|   | 
Details
   web
Records
Author Siriwardane, E.M.D.; Karki, P.; Sevik, C.; Cakir, D.
Title (up) Electronic and mechanical properties of stiff rhenium carbide monolayers: A first-principles investigation Type A1 Journal article
Year 2018 Publication Applied surface science Abbreviated Journal
Volume 458 Issue Pages 762-768
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In this study, we predicted two new stable metallic Re-C based monolayer structures with a rectangular (r-ReC2) and a hexagonal (h-Re2C) crystal symmetry using first-principle calculations based on density functional theory. Our results obtained from mechanical and phonon calculations and high-temperature molecular dynamic simulations clearly proved the stability of these two-dimensional (2D) crystals. Interestingly, Re-C monolayers in common transition metal carbide structures (i.e. MXenes) were found to be unstable, contrary to expectations. We found that the stable structures, i.e. r-ReC2 and h-Re2C, display superior mechanical properties over the well-known 2D materials. The Young's modulus for r-ReC2 and h-Re2C are extremely high and were calculated as 351 (1310) and 617 (804) N/m (GPa), respectively. Both materials have larger Young's modulus values than the most of the well-known 2D materials. We showed that the combination of the short strong directional p-d bonds, the high coordination number of atoms in the unit-cell and high valence electron density result in strong mechanical properties. Due to its crystal structure, the r-ReC2 monolayer has anisotropic mechanical properties and the crystallographic direction parallel to the C-2 dimers is stiffer compared to perpendicular direction due to strong covalent bonding within C-2 dimers. h-Re2C was derived from the corresponding bulk structure for which we determined the critical thickness for the dynamically stable bulk-derived monolayer structures. In addition, we also investigated the electronic of these two stable structures. Both exhibit metallic behavior and Re-5d orbitals dominate the states around the Fermi level. Due to their ultra high mechanical stability and stiffness, these novel Re-C monolayers can be exploited in various engineering applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000441400000088 Publication Date 2018-07-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:193776 Serial 7875
Permanent link to this record
 

 
Author Grujić, M.; Zarenia, M.; Chaves, A.; Tadić, M.; Farias, G.A.; Peeters, F.M.
Title (up) Electronic and optical properties of a circular graphene quantum dot in a magnetic field : influence of the boundary conditions Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 20 Pages 205441-205441,12
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An analytical approach, using the Dirac-Weyl equation, is implemented to obtain the energy spectrum and optical absorption of a circular graphene quantum dot in the presence of an external magnetic field. Results are obtained for the infinite-massand zigzag boundary conditions. We found that the energy spectrum of a dot with the zigzag boundary condition exhibits a zero-energy band regardless of the value of the magnetic field, while for the infinite-mass boundary condition, the zero-energy states appear only for high magnetic fields. The analytical results are compared to those obtained from the tight-binding model: (i) we show the validity range of the continuum model and (ii) we find that the continuum model with the infinite-mass boundary condition describes rather well its tight-binding analog, which can be partially attributed to the blurring of the mixed edges by the staggered potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297295400011 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 78 Open Access
Notes ; This work was supported by the EuroGraphene programme of the ESF (project CONGRAN), the Ministry of Education and Science of Serbia, the Belgian Science Policy (IAP), the bilateral projects between Flanders and Brazil, the Flemish Science Foundation (FWO-Vl), and the Brazilian Research Council (CNPq). ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:94025 Serial 997
Permanent link to this record
 

 
Author Ravi Kishore, V.V.; Partoens, B.; Peeters, F.M.
Title (up) Electronic and optical properties of core-shell nanowires in a magnetic field Type A1 Journal article
Year 2014 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 26 Issue 9 Pages 095501-95512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of zincblende nanowires are investigated in the presence of a uniform magnetic field directed along the [001] growth direction within the k . p method. We focus our numerical study on core-shell nanowires consisting of the III-V materials GaAs, AlxGa1-xAs and AlyGa1-y/0.51In0.49P. Nanowires with electrons confined in the core exhibit a Fock-Darwin-like spectrum, whereas nanowires with electrons confined in the shell show Aharonov-Bohm oscillations. Thus, by properly choosing the core and the shell materials of the nanowire, the optical properties in a magnetic field can be tuned in very different ways.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000331954500006 Publication Date 2014-02-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. ; Approved Most recent IF: 2.649; 2014 IF: 2.346
Call Number UA @ lucian @ c:irua:115845 Serial 998
Permanent link to this record
 

 
Author Bafekry, A.; Gogova, D.; M. Fadlallah, M.; V. Chuong, N.; Ghergherehchi, M.; Faraji, M.; Feghhi, S.A.H.; Oskoeian, M.
Title (up) Electronic and optical properties of two-dimensional heterostructures and heterojunctions between doped-graphene and C- and N-containing materials Type A1 Journal article
Year 2021 Publication Physical Chemistry Chemical Physics Abbreviated Journal Phys Chem Chem Phys
Volume 23 Issue 8 Pages 4865-4873
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of vertical heterostructures (HTSs) and lateral heterojunctions (HTJs) between (B,N)-codoped graphene (dop@Gr) and graphene (Gr), C3N, BC3 and h-BN monolayers are investigated using van der Waals density functional theory calculations. We have found that all the considered HTSs are energetically and thermally feasible at room temperature, and therefore they can be synthesized experimentally. The dop@Gr/Gr, BC3/dop@Gr and BN/dop@Gr HTSs are semiconductors with direct bandgaps of 0.1 eV, 80 meV and 1.23 eV, respectively, while the C3N/dop@Gr is a metal because of the strong interaction between dop@Gr and C3N layers. On the other hand, the dop@Gr-Gr and BN-dop@Gr HTJs are semiconductors, whereas the C3N-dop@Gr and BC3-dop@Gr HTJs are metals. The proposed HTSs can enhance the absorption of light in the whole wavelength range as compared to Gr and BN monolayers. The applied electric field or pressure strain changes the bandgaps of the HTSs and HTJs, indicating that these HTSs are highly promising for application in nanoscale multifunctional devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000625306100038 Publication Date 2021-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:177659 Serial 6986
Permanent link to this record
 

 
Author Han, F.W.; Xu, W.; Li, L.L.; Zhang, C.; Dong, H.M.; Peeters, F.M.
Title (up) Electronic and transport properties of n-type monolayer black phosphorus at low temperatures Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 95 Issue 95 Pages 115436
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present a detailed theoretical study of the electronic and transport properties of monolayer black phosphorus (BP). This study is motivated by recent experimental activities in investigating n-type few-layer BP systems. The electron density of states, the screening length, and the low-temperature electron mobility are calculated for monolayer BP (MLBP). In particular, the electron transport mobilities along the armchair and zigzag directions are examined on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation. The anisotropic electron mobilities in MLBP along different directions are demonstrated where the electron-impurity scattering is considered. Furthermore, we compare the results obtained from two electronic band structures of MLBP and find that the simplified model can describe quite rightly the electronic and transport properties of MLBP. This study is relevant to the application of few-layer BP based electronic systems as advanced electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000399140700012 Publication Date 2017-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 12 Open Access
Notes National Natural Science Foundation of China, 11574319 11304316 11304317 11604380 ; Ministry of Science and Technology of the People's Republic of China, 2011YQ130018 ; Chinese Academy of Sciences; Approved Most recent IF: 3.836
Call Number CMT @ cmt @ c:irua:142431 Serial 4564
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; Barboza, E. da S.; Milošević, M.V.; Pereira, T.A.S.
Title (up) Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder Type A1 Journal article
Year 2023 Publication RSC advances Abbreviated Journal
Volume 13 Issue 26 Pages 17907-17913
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Ab initio density functional theory (DFT) and DFT plus coherent potential approximation (DFT + CPA) are employed to reveal, respectively, the effect of in-plane strain and site-diagonal disorder on the electronic structure of cubic boron arsenide (BAs). It is demonstrated that tensile strain and static diagonal disorder both reduce the semiconducting one-particle band gap of BAs, and a V-shaped p-band electronic state emerges – enabling advanced valleytronics based on strained and disordered semiconducting bulk crystals. At biaxial tensile strains close to 15% the valence band lineshape relevant for optoelectronics is shown to coincide with one reported for GaAs at low energies. The role played by static disorder on the As sites is to promote p-type conductivity in the unstrained BAs bulk crystal, consistent with experimental observations. These findings illuminate the intricate and interdependent changes in crystal structure and lattice disorder on the electronic degrees of freedom of semiconductors and semimetals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001008414700001 Publication Date 2023-06-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.9 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.9; 2023 IF: 3.108
Call Number UA @ admin @ c:irua:197317 Serial 8861
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Peeters, F.M.; Sahin, H.
Title (up) Electronic and vibrational properties of PbI2: From bulk to monolayer Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 8 Pages 085431
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first-principles calculations, we study the dependence of the electronic and vibrational properties of multilayered PbI2 crystals on the number of layers and focus on the electronic-band structure and the Raman spectrum. Electronic-band structure calculations reveal that the direct or indirect semiconducting behavior of PbI2 is strongly influenced by the number of layers. We find that at 3L thickness there is a direct-to-indirect band gap transition (from bulk-to-monolayer). It is shown that in the Raman spectrum two prominent peaks, A(1g) and E-g, exhibit phonon hardening with an increasing number of layers due to the interlayer van der Waals interaction. Moreover, the Raman activity of the A(1g) mode significantly increases with an increasing number of layers due to the enhanced out-of-plane dielectric constant in the few-layer case. We further characterize rigid-layer vibrations of low-frequency interlayer shear (C) and breathing (LB) modes in few-layer PbI2. A reduced monatomic (linear) chain model (LCM) provides a fairly accurate picture of the number of layers dependence of the low-frequency modes and it is shown also to be a powerful tool to study the interlayer coupling strength in layered PbI2.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000442667200008 Publication Date 2018-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 41 Open Access
Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. Part of this work was supported by FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153716UA @ admin @ c:irua:153716 Serial 5097
Permanent link to this record
 

 
Author Zeng, Y.-J.; Schouteden, K.; Amini, M.N.; Ruan, S.-C.; Lu, Y.-F.; Ye, Z.-Z.; Partoens, B.; Lamoen, D.; Van Haesendonck, C.
Title (up) Electronic band structures and native point defects of ultrafine ZnO nanocrystals Type A1 Journal article
Year 2015 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter
Volume 7 Issue 7 Pages 10617-10622
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Ultrafine ZnO nanocrystals with a thickness down to 0.25 nm are grown by a metalorganic chemical vapor deposition method. Electronic band structures and native point defects of ZnO nanocrystals are studied by a combination of scanning tunneling microscopy/spectroscopy and first-principles density functional theory calculations. Below a critical thickness of nm ZnO adopts a graphitic-like structure and exhibits a wide band gap similar to its wurtzite counterpart. The hexagonal wurtzite structure, with a well-developed band gap evident from scanning tunneling spectroscopy, is established for a thickness starting from similar to 1.4 nm. With further increase of the thickness to 2 nm, V-O-V-Zn defect pairs are easily produced in ZnO nanocrystals due to the self-compensation effect in highly doped semiconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000355055000063 Publication Date 2015-04-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-8244;1944-8252; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.504 Times cited 15 Open Access
Notes Hercules; EWI Approved Most recent IF: 7.504; 2015 IF: 6.723
Call Number c:irua:126408 Serial 999
Permanent link to this record
 

 
Author Mirzakhani, M.; Myoung, N.; Peeters, F.M.; Park, H.C.
Title (up) Electronic Mach-Zehnder interference in a bipolar hybrid monolayer-bilayer graphene junction Type A1 Journal article
Year 2023 Publication Carbon Abbreviated Journal
Volume 201 Issue Pages 734-744
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Graphene matter in a strong magnetic field, realizing one-dimensional quantum Hall channels, provides a unique platform for studying electron interference. Here, using the Landauer-Buttiker formalism along with the tightbinding model, we investigate the quantum Hall (QH) effects in unipolar and bipolar monolayer-bilayer graphene (MLG-BLG) junctions. We find that a Hall bar made of an armchair MLG-BLG junction in the bipolar regime results in valley-polarized edgechannel interferences and can operate a fully tunable Mach-Zehnder (MZ) interferometer device. Investigation of the bar-width and magnetic-field dependence of the conductance oscillations shows that the MZ interference in such structures can be drastically affected by the type of (zigzag) edge termination of the second layer in the BLG region [composed of vertical dimer or non-dimer atoms]. Our findings reveal that both interfaces exhibit a double set of Aharonov-Bohm interferences, with the one between two oppositely valley-polarized edge channels dominating and causing a large amplitude conductance oscillation ranging from 0 to 2e2/h. We explain and analyze our findings by analytically solving the Dirac-Weyl equation for a gated semi-infinite MLG-BLG junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000868911500004 Publication Date 2022-09-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.9 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 10.9; 2023 IF: 6.337
Call Number UA @ admin @ c:irua:191516 Serial 7302
Permanent link to this record
 

 
Author Mirzakhani, M.
Title (up) Electronic properties and energy levels of graphene quantum dots Type Doctoral thesis
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:147179 Serial 4781
Permanent link to this record
 

 
Author Cheng, X.; Xu, W.; Wen, H.; Zhang, J.; Zhang, H.; Li, H.; Peeters, F.M.; Chen, Q.
Title (up) Electronic properties of 2H-stacking bilayer MoS₂ measured by terahertz time-domain spectroscopy Type A1 Journal article
Year 2023 Publication Frontiers of physics Abbreviated Journal
Volume 18 Issue 5 Pages 53303-53311
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moire superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000991955300002 Publication Date 2023-05-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-0462; 2095-0470 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 7.5; 2023 IF: 2.579
Call Number UA @ admin @ c:irua:197398 Serial 8818
Permanent link to this record
 

 
Author Li, L.L.; Moldovan, D.; Xu, W.; Peeters, F.M.
Title (up) Electronic properties of bilayer phosphorene quantum dots in the presence of perpendicular electric and magnetic fields Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 15 Pages 155425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we investigate the electronic properties of bilayer phosphorene (BLP) quantum dots (QDs) in the presence of perpendicular electric and magnetic fields. Since BLP consists of two coupled phosphorene layers, it is of interest to examine the layer-dependent electronic properties of BLP QDs, such as the electronic distributions over the two layers and the so-produced layer-polarization features, and to see how these properties are affected by the magnetic field and the bias potential. We find that in the absence of a bias potential only edge states are layer polarized while the bulk states are not, and the layer-polarization degree (LPD) of the unbiased edge states increases with increasing magnetic field. However, in the presence of a bias potential both the edge and bulk states are layer polarized, and the LPD of the bulk (edge) states depends strongly (weakly) on the interplay of the bias potential and the interlayer coupling. At high magnetic fields, applying a bias potential renders the bulk electrons in a BLP QD to be mainly distributed over the top or bottom layer, resulting in layer-polarized bulk Landau levels (LLs). In the presence of a large bias potential that can drive a semiconductor-to-semimetal transition in BLP, these bulk LLs exhibit different magnetic-field dependences, i.e., the zeroth LLs exhibit a linearlike dependence on the magnetic field while the other LLs exhibit a square-root-like dependence.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000412699800005 Publication Date 2017-10-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 28 Open Access
Notes ; This work was financially supported by the Flemish Science Foundation (FWO-Vl), the National Natural Science Foundation of China (Grant No. 11574319), and the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146686 Serial 4782
Permanent link to this record
 

 
Author Zhang, L.; Fernández Becerra, V.; Covaci, L.; Milošević, M.V.
Title (up) Electronic properties of emergent topological defects in chiral p-wave superconductivity Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 024520
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov-de Gennes equations. We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior of the chiral domain wall between the OP components, enabling direct identification of those states in scanning tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby enabling experimental verification of chirality in emerging superconducting materials.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000381479500002 Publication Date 2016-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 27 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:135742 Serial 4303
Permanent link to this record
 

 
Author Masir, M.R.
Title (up) Electronic properties of graphene in inhomogeneous magnetic fields Type Doctoral thesis
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:98178 Serial 1001
Permanent link to this record
 

 
Author Singh, S.K.; Neek-Amal, M.; Peeters, F.M.
Title (up) Electronic properties of graphene nano-flakes : energy gap, permanent dipole, termination effect, and Raman spectroscopy Type A1 Journal article
Year 2014 Publication The journal of chemical physics Abbreviated Journal J Chem Phys
Volume 140 Issue 7 Pages 074304-74309
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of graphene nano-flakes (GNFs) with different edge passivation are investigated by using density functional theory. Passivation with F and H atoms is considered: C-Nc X-Nx (X = F or H). We studied GNFs with 10 < N-c < 56 and limit ourselves to the lowest energy configurations. We found that: (i) the energy difference Delta between the highest occupied molecular orbital and the lowest unoccupied molecular orbital decreases with N-c, (ii) topological defects (pentagon and heptagon) break the symmetry of the GNFs and enhance the electric polarization, (iii) the mutual interaction of bilayer GNFs can be understood by dipole-dipole interaction which were found sensitive to the relative orientation of the GNFs, (iv) the permanent dipoles depend on the edge terminated atom, while the energy gap is independent of it, and (v) the presence of heptagon and pentagon defects in the GNFs results in the largest difference between the energy of the spin-up and spin-down electrons which is larger for the H-passivated GNFs as compared to F-passivated GNFs. Our study shows clearly the effect of geometry, size, termination, and bilayer on the electronic properties of small GNFs. This study reveals important features of graphene nano-flakes which can be detected using Raman spectroscopy. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000332039900020 Publication Date 2014-02-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9606;1089-7690; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.965 Times cited 30 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Foundation of the Flemish Government. ; Approved Most recent IF: 2.965; 2014 IF: 2.952
Call Number UA @ lucian @ c:irua:115857 Serial 1002
Permanent link to this record
 

 
Author Alihosseini, M.; Ghasemi, S.; Ahmadkhani, S.; Alidoosti, M.; Esfahani, D.N.; Peeters, F.M.; Neek-Amal, M.
Title (up) Electronic properties of oxidized graphene : effects of strain and an electric field on flat bands and the energy gap Type A1 Journal article
Year 2021 Publication The journal of physical chemistry letters Abbreviated Journal J Phys Chem Lett
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract A multiscale modeling and simulation approach, including first-principles calculations, ab initio molecular dynamics simulations, and a tight binding approach, is employed to study band flattening of the electronic band structure of oxidized monolayer graphene. The width offlat bands can be tuned by strain, the external electric field, and the density of functional groups and their distribution. A transition to a conducting state is found for monolayer graphene with impurities when it is subjected to an electric field of similar to 1.0 V/angstrom. Several parallel impurity-induced flat bands appear in the low-energy spectrum of monolayer graphene when the number of epoxy groups is changed. The width of the flat band decreases with an increase in tensile strain but is independent of the electric field strength. Here an alternative and easy route for obtaining band flattening in thermodynamically stable functionalized monolayer graphene is introduced. Our work discloses a new avenue for research on band flattening in monolayer graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000737988100001 Publication Date 2021-12-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1948-7185 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.353 Times cited 1 Open Access Not_Open_Access
Notes Approved Most recent IF: 9.353
Call Number UA @ admin @ c:irua:184725 Serial 6987
Permanent link to this record
 

 
Author Moldovan, D.
Title (up) Electronic properties of strained graphene and supercritical charge centers Type Doctoral thesis
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:135792 Serial 4352
Permanent link to this record
 

 
Author Pavlović, S.; Peeters, F.M.
Title (up) Electronic properties of triangular and hexagonal MoS2 quantum dots Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 155410
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the tight-binding approach, we calculate the electronic structure of triangular and hexagonal MoS2 quantum dots. Due to the orbital asymmetry we show that it is possible to form quantum dots with the same shape but having different electronic properties. The electronic states of triangular and hexagonal quantum dots are explored, as well as the local and total density of states and the convergence towards the bulk spectrum with dot size is investigated. Our calculations show that: (1) edge states appear in the band gap, (2) that there are a larger number of electronic states in the conduction band as compared to the valence band, and (3) the relative number of edge states decreases with increasing dot size.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000352591200005 Publication Date 2015-04-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 44 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem Foundation of the Flemish government. Stefan Pavlovic is supported by JoinEU-SEE IV, Erasmus Mundus Action 2 programme. We thank J. M. Pereira for interesting discussions. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:132516 Serial 4170
Permanent link to this record
 

 
Author Ramos, A.C.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title (up) Electronic states above a helium film suspended on a ring-shaped substrate Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 4 Pages 045415,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252863100117 Publication Date 2008-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67889 Serial 1006
Permanent link to this record
 

 
Author Moldovan, D.; Masir, M.R.; Peeters, F.M.
Title (up) Electronic states in a graphene flake strained by a Gaussian bump Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 3 Pages 035446-35447
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of strain in graphene is usually modeled by a pseudomagnetic vector potential which is, however, derived in the limit of small strain. In realistic cases deviations are expected in view of graphene's very high strain tolerance, which can be up to 25%. Here we investigate the pseudomagnetic field generated by a Gaussian bump and we show that it exhibits significant differences with numerical tight-binding results. Furthermore, we calculate the electronic states in the strained region for a hexagon shaped flake with armchair edges. We find that the sixfold symmetry of the wave functions inside the Gaussian bump is directly related to the different effects of strain along the fundamental directions of graphene: zigzag and armchair. Low energy electrons are strongly confined in the armchair directions and are localized on the carbon atoms of a single sublattice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000322587500003 Publication Date 2013-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes ; This work was supported by the European Science Foundation (ESF) under the EUROCORES Program Euro-GRAPHENE within the project CONGRAN, the Flemish Science Foundation (FWO-Vl), and the Methusalem Funding of the Flemish Government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109800 Serial 1007
Permanent link to this record
 

 
Author Craco, L.; Carara, S.S.; da Silva Pereira, T.A.; Milošević, M.V.
Title (up) Electronic states in an atomistic carbon quantum dot patterned in graphene Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 155417
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We reveal the emergence of metallicKondo clouds in an atomistic carbon quantum dot, realized as a single-atom junction in a suitably patterned graphene nanoflake. Using density functional dynamical mean-field theory (DFDMFT) we show how correlation effects lead to striking features in the electronic structure of our device, and how those are enhanced by the electron-electron interactions when graphene is patterned at the atomistic scale. Our setup provides a well-controlled environment to understand the principles behind the orbital-selective Kondo physics and the interplay between orbital and spin degrees of freedom in carbon-based nanomaterials, which indicate new pathways for spintronics in atomically patterned graphene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000373760900004 Publication Date 2016-04-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; L.C.'s work is supported by CNPq (Proc. No. 307487/2014-8). Acknowledgment (L.C.) is also made to G. Seifert for discussions and the Department of Theoretical Chemistry at Technical University Dresden for hospitality. T.A.S.P. thanks PRONEX/CNPq/FAPEMAT 850109/2009 for financial support. M.V.M. acknowledges support from Research Foundation-Flanders (FWO), TOPBOF, and the CAPES-PVE program. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:133260 Serial 4171
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.; van Speybroeck, V.; Waroquier, M.
Title (up) Electronic structure and band gap of zinc spinel oxides beyond LDA : ZnAl2O4, ZnGa2O4 and ZnIn2O4 Type A1 Journal article
Year 2011 Publication New journal of physics Abbreviated Journal New J Phys
Volume 13 Issue 6 Pages 063002-063002,11
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We examine the electronic structure of the family of ternary zinc spinel oxides ZnX2O4 (X=Al, Ga and In). The band gap of ZnAl2O4 calculated using density functional theory (DFT) is 4.25 eV and is overestimated compared with the experimental value of 3.83.9 eV. The DFT band gap of ZnGa2O4 is 2.82 eV and is underestimated compared with the experimental value of 4.45.0 eV. Since DFT typically underestimates the band gap in the oxide system, the experimental measurements for ZnAl2O4 probably require a correction. We use two first-principles techniques capable of describing accurately the excited states of semiconductors, namely the GW approximation and the modified BeckeJohnson (MBJ) potential approximation, to calculate the band gap of ZnX2O4. The GW and MBJ band gaps are in good agreement with each other. In the case of ZnAl2O4, the predicted band gap values are >6 eV, i.e. ~2 eV larger than the only reported experimental value. We expect future experimental work to confirm our results. Our calculations of the electron effective masses and the second band gap indicate that these compounds are very good candidates to act as transparent conducting host materials.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000292137500002 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 98 Open Access
Notes Iwt; Fwo; Bof-Noi Approved Most recent IF: 3.786; 2011 IF: 4.177
Call Number UA @ lucian @ c:irua:89555 Serial 1008
Permanent link to this record
 

 
Author Nikolaev, A.V.; Michel, K.H.
Title (up) Electronic structure and electric quadrupoles of a polymerized chain in solid AC60 Type A1 Journal article
Year 2001 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 117 Issue Pages 739-743
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000167538300010 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 10 Open Access
Notes Approved Most recent IF: 1.554; 2001 IF: 1.381
Call Number UA @ lucian @ c:irua:36881 Serial 1009
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title (up) Electronic structure and optical absorption of GaAs/AlxGa1-xAs and AlxGa1-xAs/GaAs core-shell nanowires Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 23 Pages 235425-235425,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic structure of GaAs/AlxGa1−xAs and AlxGa1−xAs/GaAs core-shell nanowires grown in the [001] direction is studied. The k⋅p method with the 6×6 Kohn-Lüttinger Hamiltonian, taking into account the split-off band is used. The variation in the energy level dispersion, the spinor contribution to the ground state and the optical interband absorption are studied. For some range of parameters the top of the valence band exhibits a camelback structure which results in an extra peak in the optical absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000286769100008 Publication Date 2010-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 23 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:86911 Serial 1010
Permanent link to this record
 

 
Author Neek-Amal, M.; Covaci, L.; Shakouri, K.; Peeters, F.M.
Title (up) Electronic structure of a hexagonal graphene flake subjected to triaxial stress Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115428
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic properties of a triaxially strained hexagonal graphene flake with either armchair or zigzag edges are investigated using molecular dynamics simulations and tight-binding calculations. We found that (i) the pseudomagnetic field in strained graphene flakes is not uniform neither in the center nor at the edge of zigzag terminated flakes, (ii) the pseudomagnetic field is almost zero in the center of armchair terminated flakes but increases dramatically near the edges, (iii) the pseudomagnetic field increases linearly with strain, for strains lower than 15% but increases nonlinearly beyond it, (iv) the local density of states in the center of the zigzag hexagon exhibits pseudo-Landau levels with broken sublattice symmetry in the zeroth pseudo-Landau level, and in addition there is a shift in the Dirac cone due to strain induced scalar potentials, and (v) there is size effect in pseudomagnetic field. This study provides a realistic model of the electronic properties of inhomogeneously strained graphene where the relaxation of the atomic positions is correctly included together with strain induced modifications of the hopping terms up to next-nearest neighbors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000324690400008 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 46 Open Access
Notes ; This work was supported by the EU-Marie Curie IIF postdoctoral Fellowship/ 299855 (for M.N.-A.), the ESF EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Funding of the Flemish government. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:111168 Serial 1011
Permanent link to this record
 

 
Author Shi, J.M.; Koenraad, P.M.; van de Stadt, A.F.W.; Peeters, F.M.; Devreese, J.T.; Wolter, J.H.
Title (up) Electronic structure of a Si \delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier Type A1 Journal article
Year 1996 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 54 Issue 11 Pages 7996-8004
Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract We present a theoretical study of the electronic structure of a heavily Si delta-doped layer in a GaAs/AlxGa1-xAs/GaAs quantum barrier. In this class of structures the effect of DX centers on the electronic properties can be tuned by changing the AlxGa1-xAs barrier width and/or the Al concentration, which leads to a lowering of the DX level with respect to the Fermi energy without disturbing the wave functions much. A self-consistent approach is developed in which the effective confinement potential and the Fermi energy of the system, the energies, the wave functions, and the electron densities of the discrete subbands have been obtained as a function of both the material parameters of the samples and the experimental conditions. The effect of DX centers on such structures at nonzero temperature and under an external pressure is investigated for three different models: (1) the DX(nc)(0) model with no correlation effects, (2) the d(+)/DX(0) model, and (3) the d(+)/DX(-) model with inclusion of correlation effects. In the actual calculation, influences of the background accepters, the discontinuity of the effective mass of the electrons at the interfaces of the different materials, band nonparabolicity, and the exchange-correlation energy of the electrons have been taken into account. We have found that (1) introducing a quantum barrier into delta-doped GaAs makes it possible to control the energy gaps between different electronic; subbands; (2) the electron wave functions are mon spread out when the repellent effect of the barriers is increased as compared to those in delta-doped GaAs; (3) increasing the quantum-barrier height and/or the application of hydrostatic pressure are helpful to experimentally observe the effect of the DX centers through a decrease of the total free-electron density; and (4) the correlation effects of the charged impurities are important for the systems under study.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VL14500066 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 11 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:104388 Serial 1012
Permanent link to this record
 

 
Author Kishore, V.V.R.
Title (up) Electronic structure of core-shell nanowires Type Doctoral thesis
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords Doctoral thesis; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Antwerpen Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:105035 Serial 1013
Permanent link to this record
 

 
Author Kishore, V.V.R.; Partoens, B.; Peeters, F.M.
Title (up) Electronic structure of InAs/GaSb core-shell nanowires Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 16 Pages 165439-7
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and optical properties of InAs/GaSb core-shell nanowires are investigated within the effective mass k . p approach. These systems have a broken band gap, which results in spatially separated confinement of electrons and holes. We investigated these structures for different sizes of the InAs and GaSb core and shell radius. We found that for certain configurations, the conduction band states penetrate into the valence band states resulting in a negative band gap (E-g < 0), which leads to a conduction band ground state that lies below the valence band ground state at the Gamma point. For certain core-shell wires, only one conduction band state penetrates into the valence band and in this case, a minigap Delta opens up away from the Gamma point and as a consequence the electronic properties of the nanowire now depend on both E-g and Delta values.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000310131400005 Publication Date 2012-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 26 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102164 Serial 1014
Permanent link to this record
 

 
Author Tadic; Peeters, F.M.
Title (up) Electronic structure of the valence band in cylindrical strained InP/InGaP quantum dots in an external magnetic field Type A1 Journal article
Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures T2 – 14th International Conference on the Electronic Properties of, Two-Dimensional Systems, July 30-August 03, 2001, Prague, Czech Republic Abbreviated Journal Physica E
Volume 12 Issue 1-4 Pages 880-883
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The multiband effective-mass model of cylindrical self-assembled quantum dots in a magnetic field normal to the layer of the quantum dots is presented. The strain distribution is computed by the valence force field method. The strain-dependent multiband Hamiltonian is modified into an axially symmetric form, which commutes with the total angular momentum F-2 = fh. where f denotes the total magnetic quantum number. The heavy hole and the light hole parts in the mixed hole state are resolved. It is found that the heavy hole component dominates in the ground states for both f = 1/2 and 3/2. The electronic structure exhibits numerous anticrossings between the hole levels. The Zeeman splitting between the +\f\ and -\f\ states is also computed. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher North-Holland Place of Publication Amsterdam Editor
Language Wos 000175206300217 Publication Date 2002-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.221 Times cited 1 Open Access
Notes Approved Most recent IF: 2.221; 2002 IF: 1.107
Call Number UA @ lucian @ c:irua:95138 Serial 1016
Permanent link to this record
 

 
Author Dixit, H.; Saniz, R.; Cottenier, S.; Lamoen, D.; Partoens, B.
Title (up) Electronic structure of transparent oxides with the Tran-Blaha modified Becke-Johnson potential Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 20 Pages 205503-205503,9
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present electronic band structures of transparent oxides calculated using the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. We studied the basic n-type conducting binary oxides In2O3, ZnO, CdO and SnO2 along with the p-type conducting ternary oxides delafossite CuXO2 (X = Al, Ga, In) and spinel ZnX2O4 (X = Co, Rh, Ir). The results are presented for calculated band gaps and effective electron masses. We discuss the improvements in the band gap determination using TB-mBJ compared to the standard generalized gradient approximation (GGA) in density functional theory (DFT) and also compare the electronic band structure with available results from the quasiparticle GW method. It is shown that the calculated band gaps compare well with the experimental and GW results, although the electron effective mass is generally overestimated.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000303507100009 Publication Date 2012-04-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 113 Open Access
Notes Iwt; Fwo Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:98222 Serial 1017
Permanent link to this record