toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verbeeck, J.; van Dyck, D.; Van Tendeloo, G. pdf  doi
openurl 
  Title (up) Energy-filtered transmission electron microscopy: an overview Type A1 Journal article
  Year 2004 Publication Spectrochimica acta: part B : atomic spectroscopy Abbreviated Journal Spectrochim Acta B  
  Volume 59 Issue 10/11 Pages 1529-1534  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract This paper aims to give an overview of the technique of energy-filtered transmission electron microscopy (EFTEM). It explains the basic principles of the technique and points to the relevant literature for more detailed issues. Experimental examples are given to show the power of EFTEM to study the chemical composition of nanoscale samples in materials science. Advanced EFTEM applications like imaging spectroscopy and EFTEM tomography are briefly discussed. (C) 2004 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos 000224848000006 Publication Date 2004-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0584-8547; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.241 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.241; 2004 IF: 3.086  
  Call Number UA @ lucian @ c:irua:54869UA @ admin @ c:irua:54869 Serial 1038  
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.; Jacob, W. doi  openurl
  Title (up) Energy-filtering TEM and electron energy-loss spectroscopy of double structure tabular microcrystals of silver halide emulsions Type A1 Journal article
  Year 1996 Publication Journal of microscopy Abbreviated Journal J Microsc-Oxford  
  Volume 183 Issue 1 Pages 27-38  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Oxford Editor  
  Language Wos A1996UZ02800005 Publication Date 2003-11-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2720;1365-2818; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.331 Times cited 8 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:16248 Serial 1039  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D. doi  openurl
  Title (up) Energy-loss near-edge structure changes with bond length in carbon systems Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 19 Pages 193104,1-4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000233603700004 Publication Date 2005-11-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 24 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:56050 Serial 1041  
Permanent link to this record
 

 
Author Krstajie, P.M.; Peeters, F.M. url  doi
openurl 
  Title (up) Energy-momentum dispersion relation of plasmarons in bilayer graphene Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 88 Issue 16 Pages 165420-165424  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The relation between the energy and momentum of plasmarons in bilayer graphene is investigated within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k) similar to 100 divided by 150 meV depending on the electron concentration n(e) and electron momentum. The shift increases with electron concentration as the energy of plasmons becomes larger. The dispersion of plasmarons is more pronounced than in the case of single layer graphene, which is explained by the fact that the energy dispersion of electrons is quadratic and not linear. We expect that these predictions can be verified using angle-resolved photoemission spectroscopy (ARPES).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000326089400004 Publication Date 2013-10-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 3 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664  
  Call Number UA @ lucian @ c:irua:112224 Serial 1042  
Permanent link to this record
 

 
Author Krstajić, P.M.; Peeters, F.M. url  doi
openurl 
  Title (up) Energy-momentum dispersion relation of plasmarons in graphene Type A1 Journal article
  Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 85 Issue 20 Pages 205454-205454,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The many-body correction to the band structure of a quasi-free-standing graphene layer is obtained within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k = 0), which is on the order of 50-150 meV, depending on the electron concentration n(e), and is in semiquantitative agreement with experimental data. The value of the Fermi velocity is renormalized by several percents and decreases with increasing electron concentration as found experimentally.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000304649900004 Publication Date 2012-06-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and the Serbian Ministry of Education and Science (project No. TR 32008). ; Approved Most recent IF: 3.836; 2012 IF: 3.767  
  Call Number UA @ lucian @ c:irua:98937 Serial 1043  
Permanent link to this record
 

 
Author Hollevoet, L.; Vervloessem, E.; Gorbanev, Y.; Nikiforov, A.; De Geyter, N.; Bogaerts, A.; Martens, J.A. pdf  url
doi  openurl
  Title (up) Energy‐Efficient Small‐Scale Ammonia Synthesis Process with Plasma‐enabled Nitrogen Oxidation and Catalytic Reduction of Adsorbed NOx Type A1 Journal article
  Year 2022 Publication Chemsuschem Abbreviated Journal Chemsuschem  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Industrial ammonia production without CO2 emission and with low energy consumption is one of the technological grand challenges of this age. Current Haber-Bosch ammonia mass production processes work with a thermally activated iron catalyst needing high pressure. The need for large volumes of hydrogen gas and the continuous operation mode render electrification of Haber-Bosch plants difficult to achieve. Electrochemical solutions at low pressure and temperature are faced with the problematic inertness of the nitrogen molecule on electrodes. Direct reduction of N2 to ammonia is only possible with very reactive chemicals such as lithium metal, the regeneration of which is energy intensive. Here, the attractiveness of an oxidative route for N2 activation was presented. N2 conversion to NOx in a plasma reactor followed by reduction with H2 on a heterogeneous catalyst at low pressure could be an energy-efficient option for small-scale distributed ammonia production with renewable electricity and without intrinsic CO2 footprint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000772893400001 Publication Date 2022-03-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1864-5631 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Vlaamse regering, HBC.2019.0108 ; Vlaamse regering; KU Leuven, C3/20/067 ; We gratefully acknowledge financial support by the Flemish Government through the Moonshot cSBO project P2C (HBC.2019.0108). J.A.M. and A.B. acknowledge the Flemish Government for long-term structural funding (Methusalem). J.A.M. © 2022 Wiley-VCH GmbH Approved Most recent IF: 8.4  
  Call Number PLASMANT @ plasmant @c:irua:187251 Serial 7054  
Permanent link to this record
 

 
Author Alaria, J.; Borisov, P.; Dyer, M.S.; Manning, T.D.; Lepadatu, S.; Cain, M.G.; Mishina, E.D.; Sherstyuk, N.E.; Ilyin, N.A.; Hadermann, J.; Lederman, D.; Claridge, J.B.; Rosseinsky, M.J.; doi  openurl
  Title (up) Engineered spatial inversion symmetry breaking in an oxide heterostructure built from isosymmetric room-temperature magnetically ordered components Type A1 Journal article
  Year 2014 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume 5 Issue 4 Pages 1599-1610  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Royal Society of Chemistry Place of Publication Cambridge Editor  
  Language Wos 000332467400044 Publication Date 2014-01-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 24 Open Access  
  Notes Approved Most recent IF: 8.668; 2014 IF: 9.211  
  Call Number UA @ lucian @ c:irua:117064 Serial 1045  
Permanent link to this record
 

 
Author Bigiani, L.; Andreu, T.; Maccato, C.; Fois, E.; Gasparotto, A.; Sada, C.; Tabacchi, G.; Krishnan, D.; Verbeeck, J.; Ramon Morante, J.; Barreca, D. url  doi
openurl 
  Title (up) Engineering Au/MnO₂ hierarchical nanoarchitectures for ethanol electrochemical valorization Type A1 Journal article
  Year 2020 Publication Journal Of Materials Chemistry A Abbreviated Journal J Mater Chem A  
  Volume 8 Issue 33 Pages 16902-16907  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The design of eco-friendly electrocatalysts for ethanol valorization is an open challenge towards sustainable hydrogen production. Herein we present an original fabrication route to effective electrocatalysts for the ethanol oxidation reaction (EOR). In particular, hierarchical MnO(2)nanostructures are grown on high-area nickel foam scaffolds by a plasma-assisted strategy and functionalized with low amounts of optimally dispersed Au nanoparticles. This strategy leads to catalysts with a unique morphology, designed to enhance reactant-surface contacts and maximize active site utilization. The developed nanoarchitectures show superior performances for ethanol oxidation in alkaline media. We reveal that Au decoration boosts MnO(2)catalytic activity by inducing pre-dissociation and pre-oxidation of the adsorbed ethanol molecules. This evidence validates our strategy as an effective route for the development of green electrocatalysts for efficient electrical-to-chemical energy conversion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000562931300008 Publication Date 2020-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited 16 Open Access OpenAccess  
  Notes ; This work was financially supported by Padova University DOR 2016-2019 and P-DiSC #03BIRD2018-UNIPD OXYGENA projects, as well as by the INSTM Consortium (INSTMPD004 – NETTUNO), AMGA Foundation Mn4Energy project and Insubria University FAR2018. J. V. and D. K. acknowledge funding from the Flemish Government (Hercules), GOA project “Solarpaint” (Antwerp University) and European Union's H2020 programme under grant agreement no. 823717 ESTEEM3. The authors are grateful to Dr Gianluca Corr for skillful technical support. ; esteem3TA; esteem3reported Approved Most recent IF: 11.9; 2020 IF: 8.867  
  Call Number UA @ admin @ c:irua:171989 Serial 6506  
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Peeters, F.M. doi  openurl
  Title (up) Engineering electronic properties of metal-MoSe2 interfaces using self-assembled monolayers Type A1 Journal article
  Year 2014 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C  
  Volume 2 Issue 46 Pages 9842-9849  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Metallic contacts are critical components of electronic devices and the presence of a large Schottky barrier is detrimental for an optimal device operation. Here, we show by using first-principles calculations that a self-assembled monolayer (SAM) of polar molecules between the metal electrode and MoSe2 monolayer is able to convert the Schottky contact into an almost Ohmic contact. We choose -CH3 and -CF3 terminated short-chain alkylthiolate (i.e. SCH3 and fluorinated alkylthiolates (SCF3)) based SAMs to test our approach. We consider both high (Au) and low (Sc) work function metals in order to thoroughly elucidate the role of the metal work function. In the case of Sc, the Fermi level even moves into the conduction band of the MoSe2 monolayer upon SAM insertion between the metal surface and the MoSe2 monolayer, and hence possibly switches the contact type from Schottky to Ohmic. The usual Fermi level pinning at the metal-transition metal dichalcogenide (TMD) contact is shown to be completely removed upon the deposition of a SAM. Systematic analysis indicates that the work function of the metal surface and the energy level alignment between the metal electrode and the TMD monolayer can be tuned significantly by using SAMs as a buffer layer. These results clearly indicate the vast potential of the proposed interface engineering to modify the physical and chemical properties of MoSe2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000344998700007 Publication Date 2014-10-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.256 Times cited 22 Open Access  
  Notes ; Part of this work is supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish Government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). D. C. is supported by a FWO Pegasus-short Marie Curie Fellowship. C. S. acknowledges the support from Scientific and Technological Research Council of Turkey (TUBITAK 113F096), Anadolu University (BAP-1306F281, -1404F158) and Turkish Academy of Science (TUBA). ; Approved Most recent IF: 5.256; 2014 IF: 4.696  
  Call Number UA @ lucian @ c:irua:122157 Serial 1046  
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.; doi  openurl
  Title (up) Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 17109-17115  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number UA @ lucian @ c:irua:129434 Serial 4175  
Permanent link to this record
 

 
Author Alvarado-Alvarado, A.A.; Smets, W.; Irga, P.; Denys, S. pdf  doi
openurl 
  Title (up) Engineering green wall botanical biofiltration to abate indoor volatile organic compounds : a review on mechanisms, phyllosphere bioaugmentation, and modeling Type A1 Journal article
  Year 2024 Publication Journal of hazardous materials Abbreviated Journal  
  Volume 465 Issue Pages 133491-16  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Indoor air pollution affects the global population, especially in developed countries where people spend around 90% of their time indoors. The recent pandemic exacerbated the exposure by relying on indoor spaces and a teleworking lifestyle. VOCs are a group of indoor air pollutants with harmful effects on human health at low concentrations. It is widespread that plants can remove indoor VOCs. To this day, research has combined principles of phytoremediation, biofiltration, and bioremediation into a holistic and sustainable technology called botanical biofiltration. Overall, it is sustained that its main advantage is the capacity to break down and biodegrade pollutants using low energy input. This differs from traditional systems that transfer VOCs to another phase. Furthermore, it offers additional benefits like decreased indoor air health costs, enhanced work productivity, and well-being. However, many disparities exist within the field regarding the role of plants, substrate, and phyllosphere bacteria. Yet their role has been theorized; its stability is poorly known for an engineering approach. Previous research has not addressed the bioaugmentation of the phyllosphere to increase the performance, which could boost the system. Moreover, most experiments have studied passive potted plant systems at a lab scale using small chambers, making it difficult to extrapolate findings into tangible parameters to engineer the technology. Active systems are believed to be more efficient yet require more maintenance and knowledge expertise; besides, the impact of the active flow on the long term is not fully understood. Besides, modeling the system has been oversimplified, limiting the understanding and optimization. This review sheds light on the field’s gains and gaps, like concepts, experiments, and modeling. We believe that embracing a multidisciplinary approach encompassing experiments, multiphysics modeling, microbial community analysis, and coworking with the indoor air sector will enable the optimization of the technology and facilitate its adoption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-01-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record  
  Impact Factor 13.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 13.6; 2024 IF: 6.065  
  Call Number UA @ admin @ c:irua:202311 Serial 9030  
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T. url  doi
openurl 
  Title (up) Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
  Year 2017 Publication Biomaterials Abbreviated Journal Biomaterials  
  Volume 120 Issue 120 Pages 126-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000394398900012 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited 20 Open Access OpenAccess  
  Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402  
  Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654  
Permanent link to this record
 

 
Author Watson, G.; Kummamuru, N.B.; Verbruggen, S.W.; Perreault, P.; Houlleberghs, M.; Martens, J.; Breynaert, E.; Van Der Voort, P. url  doi
openurl 
  Title (up) Engineering of hollow periodic mesoporous organosilica nanorods for augmented hydrogen clathrate formation Type A1 Journal article
  Year 2023 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal  
  Volume 11 Issue 47 Pages 26265-26276  
  Keywords A1 Journal article; Engineering sciences. Technology  
  Abstract Hydrogen (H2) storage, in the form of clathrate hydrates, has emerged as an attractive alternative to classical storage methods like compression or liquefaction. Nevertheless, the sluggish enclathration kinetics along with low gas storage capacities in bulk systems is currently impeding the progress of this technology. To this end, unstirred systems coupled with porous materials have been shown to tackle the aforementioned drawbacks. In line with this approach, the present study explores the use of hydrophobic periodic organosilica nanoparticles, later denoted as hollow ring-PMO (HRPMO), for H2 storage as clathrate hydrates under mild operating conditions (5.56 mol% THF, 7 MPa, and 265–273 K). The surface of the HRPMO nanoparticles was carefully decorated/functionalized with THF-like moieties, which are well-known promoter agents in clathrate formation when applied in classical, homogeneous systems. The study showed that, while the non-functionalized HRPMO can facilitate the formation of binary H2-THF clathrates, the incorporation of surface-bound promotor structures enhances this process. More intriguingly, tuning the concentration of these surface-bound promotor agents on the HRPMO led to a notable effect on solid-state H2 storage capacities. An increase of 3% in H2 storage capacity, equivalent to 0.26 wt%, along with a substantial increase of up to 28% in clathrate growth kinetics, was observed when an optimal loading of 0.14 mmol g−1 of promoter agent was integrated into the HRPMO framework. Overall, the findings from this study highlight that such tuning effects in the solid-state have the potential to significantly boost hydrate formation/growth kinetics and H2 storage capacities, thereby opening new avenues for the ongoing development of H2 clathrates in industrial applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001108752600001 Publication Date 2023-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.9 Times cited Open Access  
  Notes Approved Most recent IF: 11.9; 2023 IF: 8.867  
  Call Number UA @ admin @ c:irua:201007 Serial 9031  
Permanent link to this record
 

 
Author Liao, Z.L.; Green, R.J.; Gauquelin, N.; Gonnissen, J.; Van Aert, S.; Verbeeck, J.; et al. openurl 
  Title (up) Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface Type A1 Journal article
  Year 2016 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume Issue Pages 1-25  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In epitaxial thin film systems, the crystal structure and its symmetry deviate from the bulk counterpart due to various mechanisms such as epitaxial strain and interfacial structural coupling, which induce an accompanying change in their properties. In perovskite materials, the crystal symmetry can be described by rotations of 6-fold coordinated transition metal oxygen octahedra, which are found to be altered at interfaces. Here, we unravel how the local oxygen octahedral coupling (OOC) at perovskite heterostructural interfaces initiates a different symmetry in epitaxial films and provide design rules to induce various symmetries in thin films by careful selecting appropriate combinations of substrate/buffer/film. Very interestingly we discovered that these combinations lead to symmetry changes throughout the full thickness of the film. Our results provide a deep insight into understanding the origin of induced crystal symmetry in a perovskite heterostructure and an intelligent route to achieve unique functional properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301x ISBN Additional Links UA library record  
  Impact Factor 12.124 Times cited Open Access  
  Notes Approved Most recent IF: 12.124  
  Call Number UA @ lucian @ c:irua:134842 Serial 4176  
Permanent link to this record
 

 
Author Huang, S.-Z.; Jin, J.; Cai, Y.; Li, Y.; Tan, H.-Y.; Wang, H.-E.; Van Tendeloo, G.; Su, B.-L. pdf  doi
openurl 
  Title (up) Engineering single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 6 Issue 12 Pages 6819-6827  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Well shaped single crystalline Mn3O4 nano-octahedra with exposed highly active {011} facets at different particle sizes have been synthesized and used as anode materials for lithium ion batteries. The electrochemical results show that the smallest sized Mn3O4 nano-octahedra show the best cycling performance with a high initial charge capacity of 907 mA h g−1 and a 50th charge capacity of 500 mA h g−1 at a current density of 50 mA g−1 and the best rate capability with a charge capacity of 350 mA h g−1 when cycled at 500 mA g−1. In particular, the nano-octahedra samples demonstrate a much better electrochemical performance in comparison with irregular shaped Mn3O4 nanoparticles. The best electrochemical properties of the smallest Mn3O4 nano-octahedra are ascribed to the lower charge transfer resistance due to the exposed highly active {011} facets, which can facilitate the conversion reaction of Mn3O4 and Li owing to the alternating Mn and O atom layers, resulting in easy formation and decomposition of the amorphous Li2O and the multi-electron reaction. On the other hand, the best electrochemical properties of the smallest Mn3O4 nano-octahedra can also be attributed to the smallest size resulting in the highest specific surface area, which provides maximum contact with the electrolyte and facilitates the rapid Li-ion diffusion at the electrode/electrolyte interface and fast lithium-ion transportation within the particles. The synergy of the exposed {011} facets and the smallest size (and/or the highest surface area) led to the best performance for the Mn3O4 nano-octahedra. Furthermore, HRTEM observations verify the oxidation of MnO to Mn3O4 during the charging process and confirm that the Mn3O4 octahedral structure can still be partly maintained after 50 dischargecharge cycles. The high Li-ion storage capacity and excellent cycling performance suggest that Mn3O4 nano-octahedra with exposed highly active {011} facets could be excellent anode materials for high-performance lithium-ion batteries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000337143900072 Publication Date 2014-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 80 Open Access  
  Notes Approved Most recent IF: 7.367; 2014 IF: 7.394  
  Call Number UA @ lucian @ c:irua:117076 Serial 1047  
Permanent link to this record
 

 
Author Wang, Y.; Sentosun, K.; Li, A.; Coronado-Puchau, M.; Sánchez-Iglesias, A.; Li, S.; Su, X.; Bals, S.; Liz-Marzán, L.M. pdf  url
doi  openurl
  Title (up) Engineering Structural Diversity in Gold Nanocrystals by Ligand-Mediated Interface Control Type A1 Journal article
  Year 2015 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 27 Issue 27 Pages 8032-8040  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Surface and interface control is fundamentally important for crystal growth engineering, catalysis, surface enhanced spectroscopies, and self-assembly, among other processes and applications. Understanding the role of ligands in regulating surface properties of plasmonic metal nanocrystals during growth has received considerable attention. However, the underlying mechanisms and the diverse functionalities of ligands are yet to be fully addressed. In this contribution,

we report a systematic study of ligand-mediated interface control in seeded growth of gold nanocrystals, leading to diverse and exotic nanostructures with an improved surface enhanced Raman scattering (SERS) activity. Three dimensional transmission electron microscopy (3D TEM) revealed an intriguing gold shell growth process mediated by the bifunctional ligand 1,4-benzenedithiol (BDT), which leads to a unique crystal growth mechanism as compared to other ligands, and subsequently to the concept of interfacial energy control mechanism. Volmer-Weber growth mode was proposed to be responsible for BDT-mediated seeded growth, favoring the strongest interfacial energy and generating an asymmetric island growth pathway with internal crevices/gaps. This additionally favors incorporation of BDT at the plasmonic nanogaps, thereby generating strong SERS activity with a maximum efficiency for a core-semishell configuration obtained along seeded growth. Numerical modeling was used to explain this observation. Interestingly, the same strategy can be used to engineer the structural diversity of this system, by using gold nanoparticle seeds with various sizes and shapes, and varying the [Au3+]/[Au0] ratio. This rendered a series of diverse and exotic plasmonic nanohybrids such as semishell-coated gold nanorods, with embedded Raman-active tags and Janus surface with distinct surface functionalities.

These would greatly enrich the plasmonic nanostructure toolbox for various studies and applications such as anisotropic nanocrystal engineering, SERS, and high-resolution Raman bioimaging or nanoantenna devices.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000366223200023 Publication Date 2015-10-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 18 Open Access OpenAccess  
  Notes The authors thank Bart Goris for his help with electron tomography. This work was funded by the European Commission (Grant #310445-2, SAVVY). The authors acknowledge financial support from European Research Council (ERC Advanced Grant # 267867- PLASMAQUO, ERC Starting Grant #335078-COLOURATOMS). The authors also appreciate financial support from the European Union under the Seventh Framework Program (Integrated Infrastructure Initiative N. 262348 European Soft Matter Infrastructure, ESMI). Wang Y. and Su X. would like to acknowledge the Agency for Science, Technology and Research (A*STAR), Singapore, for the financial support under the Grant JCO 14302FG096. M. C.-P. acknowledges an FPU scholarship from the Spanish Ministry of Education, Culture and Sports.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 9.466; 2015 IF: 8.354  
  Call Number c:irua:129598 c:irua:129598 Serial 3972  
Permanent link to this record
 

 
Author Scalise, E.; Houssa, M.; Cinquanta, E.; Grazianetti, C.; van den Broek, B.; Pourtois, G.; Stesmans, A.; Fanciulli, M.; Molle, A. pdf  doi
openurl 
  Title (up) Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates Type A1 Journal article
  Year 2014 Publication 2D materials Abbreviated Journal 2D Mater  
  Volume 1 Issue 1 Pages 011010  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract By using first-principles simulations, we investigate the interaction of a 2D silicon layer with two classes of chalcogenide-layered compounds, namely MoX2 and GaX (X = S, Se, Te). A rather weak (van der Waals) interaction between the silicene layers and the chalcogenide layers is predicted. We found that the buckling of the silicene layer is correlated to the lattice mismatch between the silicene layer and the MoX2 or GaX template. The electronic properties of silicene on these different templates largely depend on the buckling of the silicene layer: highly buckled silicene on MoS2 is predicted to be metallic, while low buckled silicene on GaS and GaSe is predicted to be semi-metallic, with preserved Dirac cones at the K points. These results indicate new routes for artificially engineering silicene nanosheets, providing tailored electronic properties of this 2D layer on non-metallic substrates. These non-metallic templates also open the way to the possible integration of silicene in future nanoelectronic devices.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000353649900011 Publication Date 2014-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1583; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.937 Times cited 49 Open Access  
  Notes Approved Most recent IF: 6.937; 2014 IF: NA  
  Call Number UA @ lucian @ c:irua:126032 Serial 1048  
Permanent link to this record
 

 
Author Rizzo, F.; Augieri, A.; Angrisani Armenio, A.; Galluzzi, V.; Mancini, A.; Pinto, V.; Rufoloni, A.; Vannozzi, A.; Bianchetti, M.; Kursumovic, A.; MacManus-Driscoll, J.L.; Meledin, A.; Van Tendeloo, G.; Celentano, G. pdf  url
doi  openurl
  Title (up) Enhanced 77K vortex-pinning in YBa2Cu3O7−x films with Ba2YTaO6 and mixed Ba2YTaO6 + Ba2YNbO6 nano-columnar inclusions with irreversibility field to 11T Type A1 Journal article
  Year 2016 Publication APL materials Abbreviated Journal Apl Mater  
  Volume 4 Issue 4 Pages 061101  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Pulsed laser deposited thin YBa2Cu3O7−x (YBCO) films with pinning additions of 5at.% Ba2YTaO6 (BYTO) were compared to films with 2.5at.% Ba2YTaO6 + 2.5at.% Ba2YNbO6 (BYNTO) additions. Excellent magnetic flux-pinning at 77 K was obtained with remarkably high irreversibility fields greater than 10T (YBCO-BYTO) and 11T (YBCO-BYNTO), representing the highest ever achieved values in YBCO films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000379042400002 Publication Date 2016-06-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-532X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.335 Times cited 19 Open Access  
  Notes This work was financially supported by EUROTAPES, a collaborative project funded by the European Commission’s Seventh Framework Program (FP7 / 2007-2013) under Grant Agreement no. 280432 Approved Most recent IF: 4.335  
  Call Number c:irua:133785 Serial 4077  
Permanent link to this record
 

 
Author Angelakeris, M.; Li, Z.A.; Hilgendorff, M.; Simeonidis, K.; Sakellari, D.; Filippousi, M.; Tian, H.; Van Tendeloo, G.; Spasova, M.; Acet, M.; Farle, M. pdf  url
doi  openurl
  Title (up) Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles Type A1 Journal article
  Year 2015 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 381 Issue 381 Pages 179-187  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Biomedical nanomagnetic carriers are getting a higher impact in therapy and diagnosis schemes while their constraints and prerequisites are more and more successfully confronted. Such particles should possess a well-defined size with minimum agglomeration and they should be synthesized in a facile and reproducible high-yield way together with a controllable response to an applied static or dynamic field tailored for the specific application. Here, we attempt to enhance the heating efficiency in magnetic particle hyperthermia treatment through the proper adjustment of the core-shell morphology in ferrite particles, by controlling exchange and dipolar magnetic interactions at the nanoscale. Thus, core-shell nanoparticles with mutual coupling of magnetically hard (CoFe2O4) and soft (MnFe2O4) components are synthesized with facile synthetic controls resulting in uniform size and shell thickness as evidenced by high resolution transmission electron microscopy imaging, excellent crystallinity and size monodispersity. Such a magnetic coupling enables the fine tuning of magnetic anisotropy and magnetic interactions without sparing the good structural, chemical and colloidal stability. Consequently, the magnetic heating efficiency of CoFe2O4. and MnFe2O4 core-shell nanoparticles is distinctively different horn that of their counterparts, even though all these nanocrystals were synthesized under similar conditions. For better understanding of the AC magnetic hyperthermia response and its correlation with magnetic-origin features we study the effect of the volume ratio of magnetic hard and soft phases in the bimagnetic core-shell nanocrystals. Eventually, such particles may be considered as novel heating carriers that under further biomedical functionalization may become adaptable multifunctional heat-triggered nanoplatforms. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000349361100027 Publication Date 2014-12-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited 20 Open Access  
  Notes 312483 Esteem2; Esteem2_ta Approved Most recent IF: 2.63; 2015 IF: 1.970  
  Call Number c:irua:125284 c:irua:125284 Serial 1049  
Permanent link to this record
 

 
Author Ma, J.; Duong, T.H.; Smits, M.; Verstraete, W.; Carballa, M. pdf  doi
openurl 
  Title (up) Enhanced biomethanation of kitchen waste by different pre-treatments Type A1 Journal article
  Year 2011 Publication Bioresource technology Abbreviated Journal  
  Volume 102 Issue 2 Pages 592-599  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (

KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressuredepressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressuredepressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressuredepressure reactor, followed by freezethaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L−1 d−1) applied in the pressuredepressure and freezethaw reactors almost doubled the control reactor. From the overall analysis, the freezethaw pre-treatment was the most profitable process with a net potential profit of around 11.5 ton−1 KW.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000286782700022 Publication Date 2010-08-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:85249 Serial 7910  
Permanent link to this record
 

 
Author Yang, Z.; Zhu, W.; Yu, D.; Bo, Y.; Li, J. pdf  url
doi  openurl
  Title (up) Enhanced carbon and nitrogen removal performance of simultaneous anammox and denitrification (SAD) with mannitol addition treating saline wastewater Type A1 Journal article
  Year 2019 Publication Journal of chemical technology and biotechnology Abbreviated Journal  
  Volume 94 Issue 2 Pages 377-388  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract BACKGROUND Simultaneous anammox and denitrification (SAD) can remove carbon and nitrogen. However, its performance is suppressed under saline surroundings. In this work, mannitol was used to enhance a SAD process treating saline wastewater. RESULTS The optimum carbon and nitrogen removal was achieved at 0.2 mmol L-1 mannitol, during which ammonium removal efficiency (ARE), nitrite removal efficiency (NRE) and chemical oxygen demand (COD) removal efficiency were 96.95%, 93.70% and 90.05%, respectively. The maximum ammonium removal rate (ARR), nitrite removal rate (NRR) and the specific anammox activity (SAA) were increased by 25.49%, 55.84% and 33.83% with optimum addition (0.2 mmol L-1 mannitol) respectively. The diameter of sludge was enlarged with the addition of mannitol (<= 0.2 mmol L-1). The Tseng-Wayman model was more suitable to simulate the whole SAD process. The modified logistic model, the modified Boltzman model and the modified Gompertz model were all appropriate to describe nitrogen removal in a typical cycle with the addition of mannitol. CONCLUSION Mannitol was effective in enhancing a SAD process treating saline wastewater, and maximum nitrogen removal was achieved at mannitol = 0.2 mmol L-1. The Tseng-Wayman model satisfactorily predicted the whole SAD process treating saline wastewater with mannitol addition. (c) 2018 Society of Chemical Industry  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455262100004 Publication Date 2018-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156712 Serial 7911  
Permanent link to this record
 

 
Author Duarte, M.; Daems, N.; Hereijgers, J.; Arenas Esteban, D.; Bals, S.; Breugelmans, T. pdf  url
doi  openurl
  Title (up) Enhanced CO2 electroreduction with metal-nitrogen-doped carbons in a continuous flow reactor Type A1 Journal article
  Year 2021 Publication Journal Of Co2 Utilization Abbreviated Journal J Co2 Util  
  Volume 50 Issue Pages 101583-12  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Applied Electrochemistry & Catalysis (ELCAT)  
  Abstract As part of a mitigation and adaptation approach to increasing carbon dioxide atmospheric concentrations, we report superior performance of various metal-nitrogen-doped carbon catalysts, synthesized using an easily up-scalable method, for the electrochemical reduction to carbon monoxide and/or formate at industrially relevant current densities up to 200 mAcm−2. Altering the embedded transition metal (i.e. Sn, Co, Fe, Mn and Ni) allowed to tune the selectivity towards the desired product. Mn-N-C and Fe-N-C performance was compromised by its high CO* binding energy, while Co-N-C catalyzed preferentially the HER. Ni-N-C and Sn-N-C revealed to be promising electrocatalysts, the latter being evaluated for the first time in a flow reactor. A productivity of 589 L CO m-2 h-1 at -1.39 VRHE with Ni-N-C and 751 g HCOO- m-2 h-1 at -1.47 VRHE with Sn-N-C was achieved with no signs of degradation detected after 24 h of operation at industrially relevant current densities (100 mAcm−2). Stable operation at 200 mAcm−2 led to turnover frequencies for the production of carbon products of up to 5176 h-1. These enhanced productivities, in combination with high stability, constitute an essential step towards the scalability and ultimately towards the economical valorization of CO2 electrolyzers using metal-containing nitrogen-doped catalysts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000670316000002 Publication Date 2021-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-9820 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.292 Times cited 14 Open Access OpenAccess  
  Notes The authors acknowledge sponsoring from the Research Foundation – Flanders (FWO) in the frame of a post-doctoral grant (12Y3919N – ND). This project was co-funded by the Interreg 2 Seas-Program 2014-2020, co-financed by the European Fund for Regional Development in the frame of subsidiary contract nr. 2S03-019. This work was further performed in the framework of the Catalisti MOT project D2M (“Dioxide to Monoxide (D2M): Innovative catalysis for CO2 to CO conversion”). We thank Lien Pacquets for analyzing the samples with SEM-EDX, Saskia Defoss´e for helping with the N2 physisorption measurements and Kitty Baert (VUB) for analyzing the samples with XPS and Raman. Approved Most recent IF: 4.292  
  Call Number UA @ admin @ c:irua:178151 Serial 6779  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title (up) Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
  Year 2024 Publication Energy & environment materials Abbreviated Journal  
  Volume Issue Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204495900001 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Parrilla, M.; Joosten, F.; De Wael, K. pdf  url
doi  openurl
  Title (up) Enhanced electrochemical detection of illicit drugs in oral fluid by the use of surfactant-mediated solution Type A1 Journal article
  Year 2021 Publication Sensors And Actuators B-Chemical Abbreviated Journal Sensor Actuat B-Chem  
  Volume 348 Issue Pages 130659  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drug consumption is a worldwide worrying phenomenon that troubles modern society. For this reason, law enforcement agencies (LEAs) are placing tremendous efforts into tackling the spreading of such substances among our community. New sensing technologies can facilitate the LEAs duties by providing portable and affordable analytical devices. Herein, we present for the first time a sensitive and low-cost electrochemical method, i.e. square-wave adsorptive stripping voltammetry on carbon screen-printed electrodes (SPE), for the detection of five illicit drugs (i.e. cocaine, heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-alpha-pyrrolidinovalerophenone, and ketamine) in oral fluid by the aid of a surfactant. Particularly, the surfactant is adsorbed at the carbon electrode’s surface and yields the adsorption of illicit drug molecules, allowing for an enhanced electrochemical signal in comparison to surfactant-free media. First, the surfactant-mediated behavior is deeply explored at the SPE by cyclic voltammetry, electrochemical impedance spectroscopy, and Fourier-transform infrared spectroscopy. Subsequently, the electrochemical behavior of the five illicit drugs is studied and optimized to render optimal analytical performance. Accordingly, the analytical system exhibited a wide linear concentration range from 1 to 30 µM with sub-micromolar limits of detection and high sensitivity. This performance is similar to other reported electrochemical sensors, but with the advantage of using an unmodified SPE, thus avoiding costly and complex functionalization of the SPE. Finally, the methodology was evaluated in diluted oral fluid samples spiked with illicit drugs. Overall, this work describes a simple, rapid, portable, and sensitive method for the detection of illicit drugs aiming to provide oral fluid testing opportunities to LEAs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000701915600005 Publication Date 2021-08-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.401 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.401  
  Call Number UA @ admin @ c:irua:181307 Serial 7912  
Permanent link to this record
 

 
Author Serrano-Sevillano, J.; Reynaud, M.; Saracibar, A.; Altantzis, T.; Bals, S.; van Tendeloo, G.; Casas-Cabanas, M. url  doi
openurl 
  Title (up) Enhanced electrochemical performance of Li-rich cathode materials through microstructural control Type A1 Journal article
  Year 2018 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys  
  Volume 20 Issue 20 Pages 23112-23122  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The microstructural complexity of Li-rich cathode materials has so far hampered understanding the critical link between size, morphology and structural defects with both capacity and voltage fadings that this family of materials exhibits. Li2MnO3 is used here as a model material to extract reliable structure–property

relationships that can be further exploited for the development of high-performing and long-lasting Li-rich oxides. A series of samples with microstructural variability have been prepared and thoroughly characterized using the FAULTS software, which allows quantification of planar defects and extraction of

average crystallite sizes. Together with transmission electron microscopy (TEM) and density functional theory (DFT) results, the successful application of FAULTS analysis to Li2MnO3 has allowed rationalizing the synthesis conditions and identifying the individual impact of concurrent microstructural features on

both voltage and capacity fadings, a necessary step for the development of high-capacity Li-ion cathode materials with enhanced cycle life.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000445220500071 Publication Date 2018-08-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.123 Times cited 36 Open Access OpenAccess  
  Notes This work was supported by the Spanish Ministerio de la Economı´a y de la Competitividad through the project IONSTORE (MINECO ref. ENE2016-81020-R). The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2 (Integrated Infrastructure Initiative-I3). JSS and AS are grateful for computing time provided by the Spanish i2Basque Centers. MR acknowledges the Spanish State for its financial support through her post-doctoral grant Juan de la Cierva – Formacio´n (MINECO ref. FJCI-2014-19990) and her international mobility grant Jose´ Castillejos (MECD ref. CAS15/00354). S. B. acknowledges funding from the European Research Council (ERC starting grant #335078 Colouratom) and T. A. a postdoctoral grant from the Research Foundation Flanders (FWO). (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); ecas_sara Approved Most recent IF: 4.123  
  Call Number EMAT @ emat @c:irua:154782UA @ admin @ c:irua:154782 Serial 5062  
Permanent link to this record
 

 
Author Burriel, M.; Garcia, G.; Rossell, M.D.; Figueras, A.; Van Tendeloo, G.; Santiso, J. pdf  doi
openurl 
  Title (up) Enhanced high-temperature electronic transport properties in nanostructured epitaxial thin films of the Lan+1NinO3n+1 Ruddlesden-Popper series (n = 1, 2, 3, ∞) Type A1 Journal article
  Year 2007 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 19 Issue 16 Pages 4056-4062  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000248439400029 Publication Date 2007-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 22 Open Access  
  Notes Approved Most recent IF: 9.466; 2007 IF: 4.883  
  Call Number UA @ lucian @ c:irua:65937 Serial 1050  
Permanent link to this record
 

 
Author Carraro, G.; Maccato, C.; Gasparotto, A.; Montini, T.; Turner, S.; Lebedev, O.I.; Gombac, V.; Adami, G.; Van Tendeloo, G.; Barreca, D.; Fornasiero, P.; pdf  doi
openurl 
  Title (up) Enhanced hydrogen production by photoreforming of renewable oxygenates through nanostructured Fe2O3 polymorphs Type A1 Journal article
  Year 2014 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater  
  Volume 24 Issue 3 Pages 372-378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Sunlight-driven hydrogen production via photoreforming of aqueous solutions containing renewable compounds is an attractive option for sustainable energy generation with reduced carbon footprint. Nevertheless, the absence of photocatalysts combining high efficiency and stability upon solar light activation has up to date strongly hindered the development of this technology. Herein, two scarcely investigated iron(III) oxide polymorphs, β- and ε-Fe2O3, possessing a remarkable activity in sunlight-activated H2 generation from aqueous solutions of renewable oxygenates (i.e., ethanol, glycerol, glucose) are reported. For β-Fe2O3 and ε-Fe2O3, H2 production rates up to 225 and 125 mmol h−1 m−2 are obtained, with significantly superior performances with respect to the commonly investigated α-Fe2O3.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000332832500011 Publication Date 2013-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.124 Times cited 95 Open Access  
  Notes Countatoms; Hercules; Fwo Approved Most recent IF: 12.124; 2014 IF: 11.805  
  Call Number UA @ lucian @ c:irua:113090 Serial 1051  
Permanent link to this record
 

 
Author Einhäupl, P.; Krook, J.; Svensson, N.; Van Acker, K.; Van Passel, S. url  isbn
openurl 
  Title (up) Enhanced landfill mining at the REMO site : assessing stakeholders' perspectives for implementation Type P3 Proceeding
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords P3 Proceeding; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title Proceedings of the 4th International Symposium on Enhanced Landfill Mining, February 5-6, 2018, Mechelen, Belgium / Jones, Peter Tom [edit.]; Machiels, Lieven [edit.]  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-90-828259-0-9 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:161512 Serial 6194  
Permanent link to this record
 

 
Author Jones, P.T.; Geysen, D.; Tielemans, Y.; Van Passel, S.; Pontikes, Y.; Blanpain, B.; Quaghebeur, M.; Hoekstra, N. doi  openurl
  Title (up) Enhanced landfill mining in view of multiple resource recovery : a critical review Type A1 Journal article
  Year 2013 Publication Journal Of Cleaner Production Abbreviated Journal J Clean Prod  
  Volume 55 Issue Pages 45-55  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract In a circular economy material loops are closed by recycling of pre-consumer manufacturing scrap/residues, urban mining of End-of-Life products and landfill mining of historic (and future) urban waste streams. However, in the past landfill mining was not performed with a focus on resource recovery. This paper addresses this gap by introducing the concept of Enhanced Landfill Mining, defined as the safe conditioning, excavation and integrated valorization of landfilled waste streams as both materials and energy, using innovative transformation technologies and respecting the most stringent social and ecological criteria. The feasibility of ELFM is studied by synthesizing the research on the Closing the Circle project, the first ELFM project targeting the 18 million metric ton landfill in Houthalen-Helchteren in the East of Belgium. It is argued that Environmental Impact Assessments of ELFM projects should be wide in scope and time. Embedded in a broad resource management perspective, the worldwide potential of ELFM is highlighted, in terms of climate gains, materials and energy utilization, job creation and land reclamation. The potential is quantified for the EU-27 with its 150,000-500,000 landfills. However, for ELFM to reach its full potential, strategic policy decisions and tailored support systems, including combined incentives for material recycling, energy utilization and nature restoration, are required. (c) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322802300005 Publication Date 2012-05-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-6526 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 5.715 Times cited 144 Open Access  
  Notes ; The authors acknowledge the European and Flemish authorities for the funding of, respectively, the EFRO project 'Closing the Circle, a demonstration of Enhanced Landfill Mining (ELFM)' and the IWT O&O Project 100517. The authors acknowledge the ELFM Consortium Members, including Karel Van Acker, Tom Van Gerven, Marc Craps, Alain De Vocht, Johan Eyckmans, Maarten Dubois, Koen Sips, Luk Umans, Maurice Ballard, Lieve Helsen and Anouk Bosmans. The authors acknowledge the members of the EU ELMIRE Consortium, in particular Hans Groot, Raffaello Cossu, William Hogland and Rainer Stegmann. Finally, the authors thank the reviewers for their critical comments and suggested improvements. ; Approved Most recent IF: 5.715; 2013 IF: 3.590  
  Call Number UA @ admin @ c:irua:127549 Serial 6195  
Permanent link to this record
 

 
Author Huijben, M.; Liu, Y.; Boschker, H.; Lauter, V.; Egoavil, R.; Verbeeck, J.; te Velthuis, S.G.E.; Rijnders, G.; Koster, G. pdf  url
doi  openurl
  Title (up) Enhanced local magnetization by interface engineering in perovskite-type correlated oxide heterostructures Type A1 Journal article
  Year 2015 Publication Advanced Materials Interfaces Abbreviated Journal Adv Mater Interfaces  
  Volume 2 Issue 2 Pages 1400416  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000349916000001 Publication Date 2015-01-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2196-7350; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.279 Times cited 30 Open Access  
  Notes Hercules; 246791 COUNTATOMS; 278510 VORTEX; 246102 IFOX; 312483 ESTEEM2; FWO G004413N; esteem2jra3 ECASJO; Approved Most recent IF: 4.279; 2015 IF: NA  
  Call Number c:irua:125333 c:irua:125333UA @ admin @ c:irua:125333 Serial 1052  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: