|   | 
Details
   web
Records
Author Riva, C.; Escorcia, R.A.; Govorov, A.O.; Peeters, F.M.
Title (up) Charged donors in quantum dots: finite difference and fractional dimensions results Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 245306,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000222531800051 Publication Date 2004-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69387 Serial 339
Permanent link to this record
 

 
Author Grujić, M.M.; Tadic, M.Z.; Peeters, F.M.
Title (up) Chiral properties of topological-state loops Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 245432
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The angular momentum quantization of chiral gapless modes confined to a circularly shaped interface between two different topological phases is investigated. By examining several different setups, we show analytically that the angular momentum of the topological modes exhibits a highly chiral behavior, and can be coupled to spin and/or valley degrees of freedom, reflecting the nature of the interface states. A simple general one-dimensional model, valid for arbitrarily shaped loops, is shown to predict the corresponding energies and the magnetic moments. These loops can be viewed as building blocks for artificial magnets with tunable and highly diverse properties.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000356928200005 Publication Date 2015-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Ministry of Education, Science and Technological Development (Serbia), and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127039 Serial 357
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Farias, G.A.; Peeters, F.M.
Title (up) Chiral states in bilayer graphene : magnetic field dependence and gap opening Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 12 Pages 125451-125451,13
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract At the interface of electrostatic potential kink profiles, one-dimensional chiral states are found in bilayer graphene (BLG). Such structures can be created by applying an asymmetric potential to the upper and the lower layers of BLG. We found the following: (i) due to the strong confinement by the single kink profile, the unidirectional states are only weakly affected by a magnetic field; (ii) increasing the smoothness of the kink potential results in additional bound states, which are topologically different from those chiral states; and (iii) in the presence of a kink-antikink potential, the overlap between the oppositely moving chiral states results in the appearance of crossing and anticrossing points in the energy spectrum. This leads to the opening of tunable minigaps in the spectrum of the unidirectional topological states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000295484300016 Publication Date 2011-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI), the Belgian Science Policy (IAP), the European Science Foundation (ESF) under the EUROCORES program EuroGRAPHENE (project CONGRAN), the Brazilian agency CNPq (Pronex), and the bilateral projects between Flanders and Brazil and the collaboration project FWO-CNPq. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:92915 Serial 358
Permanent link to this record
 

 
Author Mirzakhani, M.; Peeters, F.M.; Zarenia, M.
Title (up) Circular quantum dots in twisted bilayer graphene Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 7 Pages 075413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within a tight-binding approach, we investigate the effect of twisting angle on the energy levels of circular bilayer graphene (BLG) quantum dots (QDs) in both the absence and presence of a perpendicular magnetic field. The QDs are defined by an infinite-mass potential, so that the specific edge effects are not present. In the absence of magnetic field (or when the magnetic length is larger than the moire length), we show that the low-energy states in twisted BLG QDs are completely affected by the formation of moire patterns, with a strong localization at AA-stacked regions. When magnetic field increases, the energy gap of an untwisted BLG QD closes with the edge states, localized at the boundaries between the AA- and AB-stacked spots in a twisted BLG QD. Our observation of the spatial localization of the electrons in twisted BLG QDs can be experimentally probed by low-bias scanning tunneling microscopy measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000512772200004 Publication Date 2020-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited 19 Open Access
Notes ; We gratefully acknowledge discussions with I. Snyman. M.Z. acknowledges support from the U.S. Department of Energy (Office of Science) under Grant No. DE-FG0205ER46203. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:166493 Serial 6470
Permanent link to this record
 

 
Author Baumgartner, A.; Ihn, T.; Ensslin, K.; Papp, G.; Peeters, F.; Maranowski, K.; Gossard, A.C.;
Title (up) Classical hall effect in scanning gate experiments Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 16 Pages 7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000241723700112 Publication Date 2006-10-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 20 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:61360 Serial 366
Permanent link to this record
 

 
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M.
Title (up) Classical transport of electrons through magnetic barriers Type A1 Journal article
Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 56 Issue Pages 7508-7516
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1997YA57500066 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 55 Open Access
Notes Approved Most recent IF: 3.836; 1997 IF: NA
Call Number UA @ lucian @ c:irua:19284 Serial 371
Permanent link to this record
 

 
Author Cadorim, L.R.; de Toledo, L.V.; Ortiz, W.A.; Berger, J.; Sardella, E.
Title (up) Closed vortex state in three-dimensional mesoscopic superconducting films under an applied transport current Type A1 Journal article
Year 2023 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 107 Issue 9 Pages 094515-94518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using the full 3D generalized time-dependent Ginzbug-Landau equation, we study a long superconducting film of finite width and thickness under an applied transport current. We show that, for sufficiently large thickness, the vortices and the antivortices become curved before they annihilate each other. As they approach the center of the sample, their ends combine, producing a single closed vortex. We also determine the critical values of the thickness for which the closed vortex sets in for different values of the Ginzburg-Ladau parameter. Finally, we propose a model of how to detect a closed vortex experimentally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000957055800002 Publication Date 2023-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7; 2023 IF: 3.836
Call Number UA @ admin @ c:irua:196079 Serial 7673
Permanent link to this record
 

 
Author Payette, C.; Amaha, S.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Partoens, B.; Tarucha, S.
Title (up) Coherent level mixing in dot energy spectra measured by magnetoresonant tunneling spectroscopy of vertical quantum dot molecules Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 24 Pages 245310,1-245310,15
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study by magnetoresonant tunneling spectroscopy single-particle energy spectra of the constituent weakly coupled dots in vertical quantum dot molecules over a wide energy window. The measured energy spectra are well modeled by calculated spectra for dots with in-plane confinement potentials that are elliptical and parabolic in form. However, in the regions where two, three, or four single-particle energy levels are naively expected to cross, we observe pronounced level anticrossing behavior and strong variations in the resonant currents as a consequence of coherent mixing induced by small deviations in the nearly ideal dot confinement potentials. We present detailed analysis of the energy spectra, and focus on two examples of three-level crossings whereby the coherent mixing leads to concurrent suppression and enhancement of the resonant currents when the anticrossing levels are minimally separated. The suppression of resonant current is of particular interest since it is a signature of dark state formation due to destructive interference. We also describe in detail and compare two measurement strategies to reliably extract the resonant currents required to characterize the level mixing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000278606100003 Publication Date 2010-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; We thank A. Bezinger, D. Roth, and M. Malloy for assistance with some of the processing, and K. Ono, T. Kodera, T. Hatano, Y. Tokura, M. Stopa, M. Hilke, G.C. Aers, M. Korkusinski, and R. M. Abolfath for useful discussions. Part of this work is supported by NSERC (Discovery Grant No. 208201), Flemish Science Foundation (FWO-VI), Grant-in-Aid for Scientific Research S (Grant No. 191040070), B (Grant No. 18340081), and by Special Coordination Funds for Promoting Science and Technology, and MEXT. S.T. acknowledges support from QuEST program (BAA-0824). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:83095 Serial 379
Permanent link to this record
 

 
Author Pogosov, W.V.; Misko, V.R.; Zhao, H.J.; Peeters, F.M.
Title (up) Collective vortex phases in periodic plus random pinning potential Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 79 Issue 1 Pages 014504,1-014504,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study theoretically the simultaneous effect of regular and random pinning potentials on the vortex lattice structure at filling factor of 1. This structure is determined by a competition between the square symmetry of regular pinning array, by the intervortex interaction favoring a triangular symmetry, and by the randomness trying to depin vortices from their regular positions. Both analytical and molecular-dynamics approaches are used. We construct a phase diagram of the system in the plane of regular and random pinning strengths and determine typical vortex lattice defects appearing in the system due to the disorder. We find that the total disordering of the vortex lattice can occur either in one step or in two steps. For instance, in the limit of weak pinning, a square lattice of pinned vortices is destroyed in two steps. First, elastic chains of depinned vortices appear in the film; but the vortex lattice as a whole remains still pinned by the underlying square array of regular pinning sites. These chains are composed into fractal-like structures. In a second step, domains of totally depinned vortices are generated and the vortex lattice depins from regular array.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000262977900092 Publication Date 2009-01-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 14 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:75982 Serial 386
Permanent link to this record
 

 
Author Prodi, A.; Daoud-Aladine, A.; Gozzo, F.; Schmitt, B.; Lebedev, O.; Van Tendeloo, G.; Gilioli, E.; Bolzoni, F.; Aruga-Katori, H.; Takagi, H.; Marezio, M.; Gauzzi, A.;
Title (up) Commensurate structural modulation in the charge- and orbitally ordered phase of the quadruple perovskite (NaMn3)Mn4O12 Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 18 Pages 180101
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By means of synchrotron x-ray and electron diffraction, we studied the structural changes at the charge order transition T-CO = 176 K in the mixed-valence quadruple perovskite (NaMn3)Mn4O12. Below T-CO we find satellite peaks indicating a commensurate structural modulation with the same propagation vector q = ( 1/2,0,-1/2) of the CE magnetic structure that orders at low temperatures, similarly to the case of simple perovskites such as La0.5Ca0.5MnO3. In the present case, the modulated structure, together with the observation of a large entropy change at T-CO, gives evidence of a rare case of full Mn3+/Mn4+ charge and orbital order, consistent with the Goodenough-Kanamori model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000344915100001 Publication Date 2014-11-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122097 Serial 406
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
Title (up) Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 247401
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000377802200009 Publication Date 2016-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Van Pottelberge, R.
Title (up) Comment on “Electron states for gapped pseudospin-1 fermions in the field of a charged impurity” Type Editorial
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 19 Pages 197102-197103
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 99, 155124 (2019)], the spectrum of a regularized Coulomb charge was studied in gapped pseudospin-1 systems generated by an alpha – T-3 lattice. The electronic spectrum was studied as a function of the impurity strength Z alpha. However, the results and conclusions on the behavior of the flatband states as a function of the impurity strength are incomplete. In this Comment, I argue that because of the dispersionless nature of the flatband, the states spread out under the influence of a charged impurity forming a continuous band of states. I support my arguments with explicit numerical calculations which show the emergence of a continuum of states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000533793600004 Publication Date 2020-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access
Notes ; I would like to acknowledge very insightful discussions with the authors of the commented paper (V. P. Gusynin, E. V. Gorbar, and D. O. Oriekhov). F. M. Peeters is acknowledged for interesting discussions and proofreading. This research was supported by the Flemish Science Foundation through an aspirant research grant for R.V.P. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:169476 Serial 6472
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
Title (up) Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 20 Pages 207403
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication College pk Editor
Language Wos 000433288800015 Publication Date 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author Gordon, I.; Wagner, P.; Das, A.; Vanacken, J.; Moshchalkov, V.V.; Bruynseraede, Y.; Schuddinck, W.; Van Tendeloo, G.; Ziese, M.; Borghs, G.
Title (up) Comparative Hall studies in the electron- and hole-doped manganites La0.33Ca0.67MnO3 and La0.70Ca0.30MnO3 Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 62 Issue 17 Pages 11633-11638
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000165201900064 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 18 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:54734 Serial 417
Permanent link to this record
 

 
Author Vagov, A.; Glaessl, M.; Croitoru, M.D.; Axt, V.M.; Kuhn, T.
Title (up) Competition between pure dephasing and photon losses in the dynamics of a dot-cavity system Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 7 Pages 075309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate that in quantum-dot cavity systems, the interplay between acoustic phonons and photon losses introduces novel features and characteristic dependencies in the system dynamics. In particular, the combined action of both dephasing mechanisms strongly affects the transition from the weak-to the strong-coupling regime as well as the shape of the spectral triplet that represents the quantum-dot occupation in Fourier space. The width of the central peak in the triplet is expected to decrease with rising temperature, while the widths and heights of the side peaks depend nonmonotonically on the dot-cavity coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000341258700002 Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 11 Open Access
Notes ; We acknowledge fruitful discussions with A. Nazir which helped us to more clearly formulate the relation between our phenomenological approach and the microscopic theory. M.D.C. further acknowledges Alexander von Humboldt and BELSPO grants for support. Financial support from the Deutsche Forschungsgemeinschaft (Grant No. AX 17/7-1) is also gratefully acknowledged. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119257 Serial 437
Permanent link to this record
 

 
Author Gee, P.J.; Peeters, F.M.; Singleton, J.; Uji, S.; Aoki, H.; Foxon, C.T.B.; Harris, J.J.
Title (up) Composite fermions in tilded magnetic fields and the effect of the confining potential width on the composite fermion effective mass Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 54 Issue Pages R14313-R14316
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VX71700024 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 15 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15787 Serial 440
Permanent link to this record
 

 
Author di Vece, M.; Bals, S.; Lievens, P.; Van Tendeloo, G.
Title (up) Compositional changes of Pd-Au bimetallic nanoclusters upon hydrogenation Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 12 Pages 125420,1-125420,4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Changes in the size distribution and composition of bimetallic Pd-Au nanoclusters have been observed after hydrogen exposure. This effect is caused by hydrogen-induced Ostwald ripening whereby the hydrogen reduces the binding energy of the cluster atoms leading to their detachment from the cluster. The composition changes due to a difference in mobility of the detached palladium and gold atoms on the surface. Fast palladium atoms contribute to the formation of larger nanoclusters, while the slower gold atoms are confined to the smaller nanoclusters. These transformations in the Pd-Au nanocluster size and composition set a limit for chemical reactions in which such nanoclusters are involved together with hydrogen.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000270383300121 Publication Date 2009-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes Fwo; Goa; Iap-Vi; Esteem 026019 Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:79232 Serial 445
Permanent link to this record
 

 
Author Gurel, T.; Altunay, Y.A.; Bulut, P.; Yildirim, S.; Sevik, C.
Title (up) Comprehensive investigation of the extremely low lattice thermal conductivity and thermoelectric properties of BaIn₂Te₄ Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 106 Issue 19 Pages 195204-195210
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently, an extremely low lattice thermal conductivity value has been reported for the alkali-based telluride material BaIn2Te4. The value is comparable with low-thermal conductivity metal chalcogenides, and the glass limit is highly intriguing. Therefore, to shed light on this issue, we performed first-principles phonon thermal transport calculations. We predicted highly anisotropic lattice thermal conductivity along different directions via the solution of the linearized phonon Boltzmann transport equation. More importantly, we determined several different factors as the main sources of the predicted ultralow lattice thermal conductivity of this crystal, such as the strong interactions between low-frequency optical phonons and acoustic phonons, small phonon group velocities, and lattice anharmonicity indicated by large negative mode Gruneisen parameters. Along with thermal transport calculations, we also investigated the electronic transport properties by accurately calculating the scattering mechanisms, namely the acoustic deformation potential, ionized impurity, and polar optical scatterings. The inclusion of spin-orbit coupling (SOC) for electronic structure is found to strongly affect the p-type Seebeck coefficients. Finally, we calculated the thermoelectric properties accurately, and the optimal ZT value of p-type doping, which originated from high Seebeck coefficients, was predicted to exceed unity after 700 K and have a direction averaged value of 1.63 (1.76 in the y-direction) at 1000 K around 2 x 1020 cm-3 hole concentration. For n-type doping, a ZT around 3.2 x 1019 cm-3 concentration was predicted to be a direction-averaged value of 1.40 (1.76 in the z-direction) at 1000 K, mostly originating from its high electron mobility. With the experimental evidence of high thermal stability, we showed that the BaIn2Te4 compound has the potential to be a promising mid- to high-temperature thermoelectric material for both p-type and n-type systems with appropriate doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000918954800001 Publication Date 2022-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:194384 Serial 7290
Permanent link to this record
 

 
Author Michotte, S.; Mátéfi-Tempfli, S.; Piraux, L.; Vodolazov, D.Y.; Peeters, F.M.
Title (up) Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage Type A1 Journal article
Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 69 Issue Pages 094512,1-12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000220812800111 Publication Date 2004-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 61 Open Access
Notes Approved Most recent IF: 3.836; 2004 IF: 3.075
Call Number UA @ lucian @ c:irua:69383 Serial 475
Permanent link to this record
 

 
Author Chaves, A.; Komendová, L.; Milošević, M.V.; Andrade, J.S.; Farias, G.A.; Peeters, F.M.
Title (up) Conditions for nonmonotonic vortex interaction in two-band superconductors Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 83 Issue 21 Pages 214523-214523,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We describe a semianalytic approach to the two-band Ginzburg-Landau theory, which predicts the behavior of vortices in two-band superconductors. We show that the character of the short-range vortex-vortex interaction is determined by the sign of the normal domain-superconductor interface energy, in analogy with the conventional differentiation between type I and type II superconductors. However, we also show that the long-range interaction is determined by a modified Ginzburg-Landau parameter κ*, different from the standard κ of a bulk superconductor. This opens the possibility for nonmonotonic vortex-vortex interaction, which is temperature dependent, and can be further tuned by alterations of the material on the microscopic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000292252300009 Publication Date 2011-06-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; Discussions with A. Moreira, A. Shanenko, R. Prozorov, and A. Golubov are gratefully acknowledged. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the bilateral project FWO-CNPq, CAPES, and PRONEX/CNPq/FUNCAP. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:90922 Serial 477
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
Title (up) Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461958900006 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 3 Open Access
Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Compemolle, S.; Pourtois, G.; Sorée, B.; Magnus, W.; Chibotaru, L.F.; Ceulemans, A.
Title (up) Conductance of a copper-nanotube bundle interface: impact of interface geometry and wave-function interference Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 19 Pages 193406,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000256971600032 Publication Date 2008-05-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 8 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:70215 Serial 479
Permanent link to this record
 

 
Author Deo, P.S.; Gupta, B.C.; Jayannavar, A.M.; Peeters, F.M.
Title (up) Conductance quantization in a periodically modulated quantum channel: backscattering and mode mixing Type A1 Journal article
Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 58 Issue Pages 10784-10788
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000076716500104 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes Approved Most recent IF: 3.836; 1998 IF: NA
Call Number UA @ lucian @ c:irua:24162 Serial 480
Permanent link to this record
 

 
Author Topalovic, D.B.; Arsoski, V.V.; Tadic, M.Z.; Peeters, F.M.
Title (up) Confined electron states in two-dimensional HgTe in magnetic field : quantum dot versus quantum ring behavior Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 12 Pages 125304
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the electron states and optical absorption in square- and hexagonal-shaped two-dimensional (2D) HgTe quantum dots and quantum rings in the presence of a perpendicular magnetic field. The electronic structure is modeled by means of the sp(3)d(5)s* tight-binding method within the nearest-neighbor approximation. Both bulklike and edge states appear in the energy spectrum. The bulklike states in quantum rings exhibit Aharonov-Bohm oscillations in magnetic field, whereas no such oscillations are found in quantum dots, which is ascribed to the different topology of the two systems. When magnetic field varies, all the edge states in square quantum dots appear as quasibands composed of almost fully flat levels, whereas some edge states in quantum rings are found to oscillate with magnetic field. However, the edge states in hexagonal quantum dots are localized like in rings. The absorption spectra of all the structures consist of numerous absorption lines, which substantially overlap even for small line broadening. The absorption lines in the infrared are found to originate from transitions between edge states. It is shown that the magnetic field can be used to efficiently tune the optical absorption of HgTe 2D quantum dot and quantum ring systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486638400007 Publication Date 2019-09-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by Projects No. III 41028, No. III 42008, and No. III 45003 funded by the Serbian Ministry of Education, Science and Technological Development, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:162787 Serial 5409
Permanent link to this record
 

 
Author Vanderveken, F.; Mulkers, J.; Leliaert, J.; Van Waeyenberge, B.; Sorée, B.; Zografos, O.; Ciubotaru, F.; Adelmann, C.
Title (up) Confined magnetoelastic waves in thin waveguides Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 5 Pages 054439
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The characteristics of confined magnetoelastic waves in nanoscale ferromagnetic magnetostrictive waveguides have been investigated by a combination of analytical and numerical calculations. The presence of both magnetostriction and inverse magnetostriction leads to the coupling between confined spin waves and elastic Lamb waves. Numerical simulations of the coupled system have been used to extract the dispersion relations of the magnetoelastic waves as well as their mode profiles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000627548800003 Publication Date 2021-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:177607 Serial 6976
Permanent link to this record
 

 
Author Milton Pereira, J.; Mlinar, V.; Peeters, F.M.; Vasilopoulos, P.
Title (up) Confined states and direction-dependent transmission in graphene quantum wells Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 74 Issue 4 Pages 045424,1-5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000239426800116 Publication Date 2006-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 212 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:60091 Serial 484
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Jacobs, A.; Van Duppen, B.; Peeters, F.M.
Title (up) Confinement and edge effects on atomic collapse in graphene nanoribbons Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 3 Pages 035426
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic collapse in graphene nanoribbons behaves in a fundamentally different way as compared to monolayer graphene due to the presence of multiple energy bands and the effect of edges. For armchair nanoribbons we find that bound states gradually transform into atomic collapse states with increasing impurity charge. This is very different in zigzag nanoribbons where multiple quasi-one-dimensional bound states are found that originates from the zero-energy zigzag edge states. They are a consequence of the flat band and the electron distribution of these bound states exhibits two peaks. The lowest-energy edge state transforms from a bound state into an atomic collapse resonance and shows a distinct relocalization from the edge to the impurity position with increasing impurity charge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000610779200008 Publication Date 2021-01-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 10 Open Access OpenAccess
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:176585 Serial 6719
Permanent link to this record
 

 
Author Saniz, R.; Partoens, B.; Peeters, F.M.
Title (up) Confinement effects on electron and phonon degrees of freedom in nanofilm superconductors : a Green function approach Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 6 Pages 064510-64513
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The Green function approach to the Bardeen-Cooper-Schrieffer theory of superconductivity is used to study nanofilms. We go beyond previous models and include effects of confinement on the strength of the electron-phonon coupling as well as on the electronic spectrum and on the phonon modes. Within our approach, we find that in ultrathin films, confinement effects on the electronic screening become very important. Indeed, contrary to what has been advanced in recent years, the sudden increases of the density of states when new bands start to be occupied as the film thickness increases, tend to suppress the critical temperature rather than to enhance it. On the other hand, the increase of the number of phonon modes with increasing number of monolayers in the film leads to an increase in the critical temperature. As a consequence, the superconducting critical parameters in such nanofilms are determined by these two competing effects. Furthermore, in sufficiently thin films, the condensate consists of well-defined subcondensates associated with the occupied bands, each with a distinct coherence length. The subcondensates can interfere constructively or destructively giving rise to an interference pattern in the Cooper pair probability density.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000315374100009 Publication Date 2013-02-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). R.S. thanks M. R. Norman, B. Soree, and L. Komendova for useful comments. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:107072 Serial 487
Permanent link to this record
 

 
Author Freire, J.A.K.; Matulis, A.; Peeters, F.M.; Freire, V.N.; Farias, G.A.
Title (up) Confinement of two-dimensional excitons in a non-homogeneous magnetic field Type A1 Journal article
Year 2000 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 61 Issue Pages 2895-2903
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000085348300074 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 22 Open Access
Notes Approved Most recent IF: 3.836; 2000 IF: NA
Call Number UA @ lucian @ c:irua:28515 Serial 489
Permanent link to this record
 

 
Author Piacente, G.; Hai, G.Q.; Peeters, F.M.
Title (up) Continuous structural transitions in quasi-one-dimensional classical Wigner crystals Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 81 Issue 2 Pages
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landaus theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single- and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000274002100035 Publication Date 2010-01-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 37 Open Access
Notes ; The authors acknowledge FAPESP and CNPq (Brazil), the Belgian Science Policy (IAP) and the Flemish Science Foundation (FWO-Vl) (Belgium) for financial support. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:81243 Serial 493
Permanent link to this record