|   | 
Details
   web
Records
Author Verbist, K.; Lebedev, O.I.; Verhoeven, M.A.J.; Winchern, R.; Rijnders, A.J.H.M.; Blank, D.H.A.; Tafuri, F.; Bender, H.; Van Tendeloo, G.
Title (up) Microstructure of YBa2Cu3O7-\delta Josephson junctions in relation to their properties Type A1 Journal article
Year 1998 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 11 Issue Pages 13-20
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000071820300005 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited Open Access
Notes Approved Most recent IF: 2.878; 1998 IF: 2.050
Call Number UA @ lucian @ c:irua:22112 Serial 2075
Permanent link to this record
 

 
Author Trenchev, G.; Kolev, S.; Kiss’ovski, Z.
Title (up) Modeling a Langmuir probe in atmospheric pressure plasma at different EEDFs Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 26 Pages 055013
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we present a computational model of a cylindrical electric probe in atmospheric pressure argon plasma. The plasma properties are varied in terms of density and electron temperature. Furthermore, results for plasmas with Maxwellian and non-Maxwellian electron energy distribution functions are also obtained and compared. The model is based on the fluid description of plasma within the COMSOL software package. The results for the ion saturation current are compared and show good agreement with existing analytical Langmuir probe theories. A strong dependence between the ion saturation current and electron transport properties was observed, and attributed to the effects of ambipolar diffusion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000398327900002 Publication Date 2017-04-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @ c:irua:141914 Serial 4535
Permanent link to this record
 

 
Author Zhang, Y.-R.; Tinck, S.; De Schepper, P.; Wang, Y.-N.; Bogaerts, A.
Title (up) Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime Type A1 Journal article
Year 2015 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 33 Issue 33 Pages 021310
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional hybrid Monte Carlofluid model, incorporating a full-wave solution of Maxwell's equations, is employed to describe the behavior of high frequency (HF) and very high frequency capacitively coupled plasmas (CCPs), operating both at single frequency (SF) and dual frequency (DF) in a CF4/O2 gas mixture. First, the authors investigate the plasma composition, and the simulations reveal that besides CF4 and O2, also COF2, CF3, and CO2 are important neutral species, and CF+3 and F− are the most important positive and negative ions. Second, by comparing the results of the model with and without taking into account the electromagnetic effects for a SF CCP, it is clear that the electromagnetic effects are important, both at 27 and 60 MHz, because they affect the absolute values of the calculation results and also (to some extent) the spatial profiles, which accordingly affects the uniformity in plasma processing. In order to improve the plasma radial uniformity, which is important for the etch process, a low frequency (LF) source is added to the discharge. Therefore, in the major part of the paper, the plasma uniformity is investigated for both SF and DF CCPs, operating at a HF of 27 and 60 MHz and a LF of 2 MHz. For this purpose, the authors measure the etch rates as a function of position on the wafer in a wide range of LF powers, and the authors compare them with the calculated fluxes toward the wafer of the plasma species playing a role in the etch process, to explain the trends in the measured etch rate profiles. It is found that at a HF of 60 MHz, the uniformity of the etch rate is effectively improved by adding a LF power of 2 MHz and 300 W, while its absolute value increases by about 50%, thus a high etch rate with a uniform distribution is observed under this condition.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000355739500026 Publication Date 2015-01-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101;1520-8559; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 3 Open Access
Notes Approved Most recent IF: 1.374; 2015 IF: 2.322
Call Number c:irua:122650 Serial 2107
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title (up) Modeling Cl2/O2/Ar inductively coupled plasmas used for silicon etching : effects of SiO2 chamber wall coating Type A1 Journal article
Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 20 Issue 4 Pages 045012-045012,19
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper, simulations are performed to gain a better insight into the properties of a Cl2/Ar plasma, with and without O2, during plasma etching of Si. Both plasma and surface properties are calculated in a self-consistent manner. Special attention is paid to the behavior of etch products coming from the wafer or the walls, and how the chamber walls can affect the plasma and the resulting etch process. Two modeling cases are considered. In the first case, the reactor walls are defined as clean (Al2O3), whereas in the second case a SiO2 coating is introduced on the reactor walls before the etching process, so that oxygen will be sputtered from the walls and introduced into the plasma. For this reason, a detailed reaction set is presented for a Cl2/O2/Ar plasma containing etched species, as well as an extensive reaction set for surface processes, including physical and chemical sputtering, chemical etching and deposition processes. Density and flux profiles of various species are presented for a better understanding of the bulk plasma during the etching process. Detailed information is also given on the composition of the surfaces at various locations of the reactor, on the etch products in the plasma and on the surface loss probabilities of the plasma species at the walls, with different compositions. It is found that in the clean chamber, walls are mostly chlorinated (Al2Cl3), with a thin layer of etch products residing on the wall. In the coated chamber, an oxy-chloride layer is grown on the walls for a few nanometers during the etching process. The Cl atom wall loss probability is found to decrease significantly in the coated chamber, hence increasing the etch rate. SiCl2, SiCl4 and SiCl3 are found to be the main etch products in the plasma, with the fraction of SiCl2 being always slightly higher. The simulation results compare well with experimental data available from the literature.
Address
Corporate Author Thesis
Publisher Institute of Physics Place of Publication Bristol Editor
Language Wos 000295829800014 Publication Date 2011-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 22 Open Access
Notes Approved Most recent IF: 3.302; 2011 IF: 2.521
Call Number UA @ lucian @ c:irua:91045 Serial 2141
Permanent link to this record
 

 
Author Liu, Y.; Ngo, H.H.; Guo, W.; Peng, L.; Chen, X.; Wang, D.; Pan, Y.; Ni, B.-J.
Title (up) Modeling electron competition among nitrogen oxides reduction and N2Oaccumulation in hydrogenotrophic denitrification Type A1 Journal article
Year 2018 Publication Biotechnology and bioengineering Abbreviated Journal
Volume 115 Issue 4 Pages 978-988
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Hydrogenotrophic denitrification is a novel and sustainable process for nitrogen removal, which utilizes hydrogen as electron donor, and carbon dioxide as carbon source. Recent studies have shown that nitrous oxide (N2O), a highly undesirable intermediate and potent greenhouse gas, can accumulate during this process. In this work, a new mathematical model is developed to describe nitrogen oxides dynamics, especially N2O, during hydrogenotrophic denitrification for the first time. The model describes electron competition among the four steps of hydrogenotrophic denitrification through decoupling hydrogen oxidation and nitrogen reduction processes using electron carriers, in contrast to the existing models that couple these two processes and also do not consider N2O accumulation. The developed model satisfactorily describes experimental data on nitrogen oxides dynamics obtained from two independent hydrogenotrophic denitrifying cultures under various hydrogen and nitrogen oxides supplying conditions, suggesting the validity and applicability of the model. The results indicated that N2O accumulation would not be intensified under hydrogen limiting conditions, due to the higher electron competition capacity of N2O reduction in comparison to nitrate and nitrite reduction during hydrogenotrophic denitrification. The model is expected to enhance our understanding of the process during hydrogenotrophic denitrification and the ability to predict N2O accumulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426493300016 Publication Date 2017-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3592 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149850 Serial 8261
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title (up) Modeling of CO2plasma: effect of uncertainties in the plasma chemistry Type A1 Journal article
Year 2017 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 26 Issue 11 Pages 115002
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Low-temperature plasma chemical kinetic models are particularly important to the plasma community. These models typically require dozens of inputs, especially rate coefficients. The latter are not always precisely known and it is not surprising that the error on the rate coefficient data can propagate to the model output. In this paper, we present a model that uses N = 400 different combinations of rate coefficients based on the uncertainty attributed to each rate coefficient, giving a good estimation of the uncertainty on the model output due to the rate coefficients. We demonstrate that the uncertainty varies a lot with the conditions and the type of output. Relatively low uncertainties (about 15%) are found for electron density and temperature, while the uncertainty can reach more than an order of magnitude for the population of the vibrational levels in some cases and it can rise up to 100% for the CO2 conversion. The reactions that are mostly responsible for the largest uncertainties are identified. We show that the conditions of pressure, gas temperature and power density have a great effect on the uncertainty and on which reactions lead to this uncertainty. In all the cases tested here, while the absolute values may suffer from large uncertainties, the trends observed in previous modeling work are still valid. Finally, in accordance with the work of Turner, a number of ‘good practices’ is recommended.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000413216500002 Publication Date 2017-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 16 Open Access OpenAccess
Notes We acknowledge financial support from the European Unions Seventh Framework Program for research, technological development and demonstration under grant agreement n◦ 606889. The calculations were carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:146879c:irua:146642 Serial 4758
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Kolev, I.; Madani, M.
Title (up) Modeling of gas discharge plasmas: What can we learn from it? Type A1 Journal article
Year 2005 Publication Surface and coatings technology Abbreviated Journal Surf Coat Tech
Volume 200 Issue Pages 62-67
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000232327800014 Publication Date 2005-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0257-8972; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.589 Times cited 11 Open Access
Notes Approved Most recent IF: 2.589; 2005 IF: 1.646
Call Number UA @ lucian @ c:irua:53629 Serial 2122
Permanent link to this record
 

 
Author Berthelot, A.; Bogaerts, A.
Title (up) Modeling of plasma-based CO2conversion: lumping of the vibrational levels Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 045022
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Although CO2 conversion by plasma technology is gaining increasing interest, the

underlying mechanisms for an energy-efficient process are still far from understood. In this work, a reduced non-equilibrium CO2 plasma chemistry set, based on level lumping of the vibrational levels, is proposed and the reliability of this level-lumping method is tested by a self-consistent zero-dimensional code. A severe reduction of the number of equations to be solved is achieved, which is crucial to be able to model non-equilibrium CO2 plasmas by 2-dimensional models. Typical conditions of pressure and power used in a microwave plasma for CO2 conversion are investigated. Several different sets, using different numbers of lumped groups, are considered. The lumped models with 1, 2 or 3 groups are able to reproduce the gas temperature, electron density and electron temperature profiles, as calculated by the full model treating all individual excited levels, in the entire pressure range investigated. Furthermore, a 3-groups model is also able to reproduce the shape of the vibrational distribution function (VDF) and gives the most reliable prediction of the CO2 conversion. A strong influence of the vibrational excitation on the plasma characteristics is observed. Finally, the limitations of the lumped-levels method are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380380200036 Publication Date 2016-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 33 Open Access
Notes This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no 606889 and it was also carried out in the framework of the network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7) supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. Approved Most recent IF: 3.302
Call Number c:irua:134397 Serial 4101
Permanent link to this record
 

 
Author Depla, D.; Chen, Z.Y.; Bogaerts, A.; Ignatova, V.; de Gryse, R.; Gijbels, R.
Title (up) Modeling of the target surface modification by reactive ion implantation during magnetron sputtering Type A1 Journal article
Year 2004 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Vac Sci Technol A
Volume 22 Issue 4 Pages 1524-1529
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000223322000075 Publication Date 2004-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0734-2101; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.374 Times cited 13 Open Access
Notes Approved Most recent IF: 1.374; 2004 IF: 1.557
Call Number UA @ lucian @ c:irua:47331 Serial 2137
Permanent link to this record
 

 
Author Bogaerts, A.; Wang, W.; Berthelot, A.; Guerra, V.
Title (up) Modeling plasma-based CO2conversion: crucial role of the dissociation cross section Type A1 Journal article
Year 2016 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 25 Issue 25 Pages 055016
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-based CO2 conversion is gaining increasing interest worldwide. A large research effort is devoted to improving the energy efficiency. For this purpose, it is very important to understand the underlying mechanisms of the CO2 conversion. The latter can be obtained by computer modeling, describing in detail the behavior of the various plasma species and all relevant chemical processes. However, the accuracy of the modeling results critically depends on the accuracy of the assumed input data, like cross sections. This is especially true for the cross section of electron impact dissociation, as the latter process is believed

to proceed through electron impact excitation, but it is not clear from the literature which excitation channels effectively lead to dissociation. Therefore, the present paper discusses the effect of different electron impact dissociation cross sections reported in the literature on the calculated CO2 conversion, for a dielectric barrier discharge (DBD) and a microwave (MW) plasma. Comparison is made to experimental data for the DBD case, to elucidate which cross section might be the most realistic. This comparison reveals that the cross sections proposed

by Itikawa and by Polak and Slovetsky both seem to underestimate the CO2 conversion. The cross sections recommended by Phelps with thresholds of 7 eV and 10.5 eV yield a CO2 conversion only slightly lower than the experimental data, but the sum of both cross sections overestimates the values, indicating that these cross sections represent dissociation, but most probably also include other (pure excitation) channels. Our calculations indicate that the choice of the electron impact dissociation cross section is crucial for the DBD, where this process is the dominant mechanism for CO2 conversion. In the MW plasma, it is only significant at pressures up to 100 mbar, while it is of minor importance for higher pressures, when dissociation proceeds mainly through collisions of CO2 with heavy particles.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000384030600001 Publication Date 2016-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 57 Open Access
Notes The authors would like to thank R Snoeckx and S Heijkers for the interesting discussions. This research was supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 606889, the European Marie Skłodowska-Curie Individual Fellowship project ‘GlidArc’ within Horizon2020, the FWO project (grant G.0383.16N), and the Network on Physical Chemistry of Plasma-Surface Interactions—Interuniversity Attraction Poles, phase VII (PSI-IAP7), supported by the Belgian Science Policy Office (BELSPO). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. VG was partially supported by the Portuguese FCT— Fundação para a Ci Approved Most recent IF: 3.302
Call Number c:irua:135070 Serial 4111
Permanent link to this record
 

 
Author Sóti, V.; Jacquet, N.; Apers, S.; Richel, A.; Lenaerts, S.; Cornet, I.
Title (up) Monitoring the laccase reaction of vanillin and poplar hydrolysate Type A1 Journal article
Year 2016 Publication Journal of chemical technology and biotechnology Abbreviated Journal J Chem Technol Biot
Volume 91 Issue 6 Pages 1914-1922
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract BACKGROUND Laccase is an intensively researched enzyme for industrial use. Except for decolorisation measurements, HPLC analysis is the conventional method for monitoring the phenolic removal during laccase enzyme reaction. This paper reports an investigation of the continuous UV absorbance follow-up of the laccase reaction with steam pretreated poplar hydrolysate. RESULTS Vanillin was used as a model substrate and lignocellulose xylose rich fraction (XRF) as a biologically complex substrate for laccase detoxification. The reaction was followed by HPLC-UV as well as by UV spectrometric measurements. Results suggest that the reaction can be successfully monitored by measuring the change of UV absorbance at 280 nm, without previous compound separation. In case of XRF experiments the spectrophotometric follow-up is especially useful, as HPLC analysis takes a long time and provides less information than in case of single substrates. The method seems to be suitable for optimization and process control. CONCLUSION The obtained results can help to construct a fast, easy and straightforward monitoring system for laccase-phenolic substrate reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375768300040 Publication Date 2015-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-2575; 1097-4660 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.135 Times cited 3 Open Access
Notes ; This research is financed by the University of Antwerp (project number 15 FA100 002). ; Approved Most recent IF: 3.135
Call Number UA @ admin @ c:irua:127694 Serial 5972
Permanent link to this record
 

 
Author Trofimova, E.Y.; Kurdyukov, D.A.; Yakovlev, S.A.; Kirilenko, D.A.; Kukushkina, Y.A.; Nashchekin, A.V.; Sitnikova, A.A.; Yagovkina, M.A.; Golubev, V.G.
Title (up) Monodisperse spherical mesoporous silica particles : fast synthesis procedure and fabrication of photonic-crystal films Type A1 Journal article
Year 2013 Publication Nanotechnology Abbreviated Journal Nanotechnology
Volume 24 Issue 15 Pages 155601-155611
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract A procedure for the synthesis of monodisperse spherical mesoporous silica particles (MSMSPs) via the controlled coagulation of silica/surfactant clusters into spherical aggregates with mean diameters of 250-1500 nm has been developed. The synthesis is fast (taking less than 1 h) because identical clusters are simultaneously formed in the reaction mixture. The results of microscopic, x-ray diffraction, adsorption and optical measurements allowed us to conclude that the clusters are similar to 15 nm in size and have hexagonally packed cylindrical pore channels. The channel diameters in MSMSPs obtained with cethyltrimethylammonium bromide and decyltrimethylammonium bromide as structure-directing agents were 3.1 +/- 0.15 and 2.3 +/- 0.12 nm, respectively. The specific surface area and the pore volume of MSMSP were, depending on synthesis conditions, 480-1095 m(2) g(-1) and 0.50-0.65 cm(3) g(-1). The MSMSP were used to grow opal-like photonic-crystal films possessing a hierarchical macro-mesoporous structure, with pores within and between the particles. A selective filling of mesopore channels with glycerol, based on the difference between the capillary pressures in macro- and mesopores, was demonstrated. It is shown that this approach makes it possible to control the photonic bandgap position in mesoporous opal films by varying the degree of mesopore filling with glycerol. Online supplementary data available from stacks.iop.org/Nano/24/155601/mmedia
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000316988700009 Publication Date 2013-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.44 Times cited 49 Open Access
Notes Approved Most recent IF: 3.44; 2013 IF: 3.672
Call Number UA @ lucian @ c:irua:108462 Serial 2191
Permanent link to this record
 

 
Author Zhang, H.; Zhang, H.; Trenchev, G.; Li, X.; Wu, Y.; Bogaerts, A.
Title (up) Multi-dimensional modelling of a magnetically stabilized gliding arc plasma in argon and CO2 Type A1 Journal article
Year 2020 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 29 Issue 4 Pages 045019
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract This study focuses on a magnetically stabilized gliding arc (MGA) plasma. Two fully coupled flow-plasma models (in 3D and 2D) are presented. The 3D model is applied to compare the arc dynamics of the MGA with a traditional gas-driven gliding arc. The 2D model is used for a detailed parametric study on the effect of the external magnetic field. The results show that the relative velocity between the plasma and feed gas is generated due to the Lorentz force, which can increase the plasma-treated gas fraction. The magnetic field also helps to decrease the gas temperature by enhancing heat transfer and to increase the electron number density. This work shows the potential of an external magnetic field to control the gliding arc behavior, for enhanced gas conversion at low gas flow rates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000570241800001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1361-6595 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.8 Times cited Open Access
Notes Fonds Wetenschappelijk Onderzoek, G.0383.16N ; National Natural Science Foundation of China, 51706204 51707144 ; State Key Laboratory of Electrical Insulation and Power Equipment, EIPE19302 ; The authors acknowledge financial support from the Fund for Scientific Research—Flanders (FWO; Grant G.0383.16 N), National Natural Science Foundation of China under Grant Nos. 51706204, 51707144, and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE19302). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (Department EWI), and Universiteit Antwerpen. Finally, Hantian Zhang acknowledges financial support from the China Scholarship Council. Approved Most recent IF: 3.8; 2020 IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:169218 Serial 6360
Permanent link to this record
 

 
Author de Witte, K.; Cool, P.; de Witte, I.; Ruys, L.; Rao, J.; Van Tendeloo, G.; Vansant, E.F.
Title (up) Multistep loading of titania nanoparticles in the mesopores of SBA-15 for enhanced photocatalytic activity Type A1 Journal article
Year 2007 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 7 Issue 7 Pages 2511-2515
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000246347700042 Publication Date 2007-04-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880;0000-0000; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited 13 Open Access
Notes Approved Most recent IF: 1.483; 2007 IF: 1.987
Call Number UA @ lucian @ c:irua:64773 Serial 2240
Permanent link to this record
 

 
Author Vishwakarma, M.; Karakulina, O.M.; Abakumov, A.M.; Hadermann, J.; Mehta, B.R.
Title (up) Nanoscale Characterization of Growth of Secondary Phases in Off-Stoichiometric CZTS Thin Films Type A1 Journal article
Year 2018 Publication Journal of nanoscience and nanotechnology Abbreviated Journal J Nanosci Nanotechno
Volume 18 Issue 3 Pages 1688-1695
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The presence of secondary phases is one of the main issues that hinder the growth of pure kesterite Cu2ZnSnS4 (CZTS) based thin films with suitable electronic and junction properties for efficient solar cell devices. In this work, CZTS thin films with varied Zn and Sn content have been prepared by RF-power controlled co-sputtering deposition using Cu, ZnS and SnS targets and a subsequent sulphurization step. Detailed TEM investigations show that the film shows a layered structure with the majority of the top layer being the kesterite phase. Depending on the initial thin film composition, either about ~1 μm Cu-rich and Zn-poor kesterite or stoichiometric CZTS is formed as top layer. X-ray diffraction, Raman spectroscopy and transmission electron microscopy reveal the presence of Cu2−x S, ZnS and SnO2 minor secondary phases in the form of nanoinclusions or nanoparticles or intermediate layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000426033400022 Publication Date 2018-03-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1533-4880 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.483 Times cited Open Access Not_Open_Access
Notes Manoj Vishwakarma acknowl- edges IIT Delhi for MHRD fellowship. Professor B. R. Mehta acknowledges the support of the Schlumberger chair professorship. Manoj Vishwakarma, Joke Hadermann and Olesia M. karakulina acknowledge support provided by InsoL-DST. Manoj Vishwakarma acknowledges sup- port provided by CSIR funded projects and the support of DST-FIST Raman facility. References Approved Most recent IF: 1.483
Call Number EMAT @ emat @c:irua:147505 Serial 4775
Permanent link to this record
 

 
Author Cheng, J.P.; Zhang, X.B.; Ye, Y.; Tao, X.Y.; Liu, F.; Li, Y.; Van Tendeloo, G.
Title (up) Natural mineral-marine manganese nodule as a novel catalyst for the synthesis of carbon nanotubes Type A1 Journal article
Year 2006 Publication Journal of Wuhan University of Technology: materials science edition Abbreviated Journal
Volume 21 Issue 1 Pages 29-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57740 Serial 2286
Permanent link to this record
 

 
Author Goessens, C.; Schryvers, D.; van Landuyt, J.; de Keyzer, R.
Title (up) New method to determine the parity of the number of twin planes in tabular silver halide microcrystals from top views Type A1 Journal article
Year 1997 Publication The journal of imaging science and technology Abbreviated Journal J Imaging Sci Techn
Volume 41 Issue Pages 301-307
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Springfield, Va Editor
Language Wos 000077457600017 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1062-3701 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.348 Times cited 1 Open Access
Notes Approved Most recent IF: 0.348; 1997 IF: NA
Call Number UA @ lucian @ c:irua:21346 Serial 2324
Permanent link to this record
 

 
Author Coppens, J.; Lindeboom, R.; Muys, M.; Coessens, W.; Alloul, A.; Meerbergen, K.; Lievens, B.; Clauwaert, P.; Boon, N.; Vlaeminck, S.E.
Title (up) Nitrification and microalgae cultivation for two-stage biological nutrient valorization from source separated urine Type A1 Journal article
Year 2016 Publication Bioresource technology Abbreviated Journal
Volume 211 Issue Pages 41-50
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Urine contains the majority of nutrients in urban wastewaters and is an ideal nutrient recovery target. In this study, stabilization of real undiluted urine through nitrification and subsequent microalgae cultivation were explored as strategy for biological nutrient recovery. A nitrifying inoculum screening revealed a commercial aquaculture inoculum to have the highest halotolerance. This inoculum was compared with municipal activated sludge for the start-up of two nitrification membrane bioreactors. Complete nitrification of undiluted urine was achieved in both systems at a conductivity of 75 mS cm−1 and loading rate above 450 mg N L−1 d−1. The halotolerant inoculum shortened the start-up time with 54%. Nitrite oxidizers showed faster salt adaptation and Nitrobacter spp. became the dominant nitrite oxidizers. Nitrified urine as growth medium for Arthrospira platensis demonstrated superior growth compared to untreated urine and resulted in a high protein content of 62%. This two-stage strategy is therefore a promising approach for biological nutrient recovery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375186700006 Publication Date 2016-03-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:139913 Serial 8307
Permanent link to this record
 

 
Author Bahnamiri, O.S.; Verheyen, C.; Snyders, R.; Bogaerts, A.; Britun, N.
Title (up) Nitrogen fixation in pulsed microwave discharge studied by infrared absorption combined with modelling Type A1 Journal Article;nitrogen fixation
Year 2021 Publication Plasma Sources Science & Technology Abbreviated Journal Plasma Sources Sci T
Volume 30 Issue 6 Pages 065007
Keywords A1 Journal Article;nitrogen fixation; pulsed microwave discharge; FTIR spectroscopy; discharge modelling; vibrational excitation; NO yield; energy cost; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract A pulsed microwave surfaguide discharge operating at 2.45 GHz was used for the conversion of molecular nitrogen into valuable compounds in several gas mixtures: N2 :O2 , N2 :O2 :CO2 and N2 :CO2 . The ro-vibrational absorption bands of the molecular species were monitored by a Fourier transform infrared apparatus in the post-discharge region in order to evaluate the relative number density of species, specifically NO production. The effects of specific energy input, pulse frequency, gas flow fraction, gas admixture and gas flow rate were studied for better understanding and optimization of the NO production yield and the corresponding energy cost (EC). By both the experiment and modelling, a highest NO yield is obtained at N2 :O2 (1:1) gas ratio in N2 :O2 mixture. The NO yield reveals a small growth followed by saturation when pulse repetition frequency increases. The energy efficiency start decreasing after the energy input reaches about 5 eV/molec, whereas the NO yield rises steadily at the same time. The lowest EC of about 8 MJ mol−1 corresponding to the yield and the energy efficiency of about 7% and 1% are found, respectively, in an optimum discharge condition in our case.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000659671000001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited Open Access OpenAccess
Notes Fonds De La Recherche Scientifique—FNRS, EOS O005118F ; The research is supported by the FNRS-FWO project ‘NITROPLASM’, EOS O005118F. O Samadi also acknowledges PhD student F Manaigo for cooperation in doing the additional measurements. Approved Most recent IF: 3.302
Call Number PLASMANT @ plasmant @c:irua:179170 Serial 6798
Permanent link to this record
 

 
Author Kastalsky, A.; Peeters, F.M.; Chan, W.K.; Florez, L.T.; Harbison, J.P.
Title (up) Novel nonlinear transport phenomena in a triangular quantum well Type A1 Journal article
Year 1992 Publication Semiconductor science and technology: B Abbreviated Journal Semicond Sci Tech
Volume 7 Issue Pages 530-532
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos A1992HL26200140 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0268-1242;1361-6641; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.19 Times cited 4 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:3027 Serial 2380
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title (up) Numerical modelling of gas discharge plasmas for various applications Type A1 Journal article
Year 2003 Publication Vacuum: surface engineering, surface instrumentation & vacuum technology Abbreviated Journal Vacuum
Volume 69 Issue Pages 37-52
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Gas discharge plasmas are used for a wide range of applications. To improve our understanding about gas discharges, which is necessary to obtain good results in the various application fields, we perform numerical modelling of gas discharge plasmas. Various kinds of modelling approaches, for various types of gas discharges, are being used in our group. In this paper, some examples of this modelling work are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos 000180739000006 Publication Date 2002-12-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-207X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.53 Times cited 16 Open Access
Notes Approved Most recent IF: 1.53; 2003 IF: 0.612
Call Number UA @ lucian @ c:irua:40194 Serial 2401
Permanent link to this record
 

 
Author Kolev, I.; Bogaerts, A.
Title (up) Numerical study of the sputtering in a dc magnetron Type A1 Journal article
Year 2009 Publication Journal of vacuum science and technology: A: vacuum surfaces and films Abbreviated Journal J Phys Chem C
Volume 27 Issue 1 Pages 20-28
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Molecular dynamics simulations were used to investigate the size-dependent melting mechanism of nickel nanoclusters of various sizes. The melting process was monitored by the caloric curve, the overall cluster Lindemann index, and the atomic Lindemann index. Size-dependent melting temperatures were determined, and the correct linear dependence on inverse diameter was recovered. We found that the melting mechanism gradually changes from dynamic coexistence melting to surface melting with increasing cluster size. These findings are of importance in better understanding carbon nanotube growth by catalytic chemical vapor deposition as the phase state of the catalyst nanoparticle codetermines the growth mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000263299600018 Publication Date 2009-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 66 Open Access
Notes Approved Most recent IF: 4.536; 2009 IF: 4.224
Call Number UA @ lucian @ c:irua:71634 Serial 2411
Permanent link to this record
 

 
Author Van Turnhout, J.; Aceto, D.; Travert, A.; Bazin, P.; Thibault-Starzyk, F.; Bogaerts, A.; Azzolina-Jury, F.
Title (up) Observation of surface species in plasma-catalytic dry reforming of methane in a novel atmospheric pressure dielectric barrier discharge in situ IR cell Type A1 Journal article
Year 2022 Publication Catalysis Science & Technology Abbreviated Journal Catal Sci Technol
Volume 12 Issue 22 Pages 6676-6686
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We developed a novel in situ (i.e. inside plasma and during operation) IR dielectric barrier discharge cell allowing investigation of plasma catalysis in transmission mode, atmospheric pressure, flow conditions (WHSV similar to 0-50 000 mL g(-1) h(-1)), at relevant discharge voltages (similar to 0-50 kV) and frequencies (similar to 0-5 kHz). We applied it to study the IR-active surface species formed on a SiO2 support and on a 3 wt% Ru/SiO2 catalyst, which can help to reveal the important surface reaction mechanisms during the plasma-catalytic dry reforming of methane (DRM). Moreover, we present a technique for the challenging task of estimating the temperature of a catalyst sample in a plasma-catalytic system in situ and during plasma operation. We found that during the reaction, water is immediately formed at the SiO2 surface, and physisorbed formic acid is formed with a delay. As Ru/SiO2 is subject to greater plasma-induced heating than SiO2 (with a surface temperature increase in the range of 70-120 degrees C, with peaks up to 150 degrees C), we observe lower amounts of physisorbed water on Ru/SiO2, and less physisorbed formic acid formation. Importantly, the formation of surface species on the catalyst sample in our plasma-catalytic setup, as well as the observed conversions and selectivities in plasma conditions, can not be explained by plasma-induced heating of the catalyst surface, but must be attributed to other plasma effects, such as the adsorption of plasma-generated radicals and molecules, or the occurrence of Eley-Rideal reactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000865542600001 Publication Date 2022-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753; 2044-4761 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5
Call Number UA @ admin @ c:irua:191389 Serial 7185
Permanent link to this record
 

 
Author Zhou, S.; Zhang, C.; Xu, W.; Zhang, J.; Xiao, Y.; Ding, L.; Wen, H.; Cheng, X.; Hu, C.; Li, H.; Li, X.; Peeters, F.M.
Title (up) Observation of temperature induced phase transitions in TiO superconducting thin film via infrared measurement Type A1 Journal article
Year 2024 Publication Infrared physics and technology Abbreviated Journal
Volume 137 Issue Pages 105160-105169
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In contrast to conventional polycrystalline titanium oxide (TiO), it was found recently that the superconducting transition temperature Tc can be significantly enhanced from about 2 K to 7.4 K in cubic TiO thin films grown epitaxially on alpha-Al2O3 substrates. This kind of TiO film is also expected to have distinctive optoelectronic properties, which are still not very clear up to now. Herein, by using infrared (IR) reflection measurement we investigate the temperature-dependent optoelectronic response of a cubic TiO thin film, in which temperature induced phase transitions are observed. The semiconductor-, metallic- and semiconductor-like electronic phases of this superconducting film are found in the temperature regimes from 10 to 110 K, 110 to 220 K and above 220 K, respectively. The results obtained optically are consistent with those measured by transport experiment. Furthermore, based on an improved reflection model developed here, we extract the complex optical conductivity of the cubic TiO thin film. We are able to approximately determine the characteristic parameters (e.g., effective electron mass, carrier density, scattering time, etc.) for different electronic phases by fitting the optical conductivity with the modified Lorentz formula. These results not only deepen our understanding of the fundamental physics for cubic TiO thin films but also may find applications in optoelectronic devices based on superconductors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170490200001 Publication Date 2024-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.3 Times cited Open Access
Notes Approved Most recent IF: 3.3; 2024 IF: 1.713
Call Number UA @ admin @ c:irua:204853 Serial 9162
Permanent link to this record
 

 
Author Sóti, V.; Lenaerts, S.; Cornet, I.
Title (up) Of enzyme use in cost-effective high solid simultaneous saccharification and fermentation processes Type A1 Journal article
Year 2018 Publication Journal of biotechnology Abbreviated Journal J Biotechnol
Volume 270 Issue 270 Pages 70-76
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL); Biochemical Wastewater Valorization & Engineering (BioWaVE)
Abstract Enzyme cost is considered to be one of the most significant factors defining the final product price in lignocellulose hydrolysis and fermentation. Enzyme immobilization and recycling can be a tool to decrease costs. However, high solid loading is a key factor towards high product titers, and recovery of immobilized enzymes from this thick liquid is often overlooked. This paper aims to evaluate the economic feasibility of immobilized enzymes in simultaneous saccharification and fermentation (SSF) of lignocellulose biomass in general, as well as the recuperation of magnetic immobilized enzymes (m-CLEAs) during high solid loading in simultaneous saccharification, detoxification and fermentation processes (SSDF) of lignocellulose biomass. Enzyme prices were obtained from general cost estimations by Klein-Marcuschamer et al. [Klein-Marcuschamer et al. (2012) Biotechnol. Bioeng. 109, 10831087]. During enzyme cost analysis, the influence of inoculum recirculation as well as a shortened fermentation time was explored. Both resulted in 15% decrease of final enzyme product price. Enzyme recuperation was investigated experimentally and 99.5 m/m% of m-CLEAs was recovered from liquid medium in one step, while 88 m/m% could still be recycled from a thick liquid with high solid concentrations (SSF fermentation broth). A mathematical model was constructed to calculate the cost of immobilized and free enzyme utilization and showed that, with current process efficiencies and commercial enzyme prices, the cost reduction obtained by enzyme immobilization can reach around 60% compared to free enzyme utilization, while lower enzyme prices will result in a lower percentage of immobilization related savings, but overall enzyme costs will decrease significantly. These results are applied in a case study, estimating the viability of shifting from sugar to lignocellulose substrate for a 100 t lactic acid fermentation batch. It was concluded that it will only be economically feasible if the enzymes are produced at the most optimistic variable cost and either the activity of the immobilized catalyst or the recovery efficiency is further increased.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427556400009 Publication Date 2018-02-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1656 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.599 Times cited 6 Open Access
Notes ; This research is financed by the University of Antwerp [project number 15 FA100 002]. ; Approved Most recent IF: 2.599
Call Number UA @ admin @ c:irua:149006 Serial 5974
Permanent link to this record
 

 
Author Linek, J.; Wyszynski, M.; Müller, B.; Korinski, D.; Milošević, M.V.; Kleiner, R.; Koelle, D.
Title (up) On the coupling of magnetic moments to superconducting quantum interference devices Type A1 Journal article
Year 2024 Publication Superconductor science and technology Abbreviated Journal
Volume 37 Issue 2 Pages 025010-25012
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the coupling factor phi( mu) that quantifies the magnetic flux phi per magnetic moment mu of a point-like magnetic dipole that couples to a superconducting quantum interference device (SQUID). Representing the dipole by a tiny current-carrying (Amperian) loop, the reciprocity of mutual inductances of SQUID and Amperian loop provides an elegant way of calculating phi(mu)(r,e(mu)) vs. position r and orientation e(mu) of the dipole anywhere in space from the magnetic field B-J(r) produced by a supercurrent circulating in the SQUID loop. We use numerical simulations based on London and Ginzburg-Landau theory to calculate phi (mu) from the supercurrent density distributions in various superconducting loop geometries. We treat the far-field regime ( r greater than or similar to a= inner size of the SQUID loop) with the dipole placed on (oriented along) the symmetry axis of circular or square shaped loops. We compare expressions for phi (mu) from simple filamentary loop models with simulation results for loops with finite width w (outer size A > alpha), thickness d and London penetration depth lambda(L )and show that for thin ( d << alpha ) and narrow (w < alpha) loops the introduction of an effective loop size a(eff) in the filamentary loop-model expressions results in good agreement with simulations. For a dipole placed right in the center of the loop, simulations provide an expression phi(mu)(a,A,d,lambda(L)) that covers a wide parameter range. In the near-field regime (dipole centered at small distance z above one SQUID arm) only coupling to a single strip representing the SQUID arm has to be considered. For this case, we compare simulations with an analytical expression derived for a homogeneous current density distribution, which yields excellent agreement for lambda(L)>w,d . Moreover, we analyze the improvement of phi(mu) provided by the introduction of a narrow constriction in the SQUID arm below the magnetic dipole.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001145725500001 Publication Date 2024-01-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.6; 2024 IF: 2.878
Call Number UA @ admin @ c:irua:202759 Serial 9067
Permanent link to this record
 

 
Author Dhayalan, S.K.; Kujala, J.; Slotte, J.; Pourtois, G.; Simoen, E.; Rosseel, E.; Hikavyy, A.; Shimura, Y.; Loo, R.; Vandervorst, W.
Title (up) On the evolution of strain and electrical properties in as-grown and annealed Si:P epitaxial films for source-drain stressor applications Type A1 Journal article
Year 2018 Publication ECS journal of solid state science and technology Abbreviated Journal Ecs J Solid State Sc
Volume 7 Issue 5 Pages P228-P237
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Heavily P doped Si:P epitaxial layers have gained interest in recent times as a promising source-drain stressor material for n type FinFETs (Fin Field Effect Transistors). They are touted to provide excellent conductivity as well as tensile strain. Although the as-grown layers do provide tensile strain, their conductivity exhibits an unfavorable behavior. It reduces with increasing P concentration (P > 1E21 at/cm(3)), accompanied by a saturation in the active carrier concentration. Subjecting the layers to laser annealing increases the conductivity and activates a fraction of P atoms. However, there is also a concurrent reduction in tensile strain (<1%). Literature proposes the formation of local semiconducting Si3P4 complexes to explain the observed behaviors in Si:P [Z. Ye et al., ECS Trans., 50(9) 2013, p. 1007-10111. The development of tensile strain and the saturation in active carrier is attributed to the presence of local complexes while their dispersal on annealing is attributed to strain reduction and increase in active carrier density. However, the existence of such local complexes is not proven and a fundamental void exists in understanding the structure-property correlation in Si:P films. In this respect, our work investigates the reason behind the evolution of strain and electrical properties in the as-grown and annealed Si:P epitaxial layers using ab-initio techniques and corroborate the results with physical characterization techniques. It will be shown that the strain developed in Si:P films is not due to any specific complexes while the formation of Phosphorus-vacancy complexes will be shown responsible for the carrier saturation and the increase in resistivity in the as-grown films. Interstitial/precipitate formation is suggested to be a reason for the strain loss in the annealed films. (C) The Author(s) 2018. Published by ECS.
Address
Corporate Author Thesis
Publisher Electrochemical society Place of Publication Pennington (N.J.) Editor
Language Wos 000440834200010 Publication Date 2018-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-8769; 2162-8777 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.787 Times cited 4 Open Access OpenAccess
Notes Approved Most recent IF: 1.787
Call Number UA @ lucian @ c:irua:153204 Serial 5122
Permanent link to this record
 

 
Author Filez, M.; Redekop, E.A.; Poelman, H.; Galvita, V.V.; Meledina, M.; Turner, S.; Van Tendeloo, G.; Detavernier, C.; Marin, G.B.
Title (up) One-pot synthesis of Pt catalysts based on layered double hydroxides: an application in propane dehydrogenation Type A1 Journal article
Year 2016 Publication Catalysis science & technology Abbreviated Journal Catal Sci Technol
Volume 6 Issue 6 Pages 1863-1869
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Simple methods for producing noble metal catalysts with well-defined active sites and improved performance are highly desired in the chemical industry. However, the development of such methods still presents a formidable synthetic challenge. Here, we demonstrate a one-pot synthesis route for the controlled production of bimetallic Pt–In catalysts based on the single-step formation of Mg,Al,Pt,In-containing layered double hydroxides (LDHs). Besides their simple synthesis, these Pt–In catalysts exhibit superior propane dehydrogenation activity compared to their multi-step synthesized analogs. The presented material serves as a showcase for the one-pot synthesis of a broader class of LDH-derived mono- and multimetallic Pt catalysts. The compositional flexibility provided by LDH materials can pave the way towards highperforming Pt-based catalysts with tunable physicochemical properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000372172800031 Publication Date 2015-10-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2044-4753 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.773 Times cited 12 Open Access
Notes This work was supported by the Fund for Scientific Research Flanders (FWO: G.0209.11), the ‘Long Term Structural Methusalem Funding by the Flemish Government’, the IAP 7/05 Interuniversity Attraction Poles Programme – Belgian State – Belgian Science Policy, and the Fund for Scientific Research Flanders (FWO-Vlaanderen) by supplying financing of beam time at the DUBBLE beamline of the ESRF and travel costs and a post-doctoral fellowship for S. T. The authors acknowledge the assistance from the DUBBLE (XAS campaign 26-01-979) and SuperXAS staff (Proposal 20131191). E. A. Redekop acknowledges the Marie Curie International Incoming Fellowship granted by the European Commission (Grant Agreement No. 301703). The authors also express their gratitude to O. Janssens for performing ex situ XRD characterization. Approved Most recent IF: 5.773
Call Number c:irua:133167 Serial 4057
Permanent link to this record
 

 
Author Alloul, A.; Cerruti, M.; Adamczyk, D.; Weissbrodt, D.G.; Vlaeminck, S.E.
Title (up) Operational strategies to selectively produce purple bacteria for microbial protein in raceway reactors Type A1 Journal article
Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 55 Issue 12 Pages 8278-8286
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Purple non-sulfur bacteria (PNSB) show potential for microbial protein production on wastewater as animal feed. They offer good selectivity (i.e., low microbial diversity and high abundance of one species) when grown anaerobically in the light. However, the cost of closed anaerobic photobioreactors is prohibitive for protein production. Although open raceway reactors are cheaper, their feasibility to selectively grow PNSB is thus far unexplored. This study developed operational strategies to boost PNSB abundance in the biomass of a raceway reactor fed with volatile fatty acids. For a flask reactor run at a 2 day sludge retention time (SRT), matching the chemical oxygen demand (COD) loading rate to the removal rate in the light period prevented substrate availability during the dark period and increased the PNSB abundance from 50-67 to 88-94%. A raceway reactor run at a 2 day SRT showed an increased PNSB abundance from 14 to 56% when oxygen supply was reduced (no stirring at night). The best performance was achieved at the highest surface-to-volume ratio (10 m(2) m(-3) increased light availability) showing productivities up to 0.2 g protein L-1 day(-1) and a PNSB abundance of 78%. This study pioneered in PNSB-based microbial protein production in raceway reactors, yielding high selectivity while avoiding the combined availability of oxygen, COD, and darkness.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000663939900051 Publication Date 2021-06-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.198 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.198
Call Number UA @ admin @ c:irua:179768 Serial 8334
Permanent link to this record
 

 
Author Forsh, E.A.; Abakumov, A.M.; Zaytsev, V.B.; Konstantinova, E.A.; Forsh, P.A.; Rumyantseva, M.N.; Gaskov, A.M.; Kashkarov, P.K.
Title (up) Optical and photoelectrical properties of nanocrystalline indium oxide with small grains Type A1 Journal article
Year 2015 Publication Thin solid films : an international journal on the science and technology of thin and thick films Abbreviated Journal Thin Solid Films
Volume 595 Issue 595 Pages 25-31
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Optical properties, spectral dependence of photoconductivity and photoconductivity decay in nanocrystalline indium oxide In2O3 are studied. A number of nanostructured In2O3 samples with various nanocrystals size are prepared by sol-gel method and characterized using various techniques. The mean nanocrystals size varies from 7 to 8 nm to 39-41 nm depending on the preparation conditions. Structural characterization of the In2O3 samples is performed by means of transmission electron microscopy and X-ray powder diffraction. The combined analysis of ultraviolet-visible absorption spectroscopy and diffuse reflectance spectroscopy shows that nanostructuring leads to the change in optical band gap: optical band gap of the In2O3 samples (with an average nanocrystal size from 7 to 41 nm) is equal to 2.8 eV. We find out the correlation between spectral dependence of photoconductivity and optical properties of nanocrystalline In2O3: sharp increase in photoconductivity was observed to begin at 2.8 eV that is equal to the optical bandgap in the In2O3 samples, and reached its maximum at 3.2-3.3 eV. The combined analysis of the slow photoconductivity decay in air, vacuum and argon, that was accurately fitted by a stretched-exponential function, and electron paramagnetic resonance (EPR) measurements shows that the kinetics of photoconductivity decay is strongly depended on the presence of oxygen molecules in the ambient of In2O3 nanocrystals. There is the quantitative correlation between EPR and photoconductivity data. Based on the obtained data we propose the model clearing up the phenomenon of permanent photoconductivity decay in nanocrystalline In2O3. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000365812400005 Publication Date 2015-10-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0040-6090 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.879 Times cited 18 Open Access
Notes Approved Most recent IF: 1.879; 2015 IF: 1.759
Call Number UA @ lucian @ c:irua:130254 Serial 4219
Permanent link to this record