaghmiyoni also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is currently mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Approved Most recent IF: 1.98
Call Number EMAT @ emat @ c:irua:139515 Serial 4341
Permanent link to this record
 

 
Author Cao, S.; Zeng, C.Y.; Li, Y.Y.; Yao, X.; Ma, X.; Samaee, V.; Schryvers, D.; Zhang, X.P.
Title (down) Quantitative FIB/SEM three-dimensional characterization of a unique Ni₄Ti₃ network in a porous Ni50.8Ti49.2 alloy undergoing a two-step martensitic transformation Type A1 Journal article
Year 2020 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 169 Issue Pages 110595
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional (3D) nanostructure of Ni4Ti3 precipitates in a porous Ni50.8Ti49.2 alloy has been re-constructed by “Slice-and-View” in a Focused Ion Beam/Scanning Electron Microscope (FIB/SEM). The 3D configuration of these precipitates forming a network structure in the B2 austenite matrix has been characterized via 3D visualization and quantitative analysis including volume fraction, skeleton, degree of anisotropy and local thickness. It is found that dense Ni4Ti3 precipitates occupy 54% of the volume in the B2 austenite matrix. Parallel Ni4Ti3 precipitates grow alongside the surface of a micro-pore, yielding an asymmetric structure, while nano voids do not seem to affect the growth of Ni4Ti3 precipitates. The small average local thickness of the precipitates around 60 nm allows their coherency with the matrix, and further induces the R-phase transformation in the matrix. On the other hand, the B2 matrix exhibits a winding and narrow structure with a skeleton of 18.20 mm and a thickness similar to the precipitates. This discontinuous matrix segmented by the Ni4Ti3 network and pores is responsible for the gradual transformation by stalling the martensite propagation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000584353100001 Publication Date 2020-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.7 Times cited Open Access OpenAccess
Notes ; This work was supported by the National Natural Science Foundation of China under Grant Nos. 51401081 and 51571092, the Natural Science Foundation of Guangdong Province through Key Project under Grant No. 2018B0303110012 and General Project under Grant No. 2017A030313323, and China Scholarship Council (CSC). ; Approved Most recent IF: 4.7; 2020 IF: 2.714
Call Number UA @ admin @ c:irua:173547 Serial 6590
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.; Jorissen, K.; Lamoen, D.
Title (down) Quantitative determination of the crystal structure of Ni4Ti3 precipitates Type A1 Journal article
Year 2006 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 438 Issue Pages 517-520
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000242900900112 Publication Date 2006-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 7 Open Access
Notes Mrtn-Ct-2004-505226 Approved Most recent IF: 3.094; 2006 IF: 1.490
Call Number UA @ lucian @ c:irua:61577 Serial 2752
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D.
Title (down) Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi Type A1 Journal article
Year 2005 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 53 Issue 4 Pages 1041-1049
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000226774500014 Publication Date 2004-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 97 Open Access
Notes Approved Most recent IF: 5.301; 2005 IF: 3.430
Call Number UA @ lucian @ c:irua:55686 Serial 2750
Permanent link to this record
 

 
Author Cao, S.; Pourbabak, S.; Schryvers, D.
Title (down) Quantitative 3-D morphologic and distributional study of Ni4Ti3 precipitates in a Ni51Ti49 single crystal alloy Type A1 Journal article
Year 2012 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 66 Issue 9 Pages 650-653
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The size, shape and distribution of Ni4Ti3 precipitates in Ni51Ti49 single crystals annealed under stress-free and 〈1 1 1〉B2 compressive conditions are studied via focused ion beam/scanning electron microscopy slice-and-view. The precipitates in the stress-free material grow in autocatalytic pockets with larger size, lower number density, flatter shape and larger inter-particle distance than in the compressed material. Nevertheless, a new quantification method called water penetration reveals that, due to the precipitate alignment, martensite can grow more easily in the compressed material perpendicular to the compression direction.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000302425100010 Publication Date 2012-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 8 Open Access
Notes Fwo Approved Most recent IF: 3.747; 2012 IF: 2.821
Call Number UA @ lucian @ c:irua:97387 Serial 2743
Permanent link to this record
 

 
Author Yang, M.; Chen, H.; Orekhov, A.; Lu, Q.; Lan, X.; Li, K.; Zhang, S.; Song, M.; Kong, Y.; Schryvers, D.; Du, Y.
Title (down) Quantified contribution of β″ and β′ precipitates to the strengthening of an aged Al–Mg–Si alloy Type A1 Journal article
Year 2020 Publication Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 774 Issue Pages 138776
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract It is generally believed that β00 precipitates, rather than β0 precipitates, are the major strengthening precipitates in

aged Al–Mg–Si alloys. The reason for this difference is not well understood. To clarify this, two samples of the

same Al–Mg–Si alloy but with different aging states were prepared. The under-aged sample only contains nanoprecipitates

of the β00 type, while the peak-aged one contains nearly equal volumes of β00 and β0 precipitates. We

have, for the first time, separated the strengthening effect of the contribution from βʺ and βʹ precipitates,

respectively, by an indirect approach based on high-precision measurements of volume fractions, number densities,

sizes, proportions of the precipitates, their lattice strains, the composition and grain size of the matrix. The

β0 precipitates, which take 45.6% of the total precipitate volume in the peak-aged sample, contribute to the entire

precipitation strengthening by only 31.6%. The main reason why they are less useful compared to β00 precipitates

has been found to be associated with their smaller lattice strains relative to the matrix, which is 0.99% versus

2.10% (for β00 ).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000514747200001 Publication Date 2019-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China, 51531009 51711530713 51501230 ; Central South University, 2018gczd033 ; Flemish Science Foundation, VS.026.18N ; Program for Guangdong Introducing Innovative and Entrepreneurial Teams, 2016ZT06G025 ; Guangdong Natural Science Foundation, 2017B030306014 ; Approved Most recent IF: 6.4; 2020 IF: 3.094
Call Number EMAT @ emat @c:irua:165290 Serial 5440
Permanent link to this record
 

 
Author Schryvers, D.; Salje, E.K.H.; Nishida, M.; De Backer, A.; Idrissi, H.; Van Aert, S.
Title (down) Quantification by aberration corrected (S)TEM of boundaries formed by symmetry breaking phase transformations Type A1 Journal article
Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 176 Issue Pages 194-199
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403992200026 Publication Date 2017-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 1 Open Access OpenAccess
Notes The authors acknowledge financial support from the Fund for Scientific Research-Flanders (G.0064.10N, G.0393.11N, G.0374.13N, G.0368.15N, G.0369.15N) and the Flemish Hercules 3 program for large infrastructure as well as financial support from the European Union Seventh Framework Programme (FP7/2007 – 2013) under Grant agreement no. 312483 (ESTEEM2). EKHS thanks EPSRC (EP/ K009702/1) and the Leverhulme trust (EM-2016-004) for support. DS and MN acknowledge financial support from the Japan Society for the Promotion of Science (JSPS, Japan) through the Grant-in-Aid for Scientific Research (A: No. 26249090) and the Strategic Young Researcher Overseas Visits Program for Accelerating Brain Circulation (R2408). Approved Most recent IF: 2.843
Call Number EMAT @ emat @c:irua:149654 Serial 4914
Permanent link to this record
 

 
Author Somsen, C.; Wassermann, E.F.; Kästner, J.; Schryvers, D.
Title (down) Precursor phenomena in a quenched and aged Ni52Ti48 shape memory alloy Type A1 Journal article
Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv
Volume 112 Issue Part 2 Pages 777-780
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We measured the electrical resistivity R(T) and specific heat C-p(T) between room temperature (RT) and 4.2 K as well as the microstructure by transmission electron microscopy (TEM) of a Ni-52 Ti-48 SMA quenched from 1000degreesC (B2-Phase range) to RT and then annealed for 1h at T=380degreesC, 550degreesC and 650degreesC. In the “as quenched” and the “650degreesC annealed” state no martensitic transformations (MT's) occur. The diffraction patterns show faint reflections originating from coherent Ni4Ti3 precipitates in an early state of formation. Additional reflections of the type 1/2 <110>, 1/2 <111> and 1/3 <110> result from various lattice displacement waves, which are precursors of the MT's to the B19' and R-phase, respectively. Indeed, high resolution TEM micrographs of the [001] zone of the “as quenched” sample reveal transverse 1/2 <110> <110> lattice displacement waves, precursors of the B19' martensite. The coherent Ni4Ti3 precipitates, homogeneously distributed on a small length scale, binder the MT's in the “as quenched” and the “650degreesC annealed” state, and thus only the precursors appear. When annealed at T=380degreesC, however, coherent Ni4Ti3 precipitates with a length of 10nm are clearly visible in TEM. These precipitates trigger the NIT from the B2 to the R-phase on cooling, as evidenced also by anomalies in R(T) and C-p(T). Annealing at T-550degreesC leads to the well known two step MT's from the B2 to the R-phase and then into the B19'-phase. These martensitic transitions are clearly seen as additional peaks in the specific heat and anomalies in the resistance, while the “as quenched” and 650degreesC annealed samples show weak features in R(T) and C-p(T).
Address
Corporate Author Thesis
Publisher Place of Publication Les Ulis Editor
Language Wos 000186503400036 Publication Date 2008-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 2 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102791 Serial 2694
Permanent link to this record
 

 
Author Akamine, H.; Mitsuhara, M.; Nishida, M.; Samaee, V.; Schryvers, D.; Tsukamoto, G.; Kunieda, T.; Fujii, H.
Title (down) Precipitation behaviors in Ti-2.3 Wt Pct Cu alloy during isothermal and two-step aging Type A1 Journal article
Year 2021 Publication Metallurgical And Materials Transactions A-Physical Metallurgy And Materials Science Abbreviated Journal Metall Mater Trans A
Volume 52 Issue Pages 2760-2772
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Time evolution of precipitates related to age-hardening in Ti-2.3 wt pct Cu alloys was investigated by electron microscopy. In isothermal aging at 723 K, the hardness increases continuously owing to precipitation strengthening, whereas in two-step aging where the aging temperature is switched from 673 K to 873 K after 100 hours, the hardness is found to drastically drop after the aging temperature switches. In isothermal aging, metastable and stable precipitates are independently nucleated, whereas characteristic V-shaped clusters of precipitates are observed during the two-step aging. It is revealed by atomic-scale observations that the V-shaped clusters are composed of metastable and stable precipitates and each type of precipitate has a different orientation relationship with the alpha phase: (10 (3) over bar)//(0001)(alpha) and [0 (1) over bar0]//respectively. The drop in hardness during two-step aging can be explained by a synergistic effect of decreased precipitation strengthening and solid solution strengthening. (C) The Minerals, Metals & Materials Society and ASM International 2021
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000644823000001 Publication Date 2021-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1073-5623 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.874 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 1.874
Call Number UA @ admin @ c:irua:178222 Serial 6786
Permanent link to this record
 

 
Author Kuriplach, J.; van Petegem, S.; Hou, M.; Van Tendeloo, G.; Schryvers, D.; et al.
Title (down) Positron annihilation study of nanocrystalline Ni3Al : simulations and measurements Type A1 Journal article
Year 2001 Publication Materials science forum T2 – 12th International Conference on Positron Annihilation (ICPA-12), AUG 06-12, 2000, UNIV BUNDERSWEHR MUNCHEN, NEUBIBERG, GERMANY Abbreviated Journal
Volume 363-3 Issue Pages 94-96
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A positron lifetime experiment is performed on samples produced by the compaction of nanocrystalline Ni3Al powder synthesized by the inert-gas condensation technique. In the lifetime spectrum we observe two components corresponding to defects. Computer (virtual) samples of n-Ni3Al are obtained using molecular dynamics combined with the Metropolis Monte Carlo technique. Positron lifetime calculations are then performed on selected regions of simulated samples. For this purpose, a new computational technique based on a generalization of the atomic superposition method for non-periodic systems was developed. Lifetimes calculated in this way are compared to experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-87849-875-3 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:102865 Serial 2681
Permanent link to this record