|   | 
Details
   web
Records
Author Van Aert, S.; Turner, S.; Delville, R.; Schryvers, D.; Van Tendeloo, G.; Salje, E.K.H.
Title (up) Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy Type A1 Journal article
Year 2012 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 24 Issue 4 Pages 523-527
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract High-resolution aberration-corrected transmission electron microscopy aided by statistical parameter estimation theory is used to quantify localized displacements at a (110) twin boundary in orthorhombic CaTiO3. The displacements are 36 pm for the Ti atoms and confined to a thin layer. This is the first direct observation of the generation of ferroelectricity by interfaces inside this material which opens the door for domain boundary engineering.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000299156400011 Publication Date 2011-12-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 150 Open Access
Notes Fwo Approved Most recent IF: 19.791; 2012 IF: 14.829
Call Number UA @ lucian @ c:irua:94110 Serial 717
Permanent link to this record
 

 
Author Gonnissen, J.; Batuk, D.; Nataf, G.F.; Jones, L.; Abakumov, A.M.; Van Aert, S.; Schryvers, D.; Salje, E.K.H.
Title (up) Direct Observation of Ferroelectric Domain Walls in LiNbO3: Wall-Meanders, Kinks, and Local Electric Charges Type A1 Journal article
Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 26 Issue 26 Pages 7599-7604
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Direct observations of the ferroelectric domain boundaries in LiNbO3 are performed using high-resolution high-angle annular dark field scanning transmission electron microscopy imaging, revealing a very narrow width of the domain wall between the 180° domains. The domain walls demonstrate local side-way meandering, which results in inclinations even when the overall wall orientation follows the ferroelectric polarization. These local meanders contain kinks with “head-to-head” and “tail-to-tail” dipolar configurations and are therefore locally charged. The charged meanders are confined to a few cation layers along the polarization direction and are separated by longer stretches of straight domain walls.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388166700006 Publication Date 2016-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 23 Open Access
Notes J.G. acknowledges the support from the Research Foundation Flanders (FWO, Belgium) through various project fundings (G.0368.15N, G.0369.15N, and G.0374.13N), as well as the financial support from the European Union Seventh Framework Program (FP7/2007–2013) under Grant agreement no. 312483 (ESTEEM2). The authors thank J. Hadermann for useful suggestions on the interpretation of the HAADFSTEM images. E.K.H.S. thanks the EPSRC (EP/K009702/1) and the Leverhulme Trust (EM-2016-004) for support. G.F.N. thanks the National Research Fund, Luxembourg (FNR/P12/4853155/Kreisel) for support.; esteem2_jra2 Approved Most recent IF: 12.124
Call Number c:irua:135336 c:irua:135336 Serial 4129
Permanent link to this record
 

 
Author Yang, T.; Kong, Y.; Du, Y.; Li, K.; Schryvers, D.
Title (up) Discovery of core-shell quasicrystalline particles Type A1 Journal article
Year 2023 Publication Scripta materialia Abbreviated Journal
Volume 222 Issue Pages 115040-115046
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Submicron-sized quasicrystalline particles were obtained in an Al-Zn-Mg-Cu alloy produced by traditional melting. These particles consist of an Al-Fe-Ni core and a Mg-Cu-Zn shell and were found to be stable and embedded randomly in the Al matrix. The diffraction patterns of these core-shell particles reveal a decagonal core and an icosahedral shell with, respectively, ten- and five-fold axes aligned. High resolution scanning transmission electron microscopy of the Mg-Cu-Zn shell confirms the five-fold symmetry atomic arrangement and the icosahedral structure. It can therefore be concluded that Fe and Ni impurities play an important role in mediating the formation of such an unusual ternary core-shell quasicrystalline particle. These findings provide some novel insights in the formation of quasicrystals in traditional industrial Al alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000864491400005 Publication Date 2022-09-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6; 2023 IF: 3.747
Call Number UA @ admin @ c:irua:191489 Serial 7144
Permanent link to this record
 

 
Author Samaee, V.; Gatti, R.; Devincre, B.; Pardoen, T.; Schryvers, D.; Idrissi, H.
Title (up) Dislocation driven nanosample plasticity: new insights from quantitative in-situ TEM tensile testing Type A1 Journal Article
Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 1 Pages 12012
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Intrinsic dislocation mechanisms in the vicinity of free surfaces of an almost FIB damage-free single crystal Ni sample have been quantitatively investigated owing to a novel sample preparation method combining twin-jet electro-polishing, in-situ TEM heating and FIB. The results reveal that the small-scale plasticity is mainly controlled by the conversion of few tangled dislocations, still present after heating, into stable single arm sources (SASs) as well as by the successive operation of these sources. Strain hardening resulting from the operation of an individual SAS is reported and attributed to the decrease of the length of the source. Moreover, the impact of the shortening of the dislocation source on the intermittent plastic flow, characteristic of SASs, is discussed. These findings provide essential information for the understanding of the regime of ‘dislocation source’ controlled plasticity and the related mechanical size effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000460200900001 Publication Date 2018-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited 9 Open Access Not_Open_Access
Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N and SCHW855/5-1, respectively, is gratefully acknowledged. V. Samaee also acknowledges the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). Dr. Ruth Schwaiger is acknowledged for providing the Ni foils used to prepare the in-situ TEM tensile specimens. Approved Most recent IF: 4.259
Call Number EMAT @ emat @c:irua:155772 Serial 5136
Permanent link to this record
 

 
Author Samaee, V.; Sandfeld, S.; Idrissi, H.; Groten, J.; Pardoen, T.; Schwaiger, R.; Schryvers, D.
Title (up) Dislocation structures and the role of grain boundaries in cyclically deformed Ni micropillars Type A1 Journal article
Year 2020 Publication Materials Science And Engineering A-Structural Materials Properties Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 769 Issue Pages 138295
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Transmission electron microscopy and finite element-based dislocation simulations were combined to study the development of dislocation microstructures after cyclic deformation of single crystal and bicrystal Ni micropillars oriented for multi-slip. A direct correlation between large accumulation of plastic strain and the presence of dislocation cell walls in the single crystal micropillars was observed, while the presence of the grain boundary hampered the formation of wall-like structures in agreement with a smaller accumulated plastic strain. Automated crystallographic orientation and nanostrain mapping using transmission electron microscopy revealed the presence of lattice heterogeneities associated to the cell walls including long range elastic strain fields. By combining the nanostrain mapping with an inverse modelling approach, information about dislocation density, line orientation and Burgers vector direction was derived, which is not accessible otherwise in such dense dislocation structures. Simulations showed that the image forces associated with the grain boundary in this specific bicrystal configuration have only a minor influence on dislocation behavior. Thus, the reduced occurrence of “mature” cell walls in the bicrystal can be attributed to the available volume, which is too small to accommodate cell structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000500373800018 Publication Date 2019-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.4 Times cited 1 Open Access OpenAccess
Notes Financial support from the Flemish (FWO) and German Research Foundation (DFG) through the European M-ERA.NET project “FaSS” (Fatigue Simulation near Surfaces) under the grant numbers GA.014.13 N,SCHW855/5-1, and SA2292/2-1 is gratefully acknowledged. V.S. acknowledges the FWO research project G012012 N “Understanding nanocrystalline mechanical behaviour from structural investigations”. H.I. is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). S.S. acknowledges financial support from the European Research Council through the ERC Grant Agreement No. 759419 (MuDiLingo – A Multiscale Dislocation Language for Data- Driven Materials Science). Approved Most recent IF: 6.4; 2020 IF: 3.094
Call Number EMAT @ emat @c:irua:163475 Serial 5371
Permanent link to this record
 

 
Author Colla, M.-S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J.-P.; Schryvers, D.; Pardoen, T.
Title (up) Dislocation-mediated relaxation in nanograined columnar ​palladium films revealed by on-chip time-resolved HRTEM testing Type A1 Journal article
Year 2015 Publication Nature communications Abbreviated Journal Nat Commun
Volume 6 Issue 6 Pages 5922
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on ​palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as ​palladium membranes for hydrogen applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000348742300002 Publication Date 2015-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 34 Open Access
Notes Iap7/21; Fwo G012012n Approved Most recent IF: 12.124; 2015 IF: 11.470
Call Number c:irua:122045 Serial 731
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Connétable, D.; Fivel, M.; Tanguy, D.; Delmelle, R.; Turner, S.; Malet, L.; Godet, S.; Pardoen, T.; Proost, J.; Schryvers, D.; Idrissi, H.
Title (up) Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films Type A1 Journal article
Year 2016 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 111 Issue 111 Pages 253-261
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375812100027 Publication Date 2016-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 14 Open Access
Notes This work was carried out in the framework of the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs, under Contract No. P7/21. The support of the FWO research project G012012N “Understanding nanocrystalline mechanical behaviour from structural investigations” for B. Amin-Ahmadi is also gratefully acknowledged. This work was granted access to the HPC resources of CALMIP (CICT Toulouse, France) under the allocations 2014-p0912 and 2014-p0749. Approved Most recent IF: 5.301
Call Number c:irua:132678 Serial 4054
Permanent link to this record
 

 
Author Muto, S.; Merk, N.; Schryvers, D.; Tanner, L.E.
Title (up) Displacive and diffusive components in the formation of the Ni2Al structure studied by HREM, SAED and micro-ED Type A3 Journal article
Year 1992 Publication Monterey Institute for Advances Studies Abbreviated Journal
Volume Issue Pages 101-106
Keywords A3 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:48355 Serial 739
Permanent link to this record
 

 
Author Muto, S.; Merk, N.; Schryvers, D.; Tanner, L.E.
Title (up) Displacive-replacive phase transformation in a Ni62.5Al37.5 phase studies by HREM and microdiffraction Type A1 Journal article
Year 1993 Publication Philosophical magazine: B: physics of condensed matter: electronic, optical and magnetic properties Abbreviated Journal
Volume 67 Issue 5 Pages 673-689
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structure of the metastable Ni2Al phase, which has long been a matter of controversy, has been carefully re-examined by means of high-resolution transmission electron microscopy (HREM) and electron microdiffraction. First, it is concluded that theas-quenched NixAl100-x(60 less-than-or-equal-to x less-than-or-equal-to 65) material already exhibits a partial omega-type collapse in a one-dimensional fashion which and is consistent with the anomalous dip in the phonon dispersion curve. Ni2Al precipitates are formed on annealing by thermal decomposition of the high-temperature NixAl100-xB2 phase and still retain the small omega-type shuffle. The amount of displacement in the well developed Ni2Al phase was estimated to be between 20 and 50% of the ideal omega collapse; this was determined by means of a combined technique of HREM and microdiffraction together with dynamical calculations of HREM images and diffraction intensities.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos A1993LF72000005 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-2812;1463-6417; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 16 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:6776 Serial 740
Permanent link to this record
 

 
Author Lambrinou, K.; Charalampopoulou, E.; Van der Donck, T.; Delville, R.; Schryvers, D.
Title (up) Dissolution corrosion of 316L austenitic stainless steels in contact with static liquid lead-bismuth eutectic (LBE) at 500 °C Type A1 Journal article
Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater
Volume 490 Issue 490 Pages 9-27
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work addresses the dissolution corrosion behaviour of 316L austenitic stainless steels. For this purpose, solution-annealed and cold-deformed 316L steels were simultaneously exposed to oxygen-poor (<10-8 mass%) static liquid lead-bismuth eutectic (LBE) for 253e3282 h at 500 °C. Corrosion was consistently more severe for the cold-drawn steels than the solution-annealed steel, indicating the importance of the steel thermomechanical state. The thickness of the dissolution-affected zone was nonuniform, and sites of locally-enhanced dissolution were occasionally observed. The progress of LBE dissolution attack was promoted by the interplay of certain steel microstructural features (grain boundaries, deformation twin laths, precipitates) with the dissolution corrosion process. The identified dissolution mechanisms were selective leaching leading to steel ferritization, and non-selective leaching; the latter was mainly observed in the solution-annealed steel. The maximum corrosion rate decreased with exposure time and was found to be inversely proportional to the depth of dissolution attack.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000403132300002 Publication Date 2017-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.048 Times cited 24 Open Access OpenAccess
Notes The authors would like to acknowledge the following 316L stainless steel suppliers: Industeel, ArcelorMittal Group, for the 316LSA plate procured and characterised in the FP6 EUROTRANSDEMETRA project (Contract no. FI6W-CT-2004-516520); OLARRA Aceros Inoxidables, Spain, for the 316LH1 rod; and SIDERO STAAL nv, Belgium, for the 316LH2 rod. K. Lambrinou would like to thank J. Joris for technical support during the launching and follow up of all corrosion tests, J. Lim for the manufacturing and calibration of the oxygen sensors used in these tests, T. Lapauw for the XRD measurements on the pristine steels, and S. Van den Broeck for the FIB sample preparation. Special thanks to S. Gavrilov for fruitful and intense discussions. The authors gratefully acknowledge the funding provided in the framework of the ongoing development of the MYRRHA irradiation facility. The research leading to these results falls within the framework of the European Energy Research Alliance Joint Programme on Nuclear Materials (EERA JPNM). Approved Most recent IF: 2.048
Call Number EMAT @ emat @ c:irua:142644 Serial 4563
Permanent link to this record
 

 
Author Pourbabak, S.; Verlinden, B.; Van Humbeeck, J.; Schryvers, D.
Title (up) DSC cycling effects on phase transformation temperatures of micron and submicron grain Ni50.8Ti49.2 microwires Type A1 Journal article
Year 2020 Publication Shape memory and superelasticity Abbreviated Journal
Volume Issue Pages 1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of thermal cycling parameters on the phase transformation temperatures of micron and submicron grain size recrystallized Ni-Ti microwires was investigated. The suppression of martensitic transformation by thermal cycling was found to enhance when combined with room temperature aging between the cycles and enhances even more when aged at elevated temperature of 100 degrees C. While aging at room temperature alone has no clear effect on the martensitic transformation, elevated temperature aging at 100 degrees C alone suppresses the martensitic transformation. All aforementioned effects were found to be stronger in large grain samples than in small grain samples. Martensitic transformation suppression in all cases was in line with the formation of Ni4Ti3 precursors in the form of < 111 & rang;(B2) Ni clusters as concluded from the observed diffuse intensity in the electron diffraction patterns revealing short-range ordering enhancement. Performing thermal cycling in some different temperature ranges to separate the effect of martensitic transformation and high temperature range of DSC cycling revealed that both high temperature- and martensitic transformation-included cycles enhance the short-range ordering.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000530232800001 Publication Date 2020-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-384x; 2199-3858 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access Not_Open_Access
Notes ; S.P. would like to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:169514 Serial 6492
Permanent link to this record
 

 
Author Peirs, J.; Verleysen, P.; Tirry, W.; Rabet, L.; Schryvers, D.; Degrieck, J.
Title (up) Dynamic shear localization in Ti6Al4V Type P1 Proceeding
Year 2011 Publication Procedia Engineering T2 – 11th International Conference on the Mechanical Behavior of Materials, (ICM), 2011, Como, ITALY (ICM11) Abbreviated Journal
Volume Issue Pages 1-6
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract The alloy Ti6Al4V is known to be prone to the formation of adiabatic shear bands when dynamically loaded in shear. This causes a catastrophic decrease of the load carrying capacity and is usually followed by fracture. Although, the main mechanism is recognized to be the competition between strain hardening and thermal softening, a detailed understanding of the role of microstructural plasticity mechanisms and macroscopic loading conditions does not exist yet. To study strain localization and shear fracture, different high strain rate shear tests have been carried out: compression of hat-shaped specimens, torsion of thin walled tubular specimens and in-plane shear tests. The value of the three techniques in studying shear localization is evaluated. Post-mortem analysis of the fracture surface and the materials' microstructure is performed with optical and electron microscopy. In all cases a ductile fracture is observed. SEM and TEM techniques are used to study the local microstructure and composition in the shear band and as such the driving mechanism for the ASB formation. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300451302060 Publication Date 2011-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume 10 Series Issue Edition
ISSN 1877-7058; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 4 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:113069 Serial 767
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R.
Title (up) Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
Year 2021 Publication Materials Characterization Abbreviated Journal Mater Charact
Volume 178 Issue Pages 111234
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000752582700001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.714 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 2.714
Call Number UA @ admin @ c:irua:186509 Serial 7061
Permanent link to this record
 

 
Author Santamarta, R.; Schryvers, D.
Title (up) Effect of amorphous-crystalline interfaces on the martensitic transformation in Ti50Ni25Cu25 Type A1 Journal article
Year 2004 Publication Scripta materialia Abbreviated Journal Scripta Mater
Volume 50 Issue Pages 1423-1427
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000221009500002 Publication Date 2004-04-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6462; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.747 Times cited 29 Open Access
Notes Approved Most recent IF: 3.747; 2004 IF: 2.112
Call Number UA @ lucian @ c:irua:48379 Serial 795
Permanent link to this record
 

 
Author Srivastava, A.K.; Yang, Z.; Schryvers, D.; van Hurnbeeck, J.
Title (up) Effect of annealing on cold-rolled Ni-Ti alloys Type A1 Journal article
Year 2008 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 481 Issue Si Pages 594-597
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000255716100123 Publication Date 2007-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 8 Open Access
Notes Fwo; G0465.05 Approved Most recent IF: 3.094; 2008 IF: 1.806
Call Number UA @ lucian @ c:irua:69141 Serial 797
Permanent link to this record
 

 
Author Wang, X.; Amin-Ahmadi, B.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title (up) Effect of annealing on the transformation behavior and mechanical properties of two nanostructured Ti-50.8at.%Ni thin wires produced by different methods Type A1 Journal article
Year 2013 Publication Materials science forum Abbreviated Journal
Volume 738/739 Issue Pages 306-310
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A Ti-50.8at.%Ni wire produced using a co-drawing method and a commercial Ti-50.8at.%Ni wire were annealed at different temperatures between 450°C and 700°C. Grains with diameter less than 100nm were revealed by transmission electron microscopy for both wires before annealing treatment. However, the microstructural heterogeneity of the co-drawn wire is more obvious than that of the commercial wire. Multi-stage martensitic transformation was observed in the co-drawn wire, compared with the one-stage A↔M transformation in the commercial wire after annealing at 600°C for 30min. The differences of total elongation, plateau strain and pseudoelastic recoverable strain between the commercial wire and the co-drawn wire were also observed. The differences of the transformation behavior and mechanical properties between the commercial wire and the co-drawn wire are attributed to the microstructural difference between these two wires.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000316089000055 Publication Date 2013-03-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-9752; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 5 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104691 Serial 798
Permanent link to this record
 

 
Author Potapov, P.L.; Jorissen, K.; Schryvers, D.; Lamoen, D.
Title (up) Effect of charge transfer on EELS integrated cross sections in Mn and Ti oxides Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 70 Issue Pages 045106,1-10
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000223053300016 Publication Date 2004-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:47333 Serial 803
Permanent link to this record
 

 
Author Amin-Ahmadi, B.; Idrissi, H.; Galceran, M.; Colla, M.S.; Raskin, J.P.; Pardoen, T.; Godet, S.; Schryvers, D.
Title (up) Effect of deposition rate on the microstructure of electron beam evaporated nanocrystalline palladium thin films Type A1 Journal article
Year 2013 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 539 Issue Pages 145-150
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The influence of the deposition rate on the formation of growth twins in nanocrystalline Pd films deposited by electron beam evaporation is investigated using transmission electron microscopy. Statistical measurements prove that twin boundary (TB) density and volume fraction of grains containing twins increase with increasing deposition rate. A clear increase of the dislocation density was observed for the highest deposition rate of 5 Å/s, caused by the increase of the internal stress building up during deposition. Based on crystallographic orientation indexation using transmission electron microscopy, it can be concluded that a {111} crystallographic texture increases with increasing deposition rate even though the {101} crystallographic texture remains dominant. Most of the TBs are fully coherent without any residual dislocations. However, for the highest deposition rate (5 Å/s), the coherency of the TBs decreases significantly as a result of the interaction of lattice dislocations emitted during deposition with the growth TBs. The analysis of the grain boundary character of different Pd films shows that an increasing fraction of high angle grain boundaries with misorientation angles around 5565° leads to a higher potential for twin formation.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000321111100025 Publication Date 2013-05-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 13 Open Access
Notes Fwo Approved Most recent IF: 1.879; 2013 IF: 1.867
Call Number UA @ lucian @ c:irua:109268 Serial 807
Permanent link to this record
 

 
Author Lumbeeck, G.; Idrissi, H.; Amin-Ahmadi, B.; Favache, A.; Delmelle, R.; Samaee, V.; Proost, J.; Pardoen, T.; Schryvers, D.
Title (up) Effect of hydriding induced defects on the small-scale plasticity mechanisms in nanocrystalline palladium thin films Type A1 Journal Article
Year 2018 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 124 Issue 22 Pages 225105
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract Nanoindentation tests performed on nanocrystalline palladium films subjected to hydriding/dehydriding cycles demonstrate a significant softening when compared to the as-received material. The origin of this softening is unraveled by combining in situ TEM nanomechanical testing with automated crystal orientation mapping in TEM and high resolution TEM. The softening is attributed to the presence of a high density of stacking faults and of Shockley partial dislocations after hydrogen loading. The hydrogen induced defects affect the elementary plasticity mechanisms and the mechanical response by acting as preferential sites for twinning/detwinning during deformation. These results are analyzed and compared to previous experimental and simulation works in the literature. This study provides new insights into the effect of hydrogen on the atomistic deformation and cracking mechanisms as well as on the mechanical properties of nanocrystalline thin films and membranes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000453254000025 Publication Date 2018-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 2 Open Access Not_Open_Access
Notes This work was supported by the Hercules Foundation under Grant No. AUHA13009, the Flemish Research Fund (FWO) under Grant No. G.0365.15N, and the Flemish Strategic Initiative for Materials (SIM) under the project InterPoCo. Dr. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (FSR-FNRS). We would like to thank Dr. Hadi Pirgazi from UGent for his technical support to process the ACOM data in the OIM Analysis software. Approved Most recent IF: 2.068
Call Number EMAT @ emat @c:irua:155742 Serial 5135
Permanent link to this record
 

 
Author Chen, Z.; Tan, Z.; Ji, G.; Schryvers, D.; Ouyang, Q.; Li, Z.
Title (up) Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites Type A1 Journal article
Year 2015 Publication Advanced engineering materials Abbreviated Journal Adv Eng Mater
Volume 17 Issue 17 Pages 1076-1084
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The SiC/Al composites have been fabricated by a vacuum hot pressing (VHP) process in order to study the effect of interface evolution on the global thermal conductivity (TC). By optimizing the VHP parameters of sintering temperature and time, the three different kinds of SiC/Al interface configurations, that is, non-bonded, diffusion-bonded, and reaction-bonded interfaces, are formed and identified by measurement of relative density, X-ray diffraction, scanning and (high-resolution) transmission electron microscopy. The VHPed composite sintered at 655 °C for 60 min is fully dense and presents a tightly-adhered and clean SiC/Al interface at the nanoscale, the ideal diffusion-bonded interface being the most favorable for minimizing interfacial thermal resistance, which in turn results in the highest TC of around 270 W/mK.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000357680700019 Publication Date 2015-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1438-1656; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.319 Times cited 9 Open Access
Notes Approved Most recent IF: 2.319; 2015 IF: 1.758
Call Number c:irua:123000 Serial 818
Permanent link to this record
 

 
Author Wang, X.; Kustov, S.; Li, K.; Schryvers, D.; Verlinden, B.; Van Humbeeck, J.
Title (up) Effect of nanoprecipitates on the transformation behavior and functional properties of a Ti50.8 at.% Ni alloy with micron-sized grains Type A1 Journal article
Year 2015 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 82 Issue 82 Pages 224-233
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract In order to take advantage of both grain refinement and precipitation hardening effects, nanoscaled Ni4Ti3 precipitates are introduced in a Ti50.8 at.% Ni alloy with micron-sized grains (average grain size of 1.7 μm). Calorimetry, electrical resistance studies and thermomechanical tests were employed to study the transformation behavior and functional properties in relation to the obtained microstructure. A significant suppression of martensite transformation by the obtained microstructure is observed. The thermomechanical tests show that the advantageous properties of both grain refinement and precipitation hardening are combined in the developed materials, resulting in superior shape memory characteristics and stability of pseudoelasticity. It is concluded that introducing nanoscaled Ni4Ti3 precipitates into small grains is a new approach to improve the functional properties of NiTi shape memory alloys.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000347017800021 Publication Date 2014-10-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 51 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2015 IF: 4.465
Call Number c:irua:120469 Serial 824
Permanent link to this record
 

 
Author Delmelle, R.; Amin-Ahmadi, B.; Sinnaeve, M.; Idrissi, H.; Pardoen, T.; Schryvers, D.; Proost, J.
Title (up) Effect of structural defects on the hydriding kinetics of nanocrystalline Pd thin films Type A1 Journal article
Year 2015 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 40 Issue 40 Pages 7335-7347
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract While the microstructure of a metal is well-known to affect its equilibrium hydrogen uptake and therefore the hydriding thermodynamics, microstructural effects on the hydriding kinetics are much less documented. Moreover, for thin film systems, such microstructural effects are difficult to separate from the internal stress effect, since most defects generate internal stresses. Such a decoupling has been achieved in this paper for nanocrystalline Pd thin film model systems through the use of a high-resolution, in-situ curvature measurement set-up during Pd deposition, annealing and hydriding. This set-up allowed producing Pd thin films with similar internal stress levels but significantly different microstructures. This was evidenced from detailed defect statistics obtained by transmission electron microscopy, which showed that the densities of grain boundaries, dislocations and twin boundaries have all been lowered by annealing. The same set-up was then used to study the hydriding equilibrium and kinetic behaviour of the resulting films at room temperature. A full quantitative analysis of their hydriding cycles showed that the rate constants of both the adsorption- and absorption-limited kinetic regimes were strongly affected by microstructure. Defect engineering was thereby shown to increase the rate constants for hydrogen adsorption and absorption in Pd by a factor 40 and 30, respectively. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000355884300012 Publication Date 2015-05-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 13 Open Access
Notes Iap 7/21 Approved Most recent IF: 3.582; 2015 IF: 3.313
Call Number c:irua:126429 Serial 838
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Dyck, D.; van Landuyt, J.; de Keyzer, R.
Title (up) Electron diffraction evidence for ordering of interstitial silver ions in silver bromide microcrystals Type A1 Journal article
Year 1994 Publication Icem Abbreviated Journal
Volume 13 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1994BC23W00081 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:10058 Serial 918
Permanent link to this record
 

 
Author Schryvers, D.; Potapov, P.
Title (up) Electron diffraction refinement of the TiNi(Fe) R-phase structure Type A1 Journal article
Year 2003 Publication Journal de physique Abbreviated Journal J Phys Iv
Volume 112 Issue Pages 751-754
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000186503400030 Publication Date 2008-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:48389 Serial 922
Permanent link to this record
 

 
Author Yang, Z.; Tirry, W.; Lamoen, D.; Kulkova, S.; Schryvers, D.
Title (up) Electron energy-loss spectroscopy and first-principles calculation studies on a Ni-Ti shape memory alloy Type A1 Journal article
Year 2008 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 56 Issue 3 Pages 395-404
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000253020900011 Publication Date 2007-12-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 20 Open Access
Notes Goa; Ec Rtn; Fwo Approved Most recent IF: 5.301; 2008 IF: 3.729
Call Number UA @ lucian @ c:irua:67462 Serial 931
Permanent link to this record
 

 
Author Yang, Z.Q.; Schryvers, D.
Title (up) Electron energy-loss spectroscopy study of NiTi shape memory alloys Type A1 Journal article
Year 2008 Publication Materials science and engineering: part A: structural materials: properties, microstructure and processing Abbreviated Journal Mat Sci Eng A-Struct
Volume 481 Issue Pages 214-217
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000255716100041 Publication Date 2007-06-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-5093; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.094 Times cited 7 Open Access
Notes Gao Approved Most recent IF: 3.094; 2008 IF: 1.806
Call Number UA @ lucian @ c:irua:69156 Serial 934
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; Millan, A.; de Keyzer, R.
Title (up) Electron microscopical investigation of AgBr needle crystals Type A1 Journal article
Year 1995 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 151 Issue Pages 335-341
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995RE62100017 Publication Date 2003-05-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.698 Times cited 14 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 135/271 Q2 # PHYSICS, APPLIED 70/145 Q2 # PHYSICS, CONDENSED MATTER 40/67 Q3 #
Call Number UA @ lucian @ c:irua:13163 Serial 941
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; de Keyzer, R.
Title (up) Electron microscopical investigation of tetrahedral-shaped AgBr microcrystals Type A1 Journal article
Year 1997 Publication Journal of crystal growth Abbreviated Journal J Cryst Growth
Volume 172 Issue Pages 426-432
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1997WL65300018 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 15 Open Access
Notes Approved Most recent IF: 1.751; 1997 IF: 1.259
Call Number UA @ lucian @ c:irua:21345 Serial 942
Permanent link to this record
 

 
Author Schryvers, D.; de Saegher, B.; van Landuyt, J.
Title (up) Electron microscopy and diffraction study of the composition dependency of the 3R microtwinned martensite in Ni-Al Type A1 Journal article
Year 1991 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 26 Issue Pages 57-66
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos A1991EU98500007 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.288 Times cited 11 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:48348 Serial 943
Permanent link to this record
 

 
Author Seo, J.W.; Schryvers, D.; Vermeulen, W.; Richard, O.; Potapov, P.
Title (up) Electron microscopy investigation of ternary \gamma-brass-type precipitation in a Ni39.6Mn47.5Ti12.9 alloy Type A1 Journal article
Year 1999 Publication Philosophical magazine: A: physics of condensed matter: defects and mechanical properties Abbreviated Journal Philos Mag A
Volume 79 Issue 6 Pages 1279-1294
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Homogenized Ni39.6Mn47.5T12.9 material was investigated by different electron microscopy techniques. Apart from the martensite precursor distortions typical for B2 phase alloys undergoing a thermoelastic martensitic transformation upon cooling, coherent dodecahedron-shaped precipitates with sizes between 20 and 100 nm and faceted by lozenge shapes of {110}-type planes are observed. Selected-area and microdiffraction patterns reveal an overall unit cell with a size of 3 x 3 x 3 units of the bcc lattice of the matrix and a body-centred symmetry without screw axes. Finally a ternary gamma-brass-type atomic structure of space group 14(3) over bar m is suggested for these precipitates in accordance with the obtained symmetry constraints, the energy-dispersive X-ray measurements and high-resolution transmission electron microscopy images. This is the first time this type of structure is found in an alloy completely consisting of transition-metal elements.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000080687900002 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0141-8610;1460-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:104297 Serial 956
Permanent link to this record