|   | 
Details
   web
Records
Author Shakouri, K.; Masir, M.R.; Jellal, A.; Choubabi, E.B.; Peeters, F.M.
Title (down) Effect of spin-orbit couplings in graphene with and without potential modulation Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 11 Pages 115408-115409
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure, and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Perot resonant modes in the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover, it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their motion while this is not the case for the other nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000323944600005 Publication Date 2013-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN. The generous support provided by the Saudi Center for Theoretical Physics (SCTP) is highly appreciated by A.J. and E.B.C. They also thank the Deanship of Scientific Research at King Faisal University for funding this work under the Project No. 130193. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:110716 Serial 836
Permanent link to this record
 

 
Author Montanarella, F.; Altantzis, T.; Zanaga, D.; Rabouw, F.T.; Bals, S.; Baesjou, P.; Vanmaekelbergh, D.; van Blaaderen, A.
Title (down) Composite Supraparticles with Tunable Light Emission Type A1 Journal article
Year 2017 Publication ACS nano Abbreviated Journal Acs Nano
Volume 11 Issue 11 Pages 9136-9142
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Robust luminophores emitting light with broadly tunable colors are desirable in many applications such as light-emitting diode (LED)-based lighting, displays, integrated optoelectronics and biology. Nanocrystalline quantum dots with multicolor emission, from core- and shell-localized excitons, as well as solid layers of mixed quantum dots that emit different colors have been proposed. Here, we report on colloidal supraparticles that are composed of three types of Cd(Se,ZnS) core/(Cd,Zn)S shell nanocrystals with emission in the red, green, and blue. The emission of the supraparticles can be varied from pure to composite colors over the entire visible region and finetuned into variable shades of white light by mixing the nanocrystals in controlled proportions. Our approach results in supraparticles with sizes spanning the colloidal domain and beyond that combine versatility and processability with a broad, stable, and tunable emission, promising applications in lighting devices and biological research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000411918200062 Publication Date 2017-09-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.942 Times cited 36 Open Access OpenAccess
Notes We thank J. J. Geuchies for help with the optical analysis, W. Vlug for providing silica particles filled with RITC, J. D. Meeldijk for his assistance with SE-STEM measurements, E. B. van der Wee for help with the calculation of the radial distribution functions, and M. van Huis and S. Dussi for very fruitful discussions. This work was supported by the European Comission via the Marie-Sklodowska Curie action Phonsi (H2020-MSCA-ITN-642656). D.V. wishes to thank the Dutch FOM (program DDC13), NWO−CW (Toppunt 718.015.002), and the European Research Council under HORIZON 2020 (grant 692691 FIRSTSTEP) for financial support. A.v.B. and F.M. acknowledge partial funding from the European Research Council under the European Union’s Seventh Framework Programme (FP-2007-2013)/ERC advanced grant agreement 291667: HierarSACol. S.B. and D.Z. acknowledge financial support from the European Research Council (starting grant no. COLOURATOM 335078), and T.A. acknowledges funding from the Research Foundation Flanders (FWO, Belgium) through a postdoctoral grant. ECAS_Sara (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 13.942
Call Number EMAT @ emat @c:irua:146095UA @ admin @ c:irua:146095 Serial 4732
Permanent link to this record
 

 
Author Villani, K.; Kirschhock, C.E.A.; Liang, D.; Van Tendeloo, G.; Martens, J.A.
Title (down) Catalytic carbon oxidation over ruthenium-based catalysts Type A1 Journal article
Year 2006 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
Volume 45 Issue 19 Pages 3106-3109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Weinheim Editor
Language Wos 000237533400016 Publication Date 2006-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851;1521-3773; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 11.994 Times cited 36 Open Access
Notes Approved Most recent IF: 11.994; 2006 IF: 10.232
Call Number UA @ lucian @ c:irua:59449 Serial 291
Permanent link to this record
 

 
Author Biró, L.P.; Khanh, N.Q.; Vértesy, Z.; Horváth, Z.E.; Osváth, Z.; Koós, A.; Gyulai, J.; Kocsonya, A.; Kónya, Z.; Zhang, X.B.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.;
Title (down) Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD Type A1 Journal article
Year 2002 Publication Materials science and engineering: part C: biomimetic materials T2 – EMRS Spring Meeting, JUN 05-08, 2001, STRASBOURG, FRANCE Abbreviated Journal Mat Sci Eng C-Mater
Volume 19 Issue 1-2 Pages 9-13
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Multiwall carbon nanotubes grown by the catalytic decomposition of acetylene over supported Co catalyst were subjected to wet and dry oxidation in order to remove the unwanted products and the catalyst traces. The effects of the purification treatment on the Co content was monitored by physical methods: Rutherford Backscattering Spectrometry (RBS). Particle Induced X-Ray Emission (PIXE) and X-Ray Fluorescence (XRF). The purified products were investigated by microscopic methods: TEM. Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and STM. The KMnO4/H2SO4 aqueous oxidation procedure was found to be effective in reducing the Co content while damaging only moderately the outer wall of the nanotubes. Treatment in HNO3/H2SO4 yields a bucky-paper like product and produces the increase of the Si and S content of the sample. (C) 2002 Elsevier Science B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000173080700003 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.164 Times cited 36 Open Access
Notes Approved Most recent IF: 4.164; 2002 IF: 0.734
Call Number UA @ lucian @ c:irua:102835 Serial 289
Permanent link to this record
 

 
Author Li, L.; Kong, X.; Leenaerts, O.; Chen, X.; Sanyal, B.; Peeters, F.M.
Title (down) Carbon-rich carbon nitride monolayers with Dirac cones : Dumbbell C4N Type A1 Journal article
Year 2017 Publication Carbon Abbreviated Journal Carbon
Volume 118 Issue 118 Pages 285-290
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) carbon nitride materials play an important role in energy-harvesting, energy-storage and environmental applications. Recently, a new carbon nitride, 2D polyaniline (C3N) was proposed [PNAS 113 (2016) 7414-7419]. Based on the structure model of this C3N monolayer, we propose two new carbon nitride monolayers, named dumbbell (DB) C4N-I and C4N-II. Using first-principles calculations, we systematically study the structure, stability, and band structure of these two materials. In contrast to other carbon nitride monolayers, the orbital hybridization of the C/N atoms in the DB C4N monolayers is sp(3). Remarkably, the band structures of the two DB C4N monolayers have a Dirac cone at the K point and their Fermi velocities (2.6/2.4 x 10(5) m/s) are comparable to that of graphene. This makes them promising materials for applications in high-speed electronic devices. Using a tight-binding model, we explain the origin of the Dirac cone. (C) 2017 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000401120800033 Publication Date 2017-03-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 36 Open Access
Notes Approved Most recent IF: 6.337
Call Number UA @ lucian @ c:irua:143726 Serial 4588
Permanent link to this record
 

 
Author Khalilov, U.; Neyts, E.C.; Pourtois, G.; van Duin, A.C.T.
Title (down) Can we control the thickness of ultrathin silica layers by hyperthermal silicon oxidation at room temperature? Type A1 Journal article
Year 2011 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 115 Issue 50 Pages 24839-24848
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Using reactive molecular dynamics simulations by means of the ReaxFF potential, we studied the growth mechanism of ultrathin silica (SiO2) layers during hyperthermal oxidation at room temperature. Oxidation of Si(100){2 × 1} surfaces by both atomic and molecular oxygen was investigated in the energy range 15 eV. The oxidation mechanism, which differs from thermal oxidation, is discussed. In the case of oxidation by molecular O2, silica is quickly formed and the thickness of the formed layers remains limited compared to oxidation by atomic oxygen. The Si/SiO2 interfaces are analyzed in terms of partial charges and angle distributions. The obtained structures of the ultrathin SiO2 films are amorphous, including some intrinsic defects. This study is important for the fabrication of silica-based devices in the micro- and nanoelectronics industry, and more specifically for the fabrication of metal oxide semiconductor devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297947700050 Publication Date 2011-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 36 Open Access
Notes Approved Most recent IF: 4.536; 2011 IF: 4.805
Call Number UA @ lucian @ c:irua:94303 Serial 273
Permanent link to this record
 

 
Author Mahieu, S.; Ghekiere, P.; de Winter, G.; de Gryse, R.; Depla, D.; Van Tendeloo, G.; Lebedev, O.I.
Title (down) Biaxially aligned titanium nitride thin films deposited by reactive unbalanced magnetron sputtering Type A1 Journal article
Year 2006 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 200 Issue 8 Pages 2764-2768
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000235202100023 Publication Date 2004-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 36 Open Access
Notes IWT-Vlaanderen Approved Most recent IF: 2.589; 2006 IF: 1.559
Call Number UA @ lucian @ c:irua:56554 Serial 229
Permanent link to this record
 

 
Author Erbe, M.; Hänisch, J.; Hühne, R.; Freudenberg, T.; Kirchner, A.; Molina-Luna, L.; Damm, C.; Van Tendeloo, G.; Kaskel, S.; Schultz, L.; Holzapfel, B.
Title (down) BaHfO3artificial pinning centres in TFA-MOD-derived YBCO and GdBCO thin films Type A1 Journal article
Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 28 Issue 28 Pages 114002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Chemical solution deposition (CSD) is a promising way to realize REBa2Cu3O7−x (REBCO;RE = rare earth (here Y, Gd))-coated conductors with high performance in applied magnetic fields. However, the preparation process contains numerous parameters which need to be tuned to achieve high-quality films. Therefore, we investigated the growth of REBCO thin films containing nanometre-scale BaHfO3 (BHO) particles as pinning centres for magnetic flux lines, with emphasis on the influence of crystallization temperature and substrate on the microstructure and superconductivity. Conductivity, microscopy and x-ray investigations show an enhanced performance of BHO nano-composites in comparison to pristine REBCO. Further, those measurements reveal the superiority of GdBCO to YBCO—e.g. by inductive critical current densities, Jc, at self-field and 77 K. YBCO is outperformed by more than 1 MA cm−2 with Jc values of up to 5.0 MA cm−2 for 265 nm thick layers of GdBCO(BHO) on lanthanum aluminate. Transport in-field Jc measurements demonstrate high pinning force maxima of around 4 GN m−3 for YBCO(BHO) and GdBCO(BHO). However, the irreversibility fields are appreciably higher for GdBCO. The critical temperature was not significantly reduced upon BHO addition to both YBCO and GdBCO, indicating a low tendency for Hf diffusion into the REBCO matrix. Angular-dependent Jc measurements show a reduction of the anisotropy in the same order of magnitude for both REBCO compounds. Theoretical models suggest that more than one sort of pinning centre is active in all CSD films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000366193000003 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 36 Open Access
Notes Experimental work was mainly done at IFW Dresden. We thank Juliane Scheiter and Dr Jens Ingolf Mönch of IFW Dresden for technical assistance. The research leading to these results received funding from EUROTAPES, a collaborative project funded by the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. NMP-LA-2012-280 432. L Molina-Luna and G Van Tendeloo acknowledge funding from the European Research Council (ERC grant nr. 24 691-COUNTATOMS). Approved Most recent IF: 2.878; 2015 IF: 2.325
Call Number c:irua:129200 Serial 3941
Permanent link to this record
 

 
Author Saniz, R.; Xu, Y.; Matsubara, M.; Amini, M.N.; Dixit, H.; Lamoen, D.; Partoens, B.
Title (down) A simplified approach to the band gap correction of defect formation energies : Al, Ga, and In-doped ZnO Type A1 Journal article
Year 2013 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 74 Issue 1 Pages 45-50
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract The calculation of defect levels in semiconductors within a density functional theory approach suffers greatly from the band gap problem. We propose a band gap correction scheme that is based on the separation of energy differences in electron addition and relaxation energies. We show that it can predict defect levels with a reasonable accuracy, particularly in the case of defects with conduction band character, and yet is simple and computationally economical. We apply this method to ZnO doped with group III elements (Al, Ga, In). As expected from experiment, the results indicate that Zn substitutional doping is preferred over interstitial doping in Al, Ga, and In-doped ZnO, under both zinc-rich and oxygen-rich conditions. Further, all three dopants act as shallow donors, with the +1 charge state having the most advantageous formation energy. Also, doping effects on the electronic structure of ZnO are sufficiently mild so as to affect little the fundamental band gap and lowest conduction bands dispersion, which secures their n-type transparent conducting behavior. A comparison with the extrapolation method based on LDA+U calculations and with the HeydScuseriaErnzerhof hybrid functional (HSE) shows the reliability of the proposed scheme in predicting the thermodynamic transition levels in shallow donor systems.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000311062500009 Publication Date 2012-08-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 36 Open Access
Notes Fwo; Bof-Nio Approved Most recent IF: 2.059; 2013 IF: 1.594
Call Number UA @ lucian @ c:irua:101782 Serial 3004
Permanent link to this record
 

 
Author Maignan, A.; Van Tendeloo, G.; Hervieu, M.; Michel, C.; Raveau, B.
Title (down) A new “1212” mercury-based 90K superconductor: (Hg1-xMx)O6+y Type A1 Journal article
Year 1993 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 212 Issue Pages 239-244
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993LL33900033 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.942 Times cited 36 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:6846 Serial 2302
Permanent link to this record
 

 
Author Leus, K.; Liu, Y.-Y.; Meledina, M.; Turner, S.; Van Tendeloo, G.; van der Voort, P.
Title (down) A MoVI grafted metal organic framework : synthesis, characterization and catalytic investigations Type A1 Journal article
Year 2014 Publication Journal of catalysis Abbreviated Journal J Catal
Volume 316 Issue Pages 201-209
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We present the post-modification of a gallium based Metal Organic Framework, COMOC-4, with a Mo-complex. The resulting Mo@COMOC-4 was characterized by means of N2 sorption, XRPD, DRIFT, TGA, XRF, XPS and TEM analysis. The results demonstrate that even at high Mo-complex loadings on the framework, no aggregation or any Mo or Mo oxide species are formed. Moreover, the Mo@COMOC-4 was evaluated as a catalyst in the epoxidation of cyclohexene, cyclooctene and cyclododecene employing TBHP in decane as oxidant. The post-modified COMOC-4 exhibits a very high selectivity toward the epoxide (up to 100%). Regenerability and stability tests have been carried out demonstrating that the catalyst can be recycled without leaching of Mo or loss of crystallinity.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, Calif. Editor
Language Wos 000340853800020 Publication Date 2014-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-9517; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.844 Times cited 36 Open Access
Notes European Research Council under the Seventh Framework Program (FP7); ; ERC Grant No. 246791 – COUNTATOMS; Hercules; FWO Approved Most recent IF: 6.844; 2014 IF: 6.921
Call Number UA @ lucian @ c:irua:117416 Serial 3546
Permanent link to this record
 

 
Author Vinchurkar, S.; De Backer, L.; Vos, W.; Van Holsbeke, C.; de Backer, J.; de Backer, W.
Title (down) A case series on lung deposition analysis of inhaled medication using functional imaging based computational fluid dynamics in asthmatic patients : effect of upper airway morphology and comparison with in vivo data Type A1 Journal article
Year 2012 Publication Inhalation Toxicology Abbreviated Journal Inhal Toxicol
Volume 24 Issue 2 Pages 81-88
Keywords A1 Journal article; Pharmacology. Therapy; Biophysics and Biomedical Physics; Condensed Matter Theory (CMT); Laboratory Experimental Medicine and Pediatrics (LEMP)
Abstract Context: Asthma affects 20 million Americans resulting in an economic burden of approximately $18 billion in the US alone (Allergies and Asthma Foundation 2000; National Center for Environmental Health (NCEH) 1999). Research studies based on differences in patient-specific airway morphology for asthma and the associated effect on deposition of inhaled aerosols are currently not available in the literature. Therefore, the role of morphological variations such as upper airway (extrathoracic) occlusion is not well documented. Objective: Functional imaging based computational fluid dynamics (CFD) of the respiratory airways for five asthmatic subjects is performed in this study using computed tomography (CT) based patient-specific airway models and boundary conditions. Methods: CT scans for 5 asthma patients were used to reconstruct 3D lung models using segmentation software. An averaged inhalation profile and patient-specific lobar flow distribution were used to perform the simulation. The simulations were used to obtain deposition for BDP/Formoterol (R) HFA pMDI in the patient-specific airway models. Results: The lung deposition obtained using CFD was in excellent agreement with available in vivo data using the same product. Specifically, CFD resulted in 30% lung deposition, whereas in vivo lung deposition was reported to be approximately 31%. Conclusion: It was concluded that a combination of patient-specific airway models and lobar boundary conditions can be used to obtain accurate lung deposition estimates. Lower lung deposition can be expected for patients with higher extrathoracic resistance. Novel respiratory drug delivery devices need to accommodate population subgroups based on these morphological and anatomical differences in addition to subject age.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000299744800001 Publication Date 2012-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0895-8378;1091-7691; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.751 Times cited 36 Open Access
Notes ; ; Approved Most recent IF: 1.751; 2012 IF: 1.894
Call Number UA @ lucian @ c:irua:96238 Serial 286
Permanent link to this record