toggle visibility
Search within Results:
Display Options:
Number of records found: 8748

Select All    Deselect All
 | 
Citations
 | 
   print
MnFe0.5Ru0.5O3 : an above-room-temperature antiferromagnetic semiconductor”. Tan X, McCabe EE, Orlandi F, Manuel P, Batuk M, Hadermann J, Deng Z, Jin C, Nowik I, Herber R, Segre CU, Liu S, Croft M, Kang C-J, Lapidus S, Frank CE, Padmanabhan H, Gopalan V, Wu M, Li M-R, Kotliar G, Walker D, Greenblatt M, Journal of materials chemistry C : materials for optical and electronic devices 7, 509 (2019). http://doi.org/10.1039/C8TC05059G
toggle visibility
Mn2FeWO6 : a new Ni3TeO6-type polar and magnetic oxide”. Li MR, Croft M, Stephens PW, Ye M, Vanderbilt D, Retuerto M, Deng Z, Grams CP, Hemberger J, Hadermann J, Li WM, Jin CQ, Saouma FO, Jang JI, Akamatsu H, Gopalan V, Walker D, Greenblatt M;, Advanced materials 27, 2177 (2015). http://doi.org/10.1002/adma.201405244
toggle visibility
Mn₂O₃, oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated”. Ryabova AS, Istomin SY, Dosaev KA, Bonnefont A, Hadermann J, Arkharova NA, Orekhov AS, Sena RP, Saveleva VA, Kerangueven G, Antipov E V, Savinova ER, Tsirlina GA, Electrochimica Acta 367, 137378 (2021). http://doi.org/10.1016/J.ELECTACTA.2020.137378
toggle visibility
Mo2C as a high capacity anode material: a first-principles study”. Çakir D, Sevik C, Gulseren O, Peeters FM, Journal of materials chemistry A : materials for energy and sustainability 4, 6029 (2016). http://doi.org/10.1039/C6TA01918H
toggle visibility
Mobile depth profiling and sub-surface imaging techniques for historical paintings : a review”. Alfeld M, Broekaert JAC, Spectrochimica acta: part B : atomic spectroscopy 88, 211 (2013). http://doi.org/10.1016/J.SAB.2013.07.009
toggle visibility
Mobility collapse in undoped and Si-doped GaN grown by LP-MOVPE”. Bougrioua Z, Farvacque J-L, Moerman I, Demeester P, Harris JJ, Lee K, Van Tendeloo G, Lebedev O, Trush EJ, Physica status solidi: B: basic research 216, 571 (1999). http://doi.org/10.1002/(SICI)1521-3951(199911)216:1<571::AID-PSSB571>3.0.CO;2-K
toggle visibility
Mode Transition of Filaments in Packed-Bed Dielectric Barrier Discharges”. Gao M, Zhang Y, Wang H, Guo B, Zhang Q, Bogaerts A, Catalysts 8, 248 (2018). http://doi.org/10.3390/catal8060248
toggle visibility
Model based quantification of EELS spectra”. Verbeeck J, Van Aert S, Ultramicroscopy 101, 207 (2004). http://doi.org/10.1016/j.ultramic.2004.06.004
toggle visibility
Model-based assessment of estrogen removal by nitrifying activated sludge”. Peng L, Dai X, Liu Y, Sun J, Song S, Ni B-J, Chemosphere 197, 430 (2018). http://doi.org/10.1016/J.CHEMOSPHERE.2018.01.035
toggle visibility
Model-based determination of dielectric function by STEM low-loss EELS”. Zhang L, Turner S, Brosens F, Verbeeck J, Physical review : B : condensed matter and materials physics 81, 035102 (2010). http://doi.org/10.1103/PhysRevB.81.035102
toggle visibility
Model-based electron microscopy : from images toward precise numbers for unknown structure parameters”. Van Aert S, van den Broek W, Goos P, van Dyck D, Micron 43, 509 (2012). http://doi.org/10.1016/j.micron.2011.10.019
toggle visibility
Model-based quantification of EELS spectra: including the fine structure”. Verbeeck J, Van Aert S, Bertoni G, Ultramicroscopy 106, 976 (2006). http://doi.org/10.1016/j.ultramic.2006.05.006
toggle visibility
Model-based quantification of EELS spectra: treating the effect of correlated noise”. Verbeeck J, Bertoni G, Ultramicroscopy 108, 74 (2008). http://doi.org/10.1016/j.ultramic.2007.03.004
toggle visibility
Model-based quantification of EELS: is standardless quantification possible?”.Verbeeck J, Bertoni G, Microchimica acta 161, 439 (2008). http://doi.org/10.1007/s00604-008-0948-7
toggle visibility
De wael A (2021) Model-based quantitative scanning transmission electron microscopy for measuring dynamic structural changes at the atomic scale. xiv, 146 p
toggle visibility
Model-based scenario analysis of the impact of remediation measures on metal leaching from soils contaminated by historic smelter emissions”. Joris I, Bronders J, van der Grift B, Seuntjens P, Journal of environmental quality 43, 859 (2014). http://doi.org/10.2134/JEQ2013.07.0287
toggle visibility
Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs”. Trenchev G, Kolev S, Kiss’ovski Z, Plasma sources science and technology 26, 055013 (2017). http://doi.org/10.1088/1361-6595/aa63c2
toggle visibility
Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm”. Eckert M, Neyts E, Bogaerts A, CrystEngComm 11, 1597 (2009). http://doi.org/10.1039/b822973m
toggle visibility
Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime”. Zhang Y-R, Tinck S, De Schepper P, Wang Y-N, Bogaerts A, Journal of vacuum science and technology: A: vacuum surfaces and films 33, 021310 (2015). http://doi.org/10.1116/1.4906819
toggle visibility
Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge”. Vandenbroucke AM, Aerts R, Van Gaens W, De Geyter N, Leys C, Morent R, Bogaerts A, Plasma chemistry and plasma processing 35, 217 (2015). http://doi.org/10.1007/s11090-014-9584-7
toggle visibility
Modeling and tackling resistivity scaling in metal nanowires”. Moors K, Sorée B, Magnus W, International Conference on Simulation of Semiconductor Processes and Devices : [proceedings] T2 –, International Conference on Simulation of Semiconductor Processes and, Devices (SISPAD), SEP 09-11, 2015, Washington, DC , 222 (2015)
toggle visibility
Modeling aspects of plasma-enhanced chemical vapor deposition of carbon-based materials”. Neyts E, Mao M, Eckert M, Bogaerts A CRC Press, Boca Raton, Fla, page 245 (2012).
toggle visibility
Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching : effects of SiO2 chamber wall coating”. Tinck S, Boullart W, Bogaerts A, Plasma sources science and technology 20, 045012 (2011). http://doi.org/10.1088/0963-0252/20/4/045012
toggle visibility
Modeling drive currents and leakage currents : a dynamic approach”. Magnus W, Brosens F, Sorée B, Journal of computational electronics 8, 307 (2009). http://doi.org/10.1007/s10825-009-0296-9
toggle visibility
Modeling electron competition among nitrogen oxides reduction and N2Oaccumulation in hydrogenotrophic denitrification”. Liu Y, Ngo HH, Guo W, Peng L, Chen X, Wang D, Pan Y, Ni B-J, Biotechnology and bioengineering 115, 978 (2018). http://doi.org/10.1002/BIT.26512
toggle visibility
Nikolova I (2012) Modeling emission, formation and dispersion of ultrafine particles in an urban environment. 191 p
toggle visibility
Modeling for a Better Understanding of Plasma-Based CO2 Conversion”. Bogaerts A, Snoeckx R, Trenchev G, Wang W In: Britun N, Silva T (eds) Plasma Chemistry and Gas Conversion. IntechOpen, Rijeka (2018).
toggle visibility
Modeling in mathematics : proceedings of the second Tbilisi-Salerno workshop on modeling in mathematics”. Gielis J, Ricci PE, Tavkhelidze I page 185 p. (2017).
toggle visibility
Modeling network for argon glow discharge plasmas with copper cathode”. Bogaerts A, Gijbels R Nova, New York, page 1 (2002).
toggle visibility
Modeling network for argon glow discharges: the output cannot be better than the input”. Bogaerts A, Gijbels R American Institute of Physics, Melville, N.Y., page 49 (2000).
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: