|   | 
Details
   web
Records
Author Dabaghmanesh, S.; Saniz, R.; Amini, M.N.; Lamoen, D.; Partoens, B.
Title (down) Perovskite transparent conducting oxides : an ab initio study Type A1 Journal article
Year 2013 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 25 Issue 41 Pages 415503
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We present an ab initio study of the electronic structure and of the formation energies of various point defects in BaSnO3 and SrGeO3. We show that La and Y impurities substituting Ba or Sr are shallow donors with a preferred 1 + charge state. These defects have a low formation energy within all the suitable equilibrium growth conditions considered. Oxygen vacancies behave as shallow donors as well, preferring the 2 + charge state. Their formation energies, however, are higher in most growth conditions, indicating a limited contribution to conductivity. The calculated electron effective mass in BaSnO3, with a value of 0.21 me, and the very high mobility reported recently in La-doped BaSnO3 single-crystals, suggest that remarkably low scattering rates can be achieved in the latter. In the case of SrGeO3, our results point to carrier density and mobility values in the low range for typical polycrystalline TCOs, in line with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000324920400011 Publication Date 2013-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 17 Open Access
Notes FWO;Hercules Approved Most recent IF: 2.649; 2013 IF: 2.223
Call Number UA @ lucian @ c:irua:110495 Serial 2574
Permanent link to this record
 

 
Author da Pieve, F.; Di Matteo, S.; Rangel, T.; Giantomassi, M.; Lamoen, D.; Rignanese, G.-M.; Gonze, X.
Title (down) Origin of magnetism and quasiparticles properties in Cr-doped TiO2 Type A1 Journal article
Year 2013 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 110 Issue 13 Pages 136402-136405
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Combining the local spin density approximation (LSDA)+U and an analysis of superexchange interactions beyond density functional theory, we describe the magnetic ground state of Cr-doped TiO2, an intensively studied and debated dilute magnetic oxide. In parallel, we correct our LSDA+U (+ superexchange) ground state through GW corrections (GW@LSDA+U) that reproduce the position of the impurity states and the band gaps in satisfying agreement with experiments. Because of the different topological coordinations of Cr-Cr bonds in the ground states of rutile and anatase, superexchange interactions induce either ferromagnetic or antiferromagnetic couplings of Cr ions. In Cr-doped anatase, this interaction leads to a new mechanism which stabilizes a (nonrobust) ferromagnetic ground state, in keeping with experimental evidence, without the need to invoke F-center exchange. The interplay between structural defects and vacancies in contributing to the superexchange is also unveiled.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000316683500014 Publication Date 2013-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.462 Times cited 15 Open Access
Notes Goa; Iwt Approved Most recent IF: 8.462; 2013 IF: 7.728
Call Number UA @ lucian @ c:irua:107281 Serial 2524
Permanent link to this record
 

 
Author Michel, K.H.; Lamoen, D.; David, W.I.F.
Title (down) Orientational order and disorder in solid C60 : theory and diffraction experiments Type A1 Journal article
Year 1995 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
Volume 51 Issue 3 Pages 365-374
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Starting from a microscope model of the intermolecular potential, a unified description is presented of the Bragg scattering law in the orientationally disordered and in the ordered phase of solid C-60. The orientational structure factor is expanded in terms of symmetry-adapted surface harmonics. The expansion coefficients are calculated from theory and compared with experiment Their temperature evolution is studied in the disordered phase at the 260 K transitions and in the ordered phase. In the ordered phase, new results from high-resolution neutron powder diffraction are given. In the disordered phase, space group Fm $($) over bar$$ 3m, the reflections have A(1g) symmetry; in the ordered phase, space group Pa $$($) over bar 3, reflections of T-2g symmetry appear and in addition the A(1g) reflections are renormalized. The orientational density distribution is calculated. The effective crystal-field potential is constructed, its temperature evolution in the ordered phase is studied and related to the occurrence of an orientational glass.
Address
Corporate Author Thesis
Publisher Place of Publication Copenhagen Editor
Language Wos A1995RB59400018 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.307 Times cited 14 Open Access
Notes Approved CHEMISTRY, MULTIDISCIPLINARY 65/163 Q2 # CRYSTALLOGRAPHY 10/26 Q2 #
Call Number UA @ lucian @ c:irua:12189 Serial 2518
Permanent link to this record
 

 
Author Lamoen, D.; March, N.H.
Title (down) Orientational disorder in some molecular solids in relation to the boson peak in glasses Type A1 Journal article
Year 2009 Publication Physics letters : A Abbreviated Journal Phys Lett A
Volume 373 Issue 7 Pages 799-800
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Orientational disorder in some molecular solids is discussed in relation to the emphasis placed on transverse vibrational modes in glasses as the origin of the observed boson peak in two very recent contributions in Nature Materials. In particular, facts are here presented for (i) CH4, (ii) C60 and (iii) ethanol in their solid phases for (a) specific heat and (b) neutron scattering. The results for ethanol in particular do not fit in with the interpretation of the boson peak in terms of transverse acoustic phonons in disordered systems. Glasses will therefore have to be separated into at least two classes where the physical interpretation of the boson peak is concerned.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000263515500020 Publication Date 2009-01-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0375-9601; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.772 Times cited 3 Open Access
Notes Bof Approved Most recent IF: 1.772; 2009 IF: 2.009
Call Number UA @ lucian @ c:irua:72917 Serial 2516
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title (down) Native point defects in CuIn1-xGaxSe2 : hybrid density functional calculations predict the origin of p- and n-type conductivity Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 40 Pages 22299-22308
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have performed a first-principles study of the p- and n-type conductivity in CuIn1−xGaxSe2 due to native point defects, based on the HSE06 hybrid functional. Band alignment shows that the band gap becomes larger with x due to the increasing conduction band minimum, rendering it hard to establish n-type conductivity in CuGaSe2. From the defect formation energies, we find that In/GaCu is a shallow donor, while VCu, VIn/Ga and CuIn/Ga act as shallow acceptors. Using the total charge neutrality of ionized defects and intrinsic charge carriers to determine the Fermi level, we show that under In-rich growth conditions InCu causes strongly n-type conductivity in CuInSe2. Under increasingly In-poor growth conditions, the conductivity type in CuInSe2 alters to p-type and compensation of the acceptors by InCu reduces, as also observed in photoluminescence experiments. In CuGaSe2, the native acceptors pin the Fermi level far away from the conduction band minimum, thus inhibiting n-type conductivity. On the other hand, CuGaSe2 shows strong p-type conductivity under a wide range of Ga-poor growth conditions. Maximal p-type conductivity in CuIn1−xGaxSe2 is reached under In/Ga-poor growth conditions, in agreement with charge concentration measurements on samples with In/Ga-poor stoichiometry, and is primarily due to the dominant acceptor CuIn/Ga.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000343072800042 Publication Date 2014-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 43 Open Access
Notes ; We gratefully acknowledge financial support from the science fund FWO-Flanders through project G.0150.13. The first-principles calculations have been carried out on the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Centre (VSC), supported financially by the Hercules foundation and the Flemish Government (EWI Department). We also like to thank Prof. S. Siebentritt of the University of Luxembourg for a presentation of her work on GIGS during a visit to our research group and for helpful discussions of our results. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:120465 Serial 2284
Permanent link to this record
 

 
Author Lamoen, D.; Michel, K.H.
Title (down) Molecular structure, crystal field and orientational order in solid C60 Type H1 Book chapter
Year 1994 Publication Abbreviated Journal
Volume Issue Pages 183-202
Keywords H1 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos A1994BE86T00011 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7923-3109-5 Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:9355 Serial 2186
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title (down) Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 105 Issue 8 Pages 084310,1-084310,8
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000268064700149 Publication Date 2009-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record
Impact Factor 2.068 Times cited Open Access
Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072
Call Number UA @ lucian @ c:irua:78282 Serial 2160
Permanent link to this record
 

 
Author Lamoen, D.; Michel, K.H.
Title (down) Microscopic theory of thermoelastic phenomena and pressure dependence in solid C60 Type A1 Journal article
Year 1993 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 48 Issue 2 Pages 807-813
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A microscopic theory for the coupling of molecular orientations with acoustic lattice displacements is proposed. The relevant interaction is quadratic in the orientational-order-parameter variables and linear in longitudinal strains. The coupling is evaluated for a complex molecular structure. The intermolecular potential is obtained from interaction centers placed at nuclei and at the centers of interatomic bonds. The free energy is derived and the experimental consequences of the theory are studied. The Clausius-Clapeyron equation for orientational melting is obtained. The theory explains the decrease of the lattice constant at the first-order phase transition and the increase of the transition temperature with applied pressure.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1993LM88500014 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 32 Open Access
Notes Approved PHYSICS, CONDENSED MATTER 16/67 Q1 #
Call Number UA @ lucian @ c:irua:5779 Serial 2035
Permanent link to this record
 

 
Author Matthai, C.C.; Lamoen, D.; March, N.H.
Title (down) Melting temperatures and possible precursor plastic phases of CCl4and GeI4as a function of pressure Type A1 Journal article
Year 2016 Publication Physics and chemistry of liquids Abbreviated Journal Phys Chem Liq
Volume 54 Issue 54 Pages 130-134
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The motivation for the present study is to be found in the recent experiments of Fuchizaki and Hamaya on GeI4. They observed a rapid increase in the melting temperature Tm in going from atmospheric pressure to p ~ 2.6 GPa. Tm was found to be largely independent of pressure above this value. In this paper, heuristic arguments are presented to support the idea that until some critical pressure, a crystalline phase of SnI4, CCl4 and GeI4 molecular solids melts into a low density liquid. However, at this critical pressure, a phase boundary intersects Tm(p), separating a low density liquid phase from a high density liquid. The new phase boundary is between the crystal and an amorphous molecular solid with increasing polymerisation as the pressure is increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000365724100012 Publication Date 2015-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9104 ISBN Additional Links UA library record; WoS full record
Impact Factor 1.145 Times cited Open Access
Notes NHM wishes to thank Professors D. Lamoen and C. Van Alsenoy for making possible the continuing affiliation of Approved Most recent IF: 1.145
Call Number c:irua:130190 Serial 4029
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.
Title (down) Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
Year 2005 Publication Microscopy of Semiconducting Materials Abbreviated Journal
Volume 107 Issue Pages 303-306
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title SPRINGER PROCEEDINGS IN PHYSICS Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0930-8989 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:72914 Serial 1962
Permanent link to this record
 

 
Author Müller, E.; Kruse, P.; Gerthsen, D.; Schowalter, M.; Rosenauer, A.; Lamoen, D.; Kling, R.; Waag, A.
Title (down) Measurement of the mean inner potential of ZnO nanorods by transmission electron holography Type A1 Journal article
Year 2005 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 86 Issue 15 Pages
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000228901600121 Publication Date 2005-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 5 Open Access
Notes Approved Most recent IF: 3.411; 2005 IF: 4.127
Call Number UA @ lucian @ c:irua:54917 Serial 1963
Permanent link to this record
 

 
Author Zhang, M.-L.; March, N.H.; Peeters, A.; van Alsenoy, C.; Howard, I.; Lamoen, D.; Leys, F.
Title (down) Loss rate of a plasticizer in a nylon matrix calculated using macroscopic reaction-diffusion kinetics Type A1 Journal article
Year 2003 Publication Journal Of Applied Physics Abbreviated Journal J Appl Phys
Volume 93 Issue Pages 1525-1532
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000180630200031 Publication Date 2003-02-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record;
Impact Factor 2.068 Times cited Open Access
Notes Approved Most recent IF: 2.068; 2003 IF: 2.171
Call Number UA @ lucian @ c:irua:41405 Serial 1844
Permanent link to this record
 

 
Author Soldatov, A.V.; Lamoen, D.; Konstantinović, M.J.; van den Berghe, S.; Scheinost, A.C.; Verwerft, M.
Title (down) Local structure and oxidation state of uranium in some ternary oxides: X-ray absorption analysis Type A1 Journal article
Year 2007 Publication Journal Of Solid State Chemistry Abbreviated Journal J Solid State Chem
Volume 180 Issue 1 Pages 54-61
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000243951900008 Publication Date 2006-09-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.299 Times cited 60 Open Access
Notes Approved Most recent IF: 2.299; 2007 IF: 2.149
Call Number UA @ lucian @ c:irua:61579 Serial 1831
Permanent link to this record
 

 
Author Turner, S.; Lu, Y.-G.; Janssens, S.D.; da Pieve, F.; Lamoen, D.; Verbeeck, J.; Haenen, K.; Wagner, P.; Van Tendeloo, G.
Title (down) Local boron environment in B-doped nanocrystalline diamond films Type A1 Journal article
Year 2012 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 4 Issue 19 Pages 5960-5964
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Thin films of heavily B-doped nanocrystalline diamond (B:NCD) have been investigated by a combination of high resolution annular dark field scanning transmission electron microscopy and spatially resolved electron energy-loss spectroscopy performed on a state-of-the-art aberration corrected instrument to determine the B concentration, distribution and the local B environment. Concentrations of [similar]1 to 3 at.% of boron are found to be embedded within individual grains. Even though most NCD grains are surrounded by a thin amorphous shell, elemental mapping of the B and C signal shows no preferential embedding of B in these amorphous shells or in grain boundaries between the NCD grains, in contrast with earlier work on more macroscopic superconducting polycrystalline B-doped diamond films. Detailed inspection of the fine structure of the boron K-edge and comparison with density functional theory calculated fine structure energy-loss near-edge structure signatures confirms that the B atoms present in the diamond grains are substitutional atoms embedded tetrahedrally into the diamond lattice.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000308705900026 Publication Date 2012-08-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 39 Open Access
Notes FWO G056810N; GOA XANES meets ELNES; 246791 COUNTATOMS; Hercules; 262348 ESMI; Methusalem Nano Approved Most recent IF: 7.367; 2012 IF: 6.233
Call Number UA @ lucian @ c:irua:101227UA @ admin @ c:irua:101227 Serial 1825
Permanent link to this record
 

 
Author Callaert, C.; Bercx, M.; Lamoen, D.; Hadermann, J.
Title (down) Interstitial defects in the van der Waals gap of Bi2Se3 Type A1 Journal article
Year 2019 Publication Acta Crystallographica. Section B: Structural Science, Crystal Engineering and Materials (Online) Abbreviated Journal Acta Crystallogr B
Volume 75 Issue 4 Pages 717-732
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Bi<sub>2</sub>Se<sub>3</sub>is a thermoelectric material and a topological insulator. It is slightly conducting in its bulk due to the presence of defects and by controlling the defects different physical properties can be fine tuned. However, studies of the defects in this material are often contradicting or inconclusive. Here, the defect structure of Bi<sub>2</sub>Se<sub>3</sub>is studied with a combination of techniques: high-resolution scanning transmission electron microscopy (HR-STEM), high-resolution energy-dispersive X-ray (HR-EDX) spectroscopy, precession electron diffraction tomography (PEDT), X-ray diffraction (XRD) and first-principles calculations using density functional theory (DFT). Based on these results, not only the observed defects are discussed, but also the discrepancies in results or possibilities across the techniques. STEM and EDX revealed interstitial defects with mainly Bi character in an octahedral coordination in the van der Waals gap, independent of the applied sample preparation method (focused ion beam milling or cryo-crushing). The inherent character of these defects is supported by their observation in the structure refinement of the EDT data. Moreover, the occupancy probability of the defects determined by EDT is inversely proportional to their corresponding DFT calculated formation energies. STEM also showed the migration of some atoms across and along the van der Waals gap. The kinetic barriers calculated using DFT suggest that some paths are possible at room temperature, while others are most probably beam induced.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000480512600024 Publication Date 2019-08-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2052-5206 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.032 Times cited Open Access
Notes University of Antwerp, 31445 ; Acknowledgements We thank Artem M. Abakumov for providing the original Bi2Se3 sample and are also very grateful to Christophe Vandevelde for trying repeatedly to get good single crystal X-ray diffraction data out of each of our failed attempts at making an undeformed single crystal. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 2.032
Call Number EMAT @ emat @c:irua:161847 Serial 5295
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title (down) Influence of Al concentration on the optoelectronic properties of Al-doped MgO Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 20 Pages 205129-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We use density functional theory within the local density approximation to investigate the structural, electronic, and optical properties of Al-doped MgO. The concentrations considered range from 6% to 56%. In the latter case, we also compare the optical properties of the amorphous and crystalline phases. We find that, overall, the electronic properties of the crystalline phases change qualitatively little with Al concentration. On the other hand, the changes in the electronic structure in the amorphous phase are more important, most notably because of deep impurity levels in the band gap that are absent in the crystalline phase. This leads to observable effects in, e.g., the optical absorption edge and in the refractive index. Thus, the latter can be used to characterize the crystalline to amorphous transition with Al doping level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000311605000003 Publication Date 2012-11-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Iwt; Fwo Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:105137 Serial 1612
Permanent link to this record
 

 
Author Nematollahi, P.; Barbiellini, B.; Bansil, A.; Lamoen, D.; Qingying, J.; Mukerjee, S.; Neyts, E.C.
Title (down) Identification of a Robust and Durable FeN4CxCatalyst for ORR in PEM Fuel Cells and the Role of the Fifth Ligand Type A1 Journal article
Year 2022 Publication ACS catalysis Abbreviated Journal Acs Catal
Volume Issue Pages 7541-7549
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although recent studies have advanced the understanding of pyrolyzed

Fe−N−C materials as oxygen reduction reaction (ORR) catalysts, the atomic and

electronic structures of the active sites and their detailed reaction mechanisms still remain unknown. Here, based on first-principles density functional theory (DFT) computations, we discuss the electronic structures of three FeN4 catalytic centers with different local topologies of the surrounding C atoms with a focus on unraveling the mechanism of their ORR activity in acidic electrolytes. Our study brings back a forgotten, synthesized pyridinic Fe−N coordinate to the community’s attention, demonstrating that this catalyst can exhibit excellent activity for promoting direct four-electron ORR through the addition of a fifth ligand such as −NH2, −OH, and −SO4. We also identify sites with good stability properties through the combined use of our DFT calculations and Mössbauer spectroscopy data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823193100001 Publication Date 2022-06-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2155-5435 ISBN Additional Links UA library record; WoS full record; WoS full record; WoS citing articles
Impact Factor 12.9 Times cited Open Access OpenAccess
Notes Basic Energy Sciences, DE-FG02-07ER46352 ; Fonds Wetenschappelijk Onderzoek, 1261721N ; Opetus- ja Kulttuuriministeri?; Department of Energy, DE-EE0008416 ; Approved Most recent IF: 12.9
Call Number EMAT @ emat @c:irua:189000 Serial 7073
Permanent link to this record
 

 
Author Amini, M.N.; Saniz, R.; Lamoen, D.; Partoens, B.
Title (down) Hydrogen impurities and native defects in CdO Type A1 Journal article
Year 2011 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 110 Issue 6 Pages 063521,1-063521,7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We have used first-principles calculations based on density functional theory to study point defects in CdO within the local density approximation and beyond (LDA+U). Hydrogen interstitials and oxygen vacancies are found to act as shallow donors and can be interpreted as the cause of conductivity in CdO. Hydrogen can also occupy an oxygen vacancy in its substitutional form and also acts as a shallow donor. Similar to what was found for ZnO and MgO, hydrogen creates a multicenter bond with its six oxygen neighbors in CdO. The charge neutrality level for native defects and hydrogen impurities has been calculated. It is shown that in the case of native defects, it is not uniquely defined. Indeed, this level depends highly on the chemical potentials of the species and one can obtain different values for different end states in the experiment. Therefore, a comparison with experiment can only be made if the chemical potentials of the species in the experiment are well defined. However, for the hydrogen interstitial defect, since this level is independent of the chemical potential of hydrogen, one can obtain a unique value for the charge neutrality level. We find that the Fermi level stabilizes at 0.43 eV above the conduction band minimum in the case of the hydrogen interstitial defect, which is in good agreement with the experimentally reported value of 0.4 eV.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000295619300041 Publication Date 2011-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 13 Open Access
Notes ; The authors gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project, the FWO-Vlaanderen through Project G.0191.08 and the BOF-NOI of the University of Antwerp. This work was carried out using the HPC infrastructure at the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center VSC. ; Approved Most recent IF: 2.068; 2011 IF: 2.168
Call Number UA @ lucian @ c:irua:93613 Serial 1533
Permanent link to this record
 

 
Author Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.
Title (down) Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems : ab initio study Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 89 Issue 5 Pages 054106-54109
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure calculations, which accounts for the Bi and Sb bilayer formation. Excellent interlayer distances are obtained with a van der Waals density functional. It is shown that a CE solely based on pair interactions is sufficient to provide an accurate description of the ground-state energies of Bi-Sb-Te-Se binary and ternary systems without making the data set of ab initio calculated structures unreasonably large. For the binary alloys A1−xQx (A=Sb, Bi; Q=Te, Se), a ternary CE yields an almost continuous series of (meta)stable structures consisting of consecutive A bilayers next to consecutive A2Q3 for 0<x<0.6. For x>0.6, the binary alloy segregates into pure Q and A2Q3. The Bi-Sb system is described by a quaternary CE and is found to be an ideal solid solution stabilized by entropic effects at T≠0 K but with an ordered structure of alternating Bi and Sb layers for x=0.5 at T=0 K. A quintuple CE is used for the ternary Bi-Sb-Te system, where stable ternary layered compounds with an arbitrary stacking of Sb2Te3, Bi2Te3, and Te-Bi-Te-Sb-Te quintuple units are found, optionally separated by mixed Bi/Sb bilayers. Electronic properties of the stable compounds were studied taking spin-orbit coupling into account.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000332420900001 Publication Date 2014-03-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes Fwo; Hercules Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:114910 Serial 1487
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.; Volety, K.; Huyberechts, G.; Paul, J.
Title (down) High throughput first-principles calculations of bixbyite oxides for TCO applications Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 33 Pages 17724-17733
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a high-throughput computing scheme based on density functional theory (DFT) to generate a class of oxides and screen them with the aim of identifying those that might be electronically appropriate for transparent conducting oxide (TCO) applications. The screening criteria used are a minimum band gap to ensure sufficient transparency, a band edge alignment consistent with easy n- or p-type dopability, and a minimum thermodynamic phase stability to be experimentally synthesizable. Following this scheme we screened 23 binary and 1518 ternary bixbyite oxides in order to identify promising candidates, which can then be a subject of an in-depth study. The results for the known TCOs are in good agreement with the reported data in the literature. We suggest a list of several new potential TCOs, including both n- and p-type compounds.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000341064800041 Publication Date 2014-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 23 Open Access
Notes ; We gratefully acknowledge financial support from the IWT-Vlaanderen through the ISIMADE project (IWT-n 080023), the FWO-Vlaanderen through project G.0150.13 and a GOA fund from the University of Antwerp. This work was carried out using the HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center VSC, which is funded by the Hercules foundation and the Flemish Government (EWI Department). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118263 Serial 1469
Permanent link to this record
 

 
Author Leys, F.E.; March, N.H.; Lamoen, D.
Title (down) High pressure limiting forms of the zero-temperature equations of state of Ta and Pu from relativistic Thomas-Fermi theory Type A1 Journal article
Year 2003 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 67 Issue Pages 064109
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000181501100021 Publication Date 2003-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 1 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:45628 Serial 1439
Permanent link to this record
 

 
Author Amini, M.N.; Leenaerts, O.; Partoens, B.; Lamoen, D.
Title (down) Graphane- and fluorographene-based quantum dots Type A1 Journal article
Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 117 Issue 31 Pages 16242-16247
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract With the help of first-principles calculations, we investigate graphane/fluorographene heterostructures with special attention for graphane and fluorographene-based quantum dots. Graphane and fluorographene have large electronic band gaps, and we show that their band structures exhibit a strong type-II alignment. In this way, it is possible to obtain confined electron states in fluorographene nanostructures by embedding them in a graphane crystal. Bound hole states can be created in graphane domains embedded in a fluorographene environment. For circular graphane/fluorographene quantum dots, localized states can be observed in the band gap if the size of the radii is larger than approximately 4 to 5 Å.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000323082300046 Publication Date 2013-07-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 14 Open Access
Notes FWO; GOW; Hercules Approved Most recent IF: 4.536; 2013 IF: 4.835
Call Number UA @ lucian @ c:irua:109457 Serial 1367
Permanent link to this record
 

 
Author Lamoen, D.; March, N.H.
Title (down) Gradient expansion and beyond for stress tensor and tangential pressure deficit through a planar liquid-vapour interface Type A1 Journal article
Year 2000 Publication Physics And Chemistry Of Liquids Abbreviated Journal Phys Chem Liq
Volume 38 Issue Pages 495-504
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000087986300011 Publication Date 2007-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9104;1029-0451; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.145 Times cited 1 Open Access
Notes Approved Most recent IF: 1.145; 2000 IF: 0.267
Call Number UA @ lucian @ c:irua:27831 Serial 1362
Permanent link to this record
 

 
Author Lamoen, D.; Parrinello, M.
Title (down) Geometry and electronic structure of porphyrines and porphyrazines Type A1 Journal article
Year 1996 Publication Chemical Physics Letters Abbreviated Journal Chem Phys Lett
Volume 248 Issue Pages 309
Keywords A1 Journal article; Electron Microscopy for Materials Science (EMAT);
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1996TR41900002 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.897 Times cited 46 Open Access
Notes Approved CHEMISTRY, PHYSICAL 88/144 Q3 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 19/35 Q3 #
Call Number UA @ lucian @ c:irua:15821 Serial 1329
Permanent link to this record
 

 
Author Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D.
Title (down) First-principles study of the optoelectronic properties and photovoltaic absorber layer efficiency of Cu-based chalcogenides Type A1 Journal article
Year 2016 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 120 Issue 120 Pages 085707
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Cu-based chalcogenides are promising materials for thin-film solar cells with more than 20% measured

cell efficiency. Using first-principles calculations based on density functional theory, the

optoelectronic properties of a group of Cu-based chalcogenides Cu2-II-IV-VI4 is studied. They are

then screened with the aim of identifying potential absorber materials for photovoltaic applications.

The spectroscopic limited maximum efficiency (SLME) introduced by Yu and Zunger [Phys. Rev.

Lett. 108, 068701 (2012)] is used as a metric for the screening. After constructing the currentvoltage

curve, the SLME is calculated from the maximum power output. The role of the nature of

the band gap, direct or indirect, and also of the absorptivity of the studied materials on the maximum

theoretical power conversion efficiency is studied. Our results show that Cu2II-GeSe4 with

II¼ Cd and Hg, and Cu2-II-SnS4 with II ¼ Cd, Hg, and Zn have a higher theoretical efficiency

compared with the materials currently used as absorber layer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383913400074 Publication Date 2016-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 29 Open Access
Notes We acknowledge the financial support from the FWO-Vlaanderen through project G.0150.13N and a GOA fund from the University of Antwerp. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), bothfunded by the FWO-Vlaanderen and the Flemish Government–department EWI. Approved Most recent IF: 2.068
Call Number c:irua:135089 Serial 4113
Permanent link to this record
 

 
Author Dixit, H.; Tandon, N.; Cottenier, S.; Saniz, R.; Lamoen, D.; Partoens, B.
Title (down) First-principles study of possible shallow donors in ZnAl2O4 spinel Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 17 Pages 174101-174107
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract ZnAl2O4 (gahnite) is a ceramic which is considered a possible transparent conducting oxide (TCO) due to its wide band gap and transparency for UV. Defects play an important role in controlling the conductivity of a TCO material along with the dopant, which is the main source of conductivity in an otherwise insulating oxide. A comprehensive first-principles density functional theory study for point defects in ZnAl2O4 spinel is presented using the Heyd, Scuseria, and Ernzerhof hybrid functional (HSE06) to overcome the band gap problem. We have investigated the formation energies of intrinsic defects which include the Zn, Al, and O vacancy and the antisite defects: Zn at the Al site (ZnAl) and Al at the Zn site (AlZn). The antisite defect AlZn has the lowest formation energy and acts as a shallow donor, indicating possible n-type conductivity in ZnAl2O4 spinel by Al doping.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000318653300001 Publication Date 2013-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 50 Open Access
Notes Iwt; Fwo Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:108769 Serial 1219
Permanent link to this record
 

 
Author Saniz, R.; Bekaert, J.; Partoens, B.; Lamoen, D.
Title (down) First-principles study of defects at Σ3 grain boundaries in CuGaSe2 Type A1 Journal article
Year 2021 Publication Solid State Communications Abbreviated Journal Solid State Commun
Volume Issue Pages 114263
Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract We present a first-principles computational study of cation–Se 3 (112) grain boundaries in CuGaSe. We discuss the structure of these grain boundaries, as well as the effect of native defects and Na impurities on their electronic properties. The formation energies show that the defects will tend to form preferentially at the grain boundaries, rather than in the grain interiors. We find that in Ga-rich growth conditions Cu vacancies as well as Ga at Cu and Cu at Ga antisites are mainly responsible for having the equilibrium Fermi level pinned toward the middle of the gap, resulting in carrier depletion. The Na at Cu impurity in its +1 charge state contributes to this. In Ga-poor growth conditions, on the other hand, the formation energies of Cu vacancies and Ga at Cu antisites are comparatively too high for any significant influence on carrier density or on the equilibrium Fermi level position. Thus, under these conditions, the Cu at Ga antisites give rise to a -type grain boundary. Also, their formation energy is lower than the formation energy of Na at Cu impurities. Thus, the latter will fail to act as a hole barrier preventing recombination at the grain boundary, in contrast to what occurs in CuInSe grain boundaries. We also discuss the effect of the defects on the electronic properties of bulk CuGaSe, which we assume reflect the properties of the grain interiors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000652668500013 Publication Date 2021-03-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 1 Open Access OpenAccess
Notes Fwo; We acknowledge the financial support of FWO-Vlaanderen, Belgium through project G.0150.13. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: 1.554
Call Number EMAT @ emat @c:irua:176544 Serial 6703
Permanent link to this record
 

 
Author Saniz, R.; Sarmadian, N.; Partoens, B.; Batuk, M.; Hadermann, J.; Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Lamoen, D.
Title (down) First-principles study of CO and OH adsorption on in-doped ZnO surfaces Type A1 Journal article
Year 2019 Publication The journal of physics and chemistry of solids Abbreviated Journal J Phys Chem Solids
Volume 132 Issue Pages 172-181
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We present a first-principles computational study of CO and OH adsorption on non-polar ZnO (10¯10) surfaces doped with indium. The calculations were performed using a model ZnO slab. The position of the In dopants was varied from deep bulk-like layers to

the surface layers. It was established that the preferential location of the In atoms is at the surface by examining the dependence of

the defect formation energy as well as the surface energy on In location. The adsorption sites on the surface of ZnO and the energy

of adsorption of CO molecules and OH-species were determined in connection to In doping. It was found that OH has higher

bonding energy to the surface than CO. The presence of In atoms at the surface of ZnO is favorable for CO adsorption, resulting

in an elongation of the C-O bond and in charge transfer to the surface. The effect of CO and OH adsorption on the electronic

and conduction properties of surfaces was assessed. We conclude that In-doped ZnO surfaces should present a higher electronic

response upon adsorption of CO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472124700023 Publication Date 2019-04-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3697 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.059 Times cited 7 Open Access Not_Open_Access: Available from 26.04.2021
Notes FWO-Vlaanderen, G0D6515N ; ERA.Net RUS Plus, 096 ; VSC; HPC infrastructure of the University of Antwerp; FWO-Vlaanderen; Flemish Government-department EWI; Approved Most recent IF: 2.059
Call Number EMAT @ emat @UA @ admin @ c:irua:159656 Serial 5170
Permanent link to this record
 

 
Author Bekaert, J.; Saniz, R.; Partoens, B.; Lamoen, D.
Title (down) First-principles study of carbon impurities in CuInSe2 and CuGaSe2, present in non-vacuum synthesis methods Type A1 Journal article
Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 117 Issue 117 Pages 015104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A first-principles study of the structural and electronic properties of carbon impurities in CuInSe2 and CuGaSe2 is presented. Carbon is present in organic molecules in the precursor solutions used in non-vacuum growth methods for CuInSe2 and CuGaSe2 based photovoltaic cells. These growth methods make more efficient use of material, time, and energy than traditional vacuum methods. The formation energies of several carbon impurities are calculated using the hybrid HSE06 functional. C Cu acts as a shallow donor, CIn and interstitial C yield deep donor levels in CuInSe2, while in CuGaSe2 CGa and interstitial C act as deep amphoteric defects. So, these defects reduce the majority carrier (hole) concentration in p-type CuInSe2 and CuGaSe2 by compensating the acceptor levels. The deep defects are likely to act as recombination centers for the photogenerated charge carriers and are thus detrimental for the performance of the photovoltaic cells. On the other hand, the formation energies of the carbon impurities are high, even under C-rich growth conditions. Thus, few C impurities will form in CuInSe2 and CuGaSe2 in thermodynamic equilibrium. However, the deposition of the precursor solution in non-vacuum growth methods presents conditions far from thermodynamic equilibrium. In this case, our calculations show that C impurities formed in non-equilibrium tend to segregate from CuInSe2 and CuGaSe2 by approaching thermodynamic equilibrium, e.g., via thorough annealing.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000347958600055 Publication Date 2015-01-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 6 Open Access
Notes FWO G015013; Hercules Approved Most recent IF: 2.068; 2015 IF: 2.183
Call Number c:irua:122064 Serial 1215
Permanent link to this record
 

 
Author Bercx, M.; Slap, L.; Partoens, B.; Lamoen, D.
Title (down) First-Principles Investigation of the Stability of the Oxygen Framework of Li-Rich Battery Cathodes Type A1 Journal article
Year 2019 Publication MRS advances Abbreviated Journal MRS Adv.
Volume 4 Issue 14 Pages 813-820
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Lithium-rich layered oxides such as Li<sub>2</sub>MnO<sub>3</sub>have shown great potential as cathodes in Li-ion batteries, mainly because of their large capacities. However, these materials still suffer from structural degradation as the battery is cycled, reducing the average voltage and capacity of the cell. The voltage fade is believed to be related to the migration of transition metals into the lithium layer, linked to the formation of O-O dimers with a short bond length, which in turn is driven by the presence of oxygen holes due to the participation of oxygen in the redox process. We investigate the formation of O-O dimers for partially charged O1-Li<sub>2</sub>MnO<sub>3</sub>using a first-principles density functional theory approach by calculating the reaction energy and kinetic barriers for dimer formation. Next, we perform similar calculations for partially charged O1-Li<sub>2</sub>IrO<sub>3</sub>, a Li-rich material for which the voltage fade was not observed during cycling. When we compare the stability of the oxygen framework, we conclude that the formation of O-O dimers is both thermodynamically and kinetically viable for O1-Li<sub>0.5</sub>MnO<sub>3</sub>. For O1-Li<sub>0.5</sub>IrO<sub>3</sub>, we observe that the oxygen lattice is much more stable, either returning to its original state when perturbed, or resulting in a structure with an O-O dimer that is much higher in energy. This can be explained by the mixed redox process for Li<sub>2</sub>IrO<sub>3</sub>, which is also shown from the calculated magnetic moments. The lack of O-O dimer formation in O1-Li<sub>0.5</sub>IrO<sub>3</sub>provides valuable insight as to why Li<sub>2</sub>IrO<sub>3</sub>does not demonstrate a voltage fade as the battery is cycled, which can be used to design Li-rich battery cathodes with an improved cycling performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000466846700004 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2059-8521 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access Not_Open_Access: Available from 22.02.2020
Notes We acknowledge the financial support of FWO-Vlaanderen through project G040116N. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO-Vlaanderen and the Flemish Government-department EWI. Approved Most recent IF: NA
Call Number EMAT @ emat @UA @ admin @ c:irua:160121 Serial 5179
Permanent link to this record