|   | 
Details
   web
Records
Author Kuppens, T.; Van Dael, M.; Vanreppelen, K.; Carleer, R.; Yperman, J.; Schreurs, S.; Van Passel, S.
Title (up) Techno-economic assessment of pyrolysis char production and application : a review Type P1 Proceeding
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 67-72
Keywords P1 Proceeding; Engineering sciences. Technology
Abstract Many organic residue streams such as pig manure are not or inefficiently used, although they can be converted into valuable materials, as well as energy, using pyrolysis. The yield of the pyrolysis products (i.e. oil, gas and char) is dependent on the process conditions and the feedstock used. Char as a soil amendment or activated carbon are interesting options for valorization of biomass residues. Here, a review is presented of the techno-economic potential of both valorization options based on literature and own experiments with wood from phytoremediation, particle board and waste from beer production. The term “biochar” is specifically used to designate pyrolysis char that is intentionally applied to soil in order to enhance its structure and fertility. Biochar applications are often also motivated by the objective of climate change mitigation. Two main disadvantages for the economic feasibility of biochar applications have been discerned. Firstly, carbon sequestration in agricultural crops and soils is not yet eligible under the Clean Development Mechanism. Secondly, the impact of biochar on crop productivity is unclear. Activated carbon (AC) seems to have interesting adsorption characteristics resulting in potentially high sales prices. A preliminary techno-economic assessment showed that AC production is preferred above oil production for wood from phytoremediation as long as the market price of 2 kEUR.t(-1) for commercially available ACs can be attained. Whenever a feedstock with high nitrogen content is available (e.g. particle board with melamine urea formaldehyde resin), even higher market prices might be attained. This study shows that valorization of the pyrolysis char might be an answer to the slow adoption of pyrolysis in commercial applications. Focus in research and development, for instance in future research with regard to pig manure valorization, should therefore be on sustainable products with high economic value and direct utilization potential.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000346540000012 Publication Date
Series Editor Series Title Abbreviated Series Title International Conference on BioMass (iconBM 2014), 4-7 May 2014, Florence, Italy / Ranzi, Eliseo [edit.]; et al.
Series Volume 37 Series Issue Edition
ISSN 978-88-95608-28-0 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 8 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:127547 Serial 6265
Permanent link to this record
 

 
Author Vodolazov, D.Y.; Peeters, F.M.
Title (up) Temporary cooling of quasiparticles and delay in voltage response of superconducting bridges after abruptly switching on the supercritical current Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 9 Pages 094504
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We revisit the problem of the dynamic response of a superconducting bridge after abruptly switching on the supercritical current. In contrast to previous theoretical works we take into account spatial gradients and use both the local temperature approach and the kinetic equation for the distribution function of quasiparticles. We find that the temperature dependence of the finite delay time t(d) in the voltage response is model dependent and relatively large t(d) is connected with temporary cooling of quasiparticles during decay of superconducting order parameter vertical bar Delta vertical bar in time. It turns out that the presence of even small inhomogeneities in the bridge or finite length of the homogenous bridge favors a local suppression of vertical bar Delta vertical bar during the dynamic response. It results in a decrease of the delay time, in comparison with the spatially uniform model, due to the diffusion of nonequilibrium quasiparticles from the region with locally suppressed vertical bar Delta vertical bar. In the case when the current density is maximal near the edge of a not very wide bridge the delay time is mainly connected with the time needed for the nucleation (entrance) of the first vortex and t(d) could be tuned by a weak external magnetic field. We also find that a short alternating current pulse (sinusoidlike) with zero time average may result in a nonzero time- averaged voltage response where its sign depends on the phase of the ac current.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342103600002 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 2 Open Access
Notes ; This work was partially supported by the Russian Foundation for Basic Research (Project No. 12-02-00509), by the Ministry of Education and Science of the Russian Federation (the agreement of August 27, 2013, No. 02.B.49.21.0003, between The Ministry of Education and Science of the Russian Federation and Lobachevsky State University of Nizhni Novgorod) and by the European Science Foundation (ESF) within the framework of the activity entitled “Exploring the Physics of Small Devices (EPSD)” (Project No. 4327). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:119908 Serial 3504
Permanent link to this record
 

 
Author Kao, K.-H.; Verhulst, A.S.; Van de Put, M.; Vandenberghe, W.G.; Sorée, B.; Magnus, W.; De Meyer, K.
Title (up) Tensile strained Ge tunnel field-effect transistors: k\cdot p material modeling and numerical device simulation Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 115 Issue 4 Pages 044505-44508
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Group IV based tunnel field-effect transistors generally show lower on-current than III-V based devices because of the weaker phonon-assisted tunneling transitions in the group IV indirect bandgap materials. Direct tunneling in Ge, however, can be enhanced by strain engineering. In this work, we use a 30-band k.p method to calculate the band structure of biaxial tensile strained Ge and then extract the bandgaps and effective masses at Gamma and L symmetry points in k-space, from which the parameters for the direct and indirect band-to-band tunneling (BTBT) models are determined. While transitions from the heavy and light hole valence bands to the conduction band edge at the L point are always bridged by phonon scattering, we highlight a new finding that only the light-holelike valence band is strongly coupling to the conduction band at the Gamma point even in the presence of strain based on the 30-band k.p analysis. By utilizing a Technology Computer Aided Design simulator equipped with the calculated band-to-band tunneling BTBT models, the electrical characteristics of tensile strained Ge point and line tunneling devices are self-consistently computed considering multiple dynamic nonlocal tunnel paths. The influence of field-induced quantum confinement on the tunneling onset is included. Our simulation predicts that an on-current up to 160 (260) mu A/mu m can be achieved along with on/off ratio > 10(6) for V-DD = 0.5V by the n-type (p-type) line tunneling device made of 2.5% biaxial tensile strained Ge. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000331210800113 Publication Date 2014-01-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 26 Open Access
Notes ; Authors would like to thank Dr. Mohammad Ali Pourghaderi for useful discussions on the nonparabolicity. Authors would also like to thank Professor Eddy Simoen and Dr. Yosuke Shimura for useful discussions about the validity of modeled bandgaps and effective masses. This work was also supported by IMEC's Industrial Affiliation Program. ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:115800 Serial 3505
Permanent link to this record
 

 
Author Gorlé, C.; Larsson, J.; Emory, M.; Iaccarino, G.
Title (up) The deviation from parallel shear flow as an indicator of linear eddy-viscosity model inaccuracy Type A1 Journal article
Year 2014 Publication Physics of fluids Abbreviated Journal Phys Fluids
Volume 26 Issue 5 Pages 051702
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A marker function designed to indicate in which regions of a generic flow field the results from linear eddy-viscosity turbulence models are plausibly inaccurate is introduced. The marker is defined to identify regions that deviate from parallel shear flow. For two different flow fields it is shown that these regions largely coincide with regions where the prediction of the Reynolds stress divergence is inaccurate. The marker therefore offers a guideline for interpreting results obtained from Reynolds-averaged Navier-Stokes simulations and provides a basis for the further development of turbulence model-form uncertainty quantification methods. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000337103900002 Publication Date 2014-05-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-6631;1089-7666; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.232 Times cited 19 Open Access
Notes Approved Most recent IF: 2.232; 2014 IF: 2.031
Call Number UA @ lucian @ c:irua:118385 Serial 684
Permanent link to this record
 

 
Author Mooij, L.; Perkisas, T.; Palsson, G.; Schreuders, H.; Wolff, M.; Hjorvarsson, B.; Bals, S.; Dam, B.
Title (up) The effect of microstructure on the hydrogenation of Mg/Fe thin film multilayers Type A1 Journal article
Year 2014 Publication International journal of hydrogen energy Abbreviated Journal Int J Hydrogen Energ
Volume 39 Issue 30 Pages 17092-17103
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanoconfined magnesium hydride can be simultaneously protected and thermodynamically destabilized when interfaced with materials such as Ti and Fe. We study the hydrogenation of thin layers of Mg (<14 nm) nanoconfined in one dimension within thin film Fe/Mg/Fe/Pd multilayers by the optical technique Hydrogenography. The hydrogenation of nanosized magnesium layers in Fe/Mg/Fe multilayers surprisingly shows the presence of multiple plateau pressures, whose nature is thickness dependent. In contrast, hydrogen desorption occurs via a single plateau which does not depend on the Mg layer thickness. From structural and morphological analyses with X-ray diffraction/reflectometry and cross-section TEM, we find that the Mg layer roughness is large when deposited on Fe and furthermore contains high-angle grain boundaries (GB's). When grown on Ti, the Mg layer roughness is low and no high-angle GB's are detected. From a Ti/Mg/Fe multilayer, in which the Mg layer is flat and has little or no GB's, we conclude that MgH2 is indeed destabilized by the interface with Fe. In this case, both the ab- and desorption plateau pressures are increased by a factor two compared to the hydrogenation of Mg within Ti/Mg/Ti multilayers. We hypothesize that the GB's in the Fe/Mg/Fe multilayer act as diffusion pathways for Pd, which is known to greatly alter the hydrogenation behavior of Mg when the two materials share an interface. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000343839000031 Publication Date 2014-09-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.582 Times cited 15 Open Access Not_Open_Access
Notes COST Action MP1103 Approved Most recent IF: 3.582; 2014 IF: 3.313
Call Number UA @ lucian @ c:irua:121175 Serial 3575
Permanent link to this record
 

 
Author Martinez, G.T.; de Backer, A.; Rosenauer, A.; Verbeeck, J.; Van Aert, S.
Title (up) The effect of probe inaccuracies on the quantitative model-based analysis of high angle annular dark field scanning transmission electron microscopy images Type A1 Journal article
Year 2014 Publication Micron Abbreviated Journal Micron
Volume 63 Issue Pages 57-63
Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)
Abstract Quantitative structural and chemical information can be obtained from high angle annular dark field scanning transmission electron microscopy (HAADF STEM) images when using statistical parameter estimation theory. In this approach, we assume an empirical parameterized imaging model for which the total scattered intensities of the atomic columns are estimated. These intensities can be related to the material structure or composition. Since the experimental probe profile is assumed to be known in the description of the imaging model, we will explore how the uncertainties in the probe profile affect the estimation of the total scattered intensities. Using multislice image simulations, we analyze this effect for Cs corrected and non-Cs corrected microscopes as a function of inaccuracies in cylindrically symmetric aberrations, such as defocus and spherical aberration of third and fifth order, and non-cylindrically symmetric aberrations, such as 2-fold and 3-fold astigmatism and coma.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000338402500011 Publication Date 2014-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0968-4328; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.98 Times cited 25 Open Access
Notes FWO (G.0393.11; G.0064.10; G.0374.13; G.0044.13); European Research Council under the 7th Framework Program (FP7); ERC GrantNo. 246791-COUNTATOMS and ERC Starting Grant No. 278510-VORTEX. A.R. thanks the DFG under contract number RO2057/8-1.The research leading to these results has received funding fromthe European Union 7th Framework Programme [FP7/2007-2013]under grant agreement no. 312483 (ESTEEM2).; esteem2ta ECASJO; Approved Most recent IF: 1.98; 2014 IF: 1.988
Call Number UA @ lucian @ c:irua:113857UA @ admin @ c:irua:113857 Serial 831
Permanent link to this record
 

 
Author de Backer, W.; Vos, W.; Van Holsbeke, C.; Vinchurkar, S.; Claes, R.; Hufkens, A.; Parizel, P.M.; Bedert, L.; de Backer, J.
Title (up) The effect of roflumilast in addition to LABA/LAMA/ICS treatment in COPD patients Type L1 Letter to the editor
Year 2014 Publication European Respiratory Journal Abbreviated Journal Eur Respir J
Volume 44 Issue 2 Pages 527-529
Keywords L1 Letter to the editor; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Antwerp Surgical Training, Anatomy and Research Centre (ASTARC); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos 000340017300029 Publication Date 2014-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0903-1936;1399-3003; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.569 Times cited 26 Open Access
Notes ; ; Approved Most recent IF: 10.569; 2014 IF: 7.636
Call Number UA @ lucian @ c:irua:117335 Serial 832
Permanent link to this record
 

 
Author Lao, M.; Eisterer, M.; Stadel, O.; Meledin, A.; Van Tendeloo, G.
Title (up) The effect of Y2O3 and YFeO3 additions on the critical current density of YBCO coated conductors Type P1 Proceeding
Year 2014 Publication 1-4 Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract The pinning mechanism of MOCVD-grown YBCO coated conductors with Y2O3 precipitates was investigated by angle-resolved transport measurement of Je in a wide range of temperature and magnetic fields. Aside from the Y2O3 nanoprecipitates, a-axis grains and threading dislocation along the c-axis were found in the YBCO layer. The Y2O3 precipitates are less effective pinning centers at lower temperature. The tapes with precipitates show a higher anisotropy with larger J(c) at H parallel to ab than H parallel to c. This behavior was attributed to the preferred alignment of the nanoprecipitates along the ab-plane.
Address
Corporate Author Thesis
Publisher Iop publishing ltd Place of Publication Bristol Editor
Language Wos 000350818300068 Publication Date 2014-05-12
Series Editor Series Title Abbreviated Series Title
Series Volume 507 Series Issue Edition
ISSN 1742-6596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes eurotapes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:125444 Serial 3577
Permanent link to this record
 

 
Author Anaf, W.
Title (up) The influence of particulate matter on cultural heritage : chemical characterisation of the interaction between the atmospheric environment and pigments Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 319 p.
Keywords Doctoral thesis; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:119329 Serial 8095
Permanent link to this record
 

 
Author Čukarić, N.A.; Tadić, M.Z.; Partoens, B.; Peeters, F.M.
Title (up) The interband optical absorption in silicon quantum wells : application of the 30-band k . p model Type A1 Journal article
Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 104 Issue 24 Pages 242103
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The interband optical absorption in Si/SiO2 quantum wells is calculated as function of the well width (W) and the evolution from an indirect to a direct gap material as function of the well width is investigated. In order to compute the electron states in the conduction band, the 30-band k . p model is employed, whereas the 6-band Luttinger-Kohn model is used for the hole states. We found that the effective direct band gap in the quantum well agrees very well with the W-2 scaling result of the single-band model. The interband matrix elements for linear polarized light oscillate with the quantum well width, which agrees qualitatively with a single band calculation. Our theoretical results indicate that the absorption can be maximized by a proper choice of the well width. However, the obtained absorption coefficients are at least an order of magnitude smaller than for a typical direct semiconductor even for a well width of 2 nm. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000337915000033 Publication Date 2014-06-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 1 Open Access
Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia, the Flemish fund for Scientific Research (FWO-Vl), and the Methusalem programme of the Flemish government. ; Approved Most recent IF: 3.411; 2014 IF: 3.302
Call Number UA @ lucian @ c:irua:118448 Serial 1689
Permanent link to this record
 

 
Author Battle, P.D.; Avdeev, M.; Hadermann, J.
Title (up) The interplay of microstructure and magnetism in La3Ni2SbO9 Type A1 Journal article
Year 2014 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem
Volume 220 Issue Pages 163-166
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract La3Ni2SbO9 adopts a perovskite-related structure in which the six-coordinate cation sites are occupied alternately by Ni2+ and a disordered arrangement of Ni2+/Sb5+. A polycrystalline sample has been studied by neutron diffraction in applied magnetic fields of 0 <= H/kOe <= 50 at 5 K. In 0 kOe, weak magnetic Bragg scattering consistent with the adoption of a G-type ferrimagnetic structure is observed; the ordered component of the magnetic moment was found to be 0.89(7) mu(B) per Ni2+ cation. This increased to 1.60(3) mu(B) in a field of 50 kOe. Transmission electron microscopy revealed variations in the Ni:Sb ratio across crystallites of the sample. It is proposed that these composition variations disrupt the magnetic superexchange interactions within the compound, leading to domain formation and a reduced average moment. The application of a magnetic field aligns the magnetisation vectors across the crystal and the average moment measured by neutron diffraction increases accordingly. The role played by variations in the local chemical composition in determining the magnetic properties invites comparison with the behaviour of relaxor ferroelectrics. (C) 2014 Elsevier Inc. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000343346100024 Publication Date 2014-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 13 Open Access
Notes Approved Most recent IF: 2.299; 2014 IF: 2.133
Call Number UA @ lucian @ c:irua:121134 Serial 3588
Permanent link to this record
 

 
Author Compernolle, T.; Van Passel, S.; Huisman, K.; Kort, P.
Title (up) The option to abandon : stimulating innovative groundwater remediation technologies characterized by technological uncertainty Type A1 Journal article
Year 2014 Publication Science Of The Total Environment Abbreviated Journal Sci Total Environ
Volume 496 Issue Pages 63-74
Keywords A1 Journal article; Economics
Abstract Many studies on technology adoption demonstrate that uncertainty leads to a postponement of investments by integrating a wait option in the economic analysis. The aim of this study however is to demonstrate how the investment in new technologies can be stimulated by integrating an option to abandon. Furthermore, this real option analysis not only considers the ex ante decision analysis of the investment in a new technology under uncertainty, but also allows for an ex post evaluation of the investment. Based on a case study regarding the adoption of an innovative groundwater remediation strategy, it is demonstrated that when the option to abandon the innovative technology is taken into account, the decision maker decides to invest in this technology, while at the same time it determines an optimal timing to abandon the technology if its operation proves to be inefficient. To reduce uncertainty about the effectiveness of groundwater remediation technologies, samples are taken. Our analysis shows that when the initial belief in an effective innovative technology is low, it is important that these samples provide correct information in order to justify the adoption of the innovative technology. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342245600009 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles
Impact Factor 4.9 Times cited 4 Open Access
Notes ; ; Approved Most recent IF: 4.9; 2014 IF: 4.099
Call Number UA @ admin @ c:irua:119931 Serial 6269
Permanent link to this record
 

 
Author Amini, M.N.; Dixit, H.; Saniz, R.; Lamoen, D.; Partoens, B.
Title (up) The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 6 Pages 2588-2596
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnM2O4 (M = Co, Rh, Ir) spinels are considered as a class of potential p-type transparent conducting oxides (TCOs). We report the formation energy of acceptor-like defects using first principles calculations with an advanced hybrid exchange-correlation functional (HSE06) within density functional theory (DFT). Due to the discrepancies between the theoretically obtained band gaps with this hybrid functional and the – scattered – experimental results, we also perform GW calculations to support the validity of the description of these spinels with the HSE06 functional. The considered defects are the cation vacancy and antisite defects, which are supposed to be the leading source of disorder in the spinel structures. We also discuss the band alignments in these spinels. The calculated formation energies indicate that the antisite defects ZnM (Zn replacing M, M = Co, Rh, Ir) and VZn act as shallow acceptors in ZnCo2O4, ZnRh2O4 and ZnIr2O4, which explains the experimentally observed p-type conductivity in those systems. Moreover, our systematic study indicates that the ZnIr antisite defect has the lowest formation energy in the group and it corroborates the highest p-type conductivity reported for ZnIr2O4 among the group of ZnM2O4 spinels. To gain further insight into factors affecting the p-type conductivity, we have also investigated the formation of localized small polarons by calculating the self-trapping energy of the holes.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000329926700040 Publication Date 2013-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 47 Open Access
Notes Fwo; Goa; Hercules Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:114829 Serial 2525
Permanent link to this record
 

 
Author Chen, D.; Goris, B.; Bleichrodt, F.; Heidari Mezerji, H.; Bals, S.; Batenburg, K.J.; de With, G.; Friedrich, H.
Title (up) The properties of SIRT, TVM, and DART for 3D imaging of tubular domains in nanocomposite thin-films and sections Type A1 Journal article
Year 2014 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 147 Issue Pages 137-148
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In electron tomography, the fidelity of the 3D reconstruction strongly depends on the employed reconstruction algorithm. In this paper, the properties of SIRT, TVM and DART reconstructions are studied with respect to having only a limited number of electrons available for imaging and applying different angular sampling schemes. A well-defined realistic model is generated, which consists of tubular domains within a matrix having slab-geometry. Subsequently, the electron tomography workflow is simulated from calculated tilt-series over experimental effects to reconstruction. In comparison with the model, the fidelity of each reconstruction method is evaluated qualitatively and quantitatively based on global and local edge profiles and resolvable distance between particles. Results show that the performance of all reconstruction methods declines with the total electron dose. Overall, SIRT algorithm is the most stable method and insensitive to changes in angular sampling. TVM algorithm yields significantly sharper edges in the reconstruction, but the edge positions are strongly influenced by the tilt scheme and the tubular objects become thinned. The DART algorithm markedly suppresses the elongation artifacts along the beam direction and moreover segments the reconstruction which can be considered a significant advantage for quantification. Finally, no advantage of TVM and DART to deal better with fewer projections was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000343157400015 Publication Date 2014-08-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 42 Open Access OpenAccess
Notes Fwo Approved Most recent IF: 2.843; 2014 IF: 2.436
Call Number UA @ lucian @ c:irua:119073 Serial 2729
Permanent link to this record
 

 
Author Ustarroz, J.; Altantzis, T.; Hammons, J.A.; Hubin, A.; Bals, S.; Terryn, H.
Title (up) The role of nanocluster aggregation, coalescence, and recrystallization in the electrochemical deposition of platinum nanostructures Type A1 Journal article
Year 2014 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 26 Issue 7 Pages 2396-2406
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the VolmerWeber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000334572300026 Publication Date 2014-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 55 Open Access Not_Open_Access
Notes FWO; contract no. FWOAL527 Approved Most recent IF: 9.466; 2014 IF: 8.354
Call Number UA @ lucian @ c:irua:116956 Serial 2916
Permanent link to this record
 

 
Author Wang, H.; Picot, T.; Houben, K.; Moorkens, T.; Grigg, J.; Van Haesendonck, C.; Biermans, E.; Bals, S.; Brown, S.A.; Vantomme, A.; Temst, K.; Van Bael, M.J.;
Title (up) The superconducting proximity effect in epitaxial Al/Pb nanocomposites Type A1 Journal article
Year 2014 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 27 Issue 1 Pages 015008-8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have investigated the superconducting properties of Pb nanoparticles with a diameter ranging from 8 to 20 nm, synthesized by Pb+ ion implantation in a crystalline Al matrix. A detailed structural characterization of the nanocomposites reveals the highly epitaxial relation between the Al crystalline matrix and the Pb nanoparticles. The Al/Pb nanocomposites display a single superconducting transition, with the critical temperature T-c increasing with the Pb content. The dependence of T-c on the Pb/Al volume ratio was compared with theoretical models of the superconducting proximity effect based on the bulk properties of Al and Pb. A very good correspondence with the strong-coupling proximity effect model was found, with an electron-phonon coupling constant in the Pb nanoparticles slightly reduced compared to bulk Pb. Our result differs from other studies on Pb nanoparticle based proximity systems where weak-coupling models were found to better describe the T-c dependence. We infer that the high interface quality resulting from the ion implantation synthesis method is a determining factor for the superconducting properties. Critical field and critical current measurements support the high quality of the nanocomposite superconducting films.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000328275000010 Publication Date 2013-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 2 Open Access Not_Open_Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO), the KU Leuven BOF Concerted Research Action programs (GOA/09/006, the KU Leuven BOF CREA/12/015 project, and GOA/14/007) and the EU FP7 program SPIRIT (227012). TP and KH are postdoctoral research fellow and doctoral fellow of the FWO. ; Approved Most recent IF: 2.878; 2014 IF: 2.325
Call Number UA @ lucian @ c:irua:112833 Serial 3599
Permanent link to this record
 

 
Author Adam, N.; Leroux, F.; Knapen, D.; Bals, S.; Blust, R.
Title (up) The uptake of ZnO and CuO nanoparticles in the water-flea Daphnia magna under acute exposure scenarios Type A1 Journal article
Year 2014 Publication Environmental pollution Abbreviated Journal Environ Pollut
Volume 194 Issue Pages 130-137
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Veterinary physiology and biochemistry
Abstract In this study the uptake of ZnO and CuO nanoparticles by Daphnia magna was tested. Daphnids were exposed during 48 h to acute concentrations of the nanoparticles and corresponding metal salts. The Daphnia zinc and copper concentration was measured and the nanoparticles were localized using electron microscopy. The aggregation and dissolution in the medium was characterized. A fast dissolution of ZnO in the medium was observed, while most CuO formed large aggregates and only a small fraction dissolved. The Daphnia zinc concentration was comparable for the nanoparticles and salts. Contrarily, a much higher Daphnia copper concentration was observed in the CuO exposure, compared to the copper salt. CuO nanoparticles adsorbed onto the carapace and occurred in the gut but did not internalize in the tissues. The combined dissolution and uptake results indicate that the toxicity of both nanoparticle types was caused by metal ions dissolved from the particles in the medium.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000342530800016 Publication Date 2014-08-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.099 Times cited 45 Open Access Not_Open_Access
Notes ; We would like to thank Valentine Mubiana and Steven Joosen (Sphere, UA) for performing the ICP-OES and ICP-MS measurements and Prof. Dr. Gustaaf Van Tendeloo for making the collaboration between the EMAT and Sphere group possible. Additional thanks go to the European Commission for funding this work through the project ENNSATOX (NMP4-SL-2009-229244). ; Approved Most recent IF: 5.099; 2014 IF: 4.143
Call Number UA @ lucian @ c:irua:118326 Serial 3823
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Ealet, B.; Pourtois, G.; Chiappe, D.; Cinquanta, E.; Grazianetti, C.; Fanciulli, M.; Molle, A.; Afanas’ev, V.V.; Stesmans, A.;
Title (up) Theoretical aspects of graphene-like group IV semiconductors Type A1 Journal article
Year 2014 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 291 Issue Pages 98-103
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Silicene and germanene are the silicon and germanium counterparts of graphene, respectively. Recent experimental works have reported the growth of silicene on (1 1 1)Ag surfaces with different atomic configurations, depending on the growth temperature and surface coverage. We first theoretically study the structural and electronic properties of silicene on (1 1 1) Ag surfaces, focusing on the (4 x 4) silicene/Ag structure. Due to symmetry breaking in the silicene layer (nonequivalent number of top and bottom Si atoms), the corrugated silicene layer, with the Ag substrate removed, is predicted to be semiconducting, with a computed energy bandgap of about 0.3 eV. However, the hybridization between the Si 3p orbitals and the Ag 5s orbital in the silicene/(1 1 1)Ag slab model leads to an overall metallic system, with a distribution of local electronic density of states, which is related to the slightly disordered structure of the silicene layer on the (1 1 1)Ag surface. We next study the interaction of silicene and germanene with different hexagonal non-metallic substrates, namely ZnS and ZnSe. On reconstructed (0 0 0 1)ZnS or ZnSe surfaces, which should be more energetically stable for very thin layers, silicene and germanene are found to be semiconducting. Remarkably, the nature and magnitude of their energy bandgap can be controlled by an out-of-plane electric field, an important finding for the potential use of these materials in nanoelectronic devices. (C) 2013 Elsevier B. V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000329327700022 Publication Date 2013-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 20 Open Access
Notes Approved Most recent IF: 3.387; 2014 IF: 2.711
Call Number UA @ lucian @ c:irua:113765 Serial 3603
Permanent link to this record
 

 
Author Neek-Amal, M.; Xu, P.; Schoelz, J.K.; Ackerman, M.L.; Barber, S.D.; Thibado, P.M.; Sadeghi, A.; Peeters, F.M.
Title (up) Thermal mirror buckling in freestanding graphene locally controlled by scanning tunnelling microscopy Type A1 Journal article
Year 2014 Publication Nature communications Abbreviated Journal Nat Commun
Volume 5 Issue Pages 4962
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Knowledge of and control over the curvature of ripples in freestanding graphene are desirable for fabricating and designing flexible electronic devices, and recent progress in these pursuits has been achieved using several advanced techniques such as scanning tunnelling microscopy. The electrostatic forces induced through a bias voltage (or gate voltage) were used to manipulate the interaction of freestanding graphene with a tip (substrate). Such forces can cause large movements and sudden changes in curvature through mirror buckling. Here we explore an alternative mechanism, thermal load, to control the curvature of graphene. We demonstrate thermal mirror buckling of graphene by scanning tunnelling microscopy and large-scale molecular dynamic simulations. The negative thermal expansion coefficient of graphene is an essential ingredient in explaining the observed effects. This new control mechanism represents a fundamental advance in understanding the influence of temperature gradients on the dynamics of freestanding graphene and future applications with electro-thermal-mechanical nanodevices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000342984800018 Publication Date 2014-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 36 Open Access
Notes ; Financial support for this study was provided, in part, by the Office of Naval Research under grant N00014-10-1-0181, the National Science Foundation under grant DMR-0855358, the EU-Marie Curie IIF postdoc Fellowship/299855 (for M. N.-A.), the ESF-EuroGRAPHENE project CONGRAN, the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish Government. M.N.-A. has also been supported partially by BOF project of University of Antwerp number 28033. ; Approved Most recent IF: 12.124; 2014 IF: 11.470
Call Number UA @ lucian @ c:irua:121121 Serial 3628
Permanent link to this record
 

 
Author Engelmann, Y.; Bogaerts, A.; Neyts, E.C.
Title (up) Thermodynamics at the nanoscale : phase diagrams of nickel-carbon nanoclusters and equilibrium constants for face transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue Pages 11981-11987
Keywords A1 Journal article; PLASMANT
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickelcarbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickelcarbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:119408 Serial 3636
Permanent link to this record
 

 
Author Engelmann; Bogaerts, A.; Neyts, E.C.
Title (up) Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions Type A1 Journal article
Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 6 Issue 20 Pages 11981-11987
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343000800049 Publication Date 2014-07-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 20 Open Access
Notes Approved Most recent IF: 7.367; 2014 IF: 7.394
Call Number UA @ lucian @ c:irua:121106 Serial 3637
Permanent link to this record
 

 
Author Leusink, D.P.; Coneri, F.; Hoek, M.; Turner, S.; Idrissi, H.; Van Tendeloo, G.; Hilgenkamp, H.
Title (up) Thin films of the spin ice compound Ho2Ti2O7 Type A1 Journal article
Year 2014 Publication APL materials Abbreviated Journal Apl Mater
Volume 2 Issue 3 Pages 032101-32107
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The pyrochlore compounds Ho2Ti2O7 and Dy2Ti2O7 show an exotic form of magnetism called the spin ice state, resulting from the interplay between geometrical frustration and ferromagnetic coupling. A fascinating feature of this state is the appearance of magnetic monopoles as emergent excitations above the degenerate ground state. Over the past years, strong effort has been devoted to the investigation of these monopoles and other properties of the spin ice state in bulk crystals. Here, we report the fabrication of Ho2Ti2O7 thin films using pulsed laser deposition on yttria-stabilized ZrO2 substrates. We investigated the structural properties of these films by X-ray diffraction, scanning transmission electron microscopy, and atomic force microscopy, and the magnetic properties by vibrating sample magnetometry at 2 K. The films not only show a high crystalline quality, but also exhibit the hallmarks of a spin ice: a pronounced magnetic anisotropy and an intermediate plateau in the magnetization along the [111] crystal direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000334220300002 Publication Date 2014-03-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2166-532X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.335 Times cited 18 Open Access
Notes The authors acknowledge support from the Dutch FOM and NWO foundations and from the European Union under the Framework 7 program under a contract from an Integrated Infrastructure Initiative (Reference 312483 ESTEEM2). G.V.T. acknowledges the ERC Grant N246791- COUNTATOMS. S.T. gratefully acknowledges financial support from the Fund for Scientific Research Flanders (FWO). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21. The microscope used in this study was partially financed by the Hercules Foundation of the Flemish Government. The authors acknowledge fruitful interactions with A. Brinkman, M. G. Blamire, M. Egilmez, F. J. G. Roesthuis, J. N. Beukers, C. G. Molenaar, M. Veldhorst, and X. Renshaw Wang; esteem2_ta Approved Most recent IF: 4.335; 2014 IF: NA
Call Number UA @ lucian @ c:irua:115555 Serial 3641
Permanent link to this record
 

 
Author Bals, S.; Goris, B.; Liz-Marzan, L.M.; Van Tendeloo, G.
Title (up) Three-dimensional characterization of noble-metal nanoparticles and their assemblies by electron tomography Type A1 Journal article
Year 2014 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 53 Issue 40 Pages 10600-10610
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract New developments in the field of nanomaterials drive the need for quantitative characterization techniques that yield information down to the atomic scale. In this Review, we focus on the three-dimensional investigations of metal nanoparticles and their assemblies by electron tomography. This technique has become a versatile tool to understand the connection between the properties and structure or composition of nanomaterials. The different steps of an electron tomography experiment are discussed and we show how quantitative three-dimensional information can be obtained even at the atomic scale.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000342761500006 Publication Date 2014-08-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 58 Open Access OpenAccess
Notes 267867 Plasmaquo; 246791 Countatoms; 335078 Colouratom; 262348 Esmi; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 11.994; 2014 IF: 11.261
Call Number UA @ lucian @ c:irua:121093 Serial 3646
Permanent link to this record
 

 
Author Goris, B.; Turner, S.; Bals, S.; Van Tendeloo, G.
Title (up) Three-dimensional valency mapping in ceria nanocrystals Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 10 Pages 10878-10884
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Using electron tomography combined with electron energy loss spectroscopy (EELS), we are able to map the valency of the Ce ions in CeO2-x nanocrystals in three dimensions. Our results show a clear facet-dependent reduction shell at the surface of ceria nanoparticles; {111} surface facets show a low surface reduction, whereas at {001} surface facets, the cerium ions are more likely to be reduced over a larger surface shell. Our generic tomographic technique allows a full 3D data cube to be reconstructed, containing an EELS spectrum in each voxel. This possibility enables a three-dimensional investigation of a plethora of material-specific physical properties such as valency, chemical composition, oxygen coordination, or bond lengths, triggering the synthesis of nanomaterials with improved properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000343952600126 Publication Date 2014-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 85 Open Access OpenAccess
Notes 335078 Colouratom; 246791 Countatoms; Fwo; 312483 Esteem2; esteem2jra4; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:121219 Serial 3656
Permanent link to this record
 

 
Author Verbruggen, S.
Title (up) TiO2 gas phase photocatalysis from morphological design to plasmonic enhancement Type Doctoral thesis
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 173 p.
Keywords Doctoral thesis; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-5728-441-0 Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:116937 Serial 5998
Permanent link to this record
 

 
Author de Sena, S.H.R.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title (up) Topological confinement in trilayer graphene Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 3 Pages 035420-35425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We calculate the spectrum of states that are localized at the interface between two regions of opposite bias in trilayer graphene (TLG). These potential profiles, also known as potential kinks, have been predicted to support two different branches of localized states for the case of bilayer graphene, and show similarities to the surface states of topological insulators. On the other hand, we found that ABC stacked TLG exhibits three different unidimensional branches of states in each valley that are confined to the kink interface. They have the property E(k(y)) = -E(-k(y)) when belonging to the same valley and E-K(k(y)) = -E-K' (-k(y)). A kink-antikink potential profile opens a gap in the spectrum of these one-dimensional states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332220800005 Publication Date 2014-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 4 Open Access
Notes ; This work was supported by the Brazilian Council for Research (CNPq-PRONEX), the Flemish Science Foundation (FWO-Vl), and the Bilateral project between CNPq and FWO-Vl and the Brazilian program Science Without Borders (CsF). ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:115830 Serial 3676
Permanent link to this record
 

 
Author Yan, Y.; Liao, Z.M.; Ke, X.; Van Tendeloo, G.; Wang, Q.; Sun, D.; Yao, W.; Zhou, S.; Zhang, L.; Wu, H.C.; Yu, D.P.;
Title (up) Topological surface state enhanced photothermoelectric effect in Bi2Se3 nanoribbons Type A1 Journal article
Year 2014 Publication Nano letters Abbreviated Journal Nano Lett
Volume 14 Issue 8 Pages 4389-4394
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The photothermoelectric effect in topological insulator Bi2Se3 nanoribbons is studied. The topological surface states are excited to be spin-polarized by circularly polarized light. Because the direction of the electron spin is locked to its momentum for the spin-helical surface states, the photothermoelectric effect is significantly enhanced as the oriented motions of the polarized spins are accelerated by the temperature gradient. The results are explained based on the microscopic mechanisms of a photon induced spin transition from the surface Dirac cone to the bulk conduction band. The as-reported enhanced photothermoelectric effect is expected to have potential applications in a spin-polarized power source.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000340446200028 Publication Date 2014-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access
Notes European Research Council under the Seventh Framework Program (FP7); ERC Advanced Grant No. 246791-COUNTATOMS. Approved Most recent IF: 12.712; 2014 IF: 13.592
Call Number UA @ lucian @ c:irua:118128 Serial 3678
Permanent link to this record
 

 
Author Heyer, S.; Janssen, W.; Turner, S.; Lu, Y.-G.; Yeap, W.S.; Verbeeck, J.; Haenen, K.; Krueger, A.
Title (up) Toward deep blue nano hope diamonds : heavily boron-doped diamond nanoparticles Type A1 Journal article
Year 2014 Publication ACS nano Abbreviated Journal Acs Nano
Volume 8 Issue 6 Pages 5757-5764
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 1060 nm with a boron content of approximately 2.3 × 1021 cm3. Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000338089200039 Publication Date 2014-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851;1936-086X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 71 Open Access
Notes the Research Foundation Flanders (FWO-Vlaanderen) (G.0555.10N;G.0568.10N; G.0456.12; G0044.13N and a postdoctoral scholarship for S.T.); EU FP7 through Marie Curie ITN “MATCON” (PITNGA-127 2009-238201)the Collaborative Project “DINAMO” (No. 245122) Integrated Infrastructure Initiative, Reference No. 312483-ESTEEM2.; esteem2_jra3 Approved Most recent IF: 13.942; 2014 IF: 12.881
Call Number UA @ lucian @ c:irua:117599 Serial 3683
Permanent link to this record
 

 
Author Spyrou, K.; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.;
Title (up) Towards Novel Multifunctional Pillared Nanostructures: Effective Intercalation of Adamantylamine in Graphene Oxide and Smectite Clays Type A1 Journal article
Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 24 Issue 37 Pages 5841-5850
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Multifunctional pillared materials are synthesized by the intercalation of cage-shaped adamantylamine (ADMA) molecules into the interlayer space of graphite oxide (GO) and aluminosilicate clays. The physicochemical and structural properties of these hybrids, determined by X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman and X-ray photoemission (XPS) spectroscopies and transmission electron microscopy (TEM) show that they can serve as tunable hydrophobic/hydrophilic and stereospecific nanotemplates. Thus, in ADMA-pillared clay hybrids, the phyllomorphous clay provides a hydrophilic nanoenvironment where the local hydrophobicity is modulated by the presence of ADMA moieties. On the other hand, in the ADMA-GO hybrid, both the aromatic rings of GO sheets and the ADMA molecules define a hydrophobic nanoenvironment where sp(3)-oxo moieties (epoxy, hydroxyl and carboxyl groups), present on GO, modulate hydrophilicity. As test applications, these pillared nanostructures are capable of selective/stereospecific trapping of small chlorophenols or can act as cytotoxic agents.
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000342794500008 Publication Date 2014-07-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 19 Open Access
Notes Approved Most recent IF: 12.124; 2014 IF: 11.805
Call Number UA @ lucian @ c:irua:121085 Serial 3686
Permanent link to this record
 

 
Author Goris, B.; Freitag, B.; Zanaga, D.; Bladt, E.; Altantzis, T.; Ringnalda, J.; Bals, S.
Title (up) Towards quantitative EDX results in 3 dimensions Type A1 Journal article
Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 20 Issue S:3 Pages 766-767
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2014-08-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited Open Access OpenAccess
Notes 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877
Call Number UA @ lucian @ c:irua:125381 Serial 3687
Permanent link to this record