toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ibrahim, I.S.; Schweigert, V.A.; Peeters, F.M. doi  openurl
  Title (up) Electrical transport through magnetic barriers Type A1 Journal article
  Year 1998 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 2 Issue Pages 899-903  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000075383500184 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.221 Times cited Open Access  
  Notes Approved Most recent IF: 2.221; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24187 Serial 896  
Permanent link to this record
 

 
Author Zhou, K.-G.; Vasu, K.S.; Cherian, C.T.; Neek-Amal, M.; Zhang, J.C.; Ghorbanfekr-Kalashami, H.; Huang, K.; Marshall, O.P.; Kravets, V.G.; Abraham, J.; Su, Y.; Grigorenko, A.N.; Pratt, A.; Geim, A.K.; Peeters, F.M.; Novoselov, K.S.; Nair, R.R. pdf  doi
openurl 
  Title (up) Electrically controlled water permeation through graphene oxide membranes Type A1 Journal article
  Year 2018 Publication Nature Abbreviated Journal Nature  
  Volume 559 Issue 7713 Pages 236-+  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies(1-7). Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength(3,8). Electrical control over water transport is an attractive alternative; however, theory and simulations(9-14) have often yielded conflicting results, from freezing of water molecules to melting of ice(14-16) under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes(17-21). Such membranes have previously been shown to exhibit ultrafast permeation of water(17,22) and molecular sieving properties(18,21), with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000438240900052 Publication Date 2018-07-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 40.137 Times cited 216 Open Access  
  Notes ; This work was supported by the Royal Society, Engineering and Physical Sciences Research Council, UK (EP/K016946/1, EP/N013670/1 and EP/P00119X/1), British Council (award reference number 279336045), European Research Council (contract 679689) and Lloyd's Register Foundation. We thank J. Waters for assisting with X-ray measurements and G. Yu for electrical measurements. ; Approved Most recent IF: 40.137  
  Call Number UA @ lucian @ c:irua:152420UA @ admin @ c:irua:152420 Serial 5096  
Permanent link to this record
 

 
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M. url  doi
openurl 
  Title (up) Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
  Year 2007 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300092 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66118 Serial 898  
Permanent link to this record
 

 
Author Nogaret, A.; Peeters, F.M. url  doi
openurl 
  Title (up) Electrically induced spin resonance fluorescence: 1: theory Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during which the spin performs Rabi oscillations. The quantum correlations between random radiative decays manifest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and the spin polarization of the incoming current. The output power contains a fine structure arising from the anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission peaks at odd multiples of the fundamental frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300091 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66117 Serial 897  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M.; Kim, D.; Mortazavi, B. pdf  doi
openurl 
  Title (up) Electro-optical and mechanical properties of Zinc antimonide (ZnSb) monolayer and bilayer : a first-principles study Type A1 Journal article
  Year 2021 Publication Applied Surface Science Abbreviated Journal Appl Surf Sci  
  Volume 540 Issue 1 Pages 148289  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Latest synthesis of ZnSb monolayer, encouraged us to conduct density functional theory (DFT) simulations in order to study the structural, magnetic, electronic/optical and mechanical features of the sp2-hybridized honeycomb ZnSb monolayer (ML-ZnSb) and bilayer (BL-ZnSb). Our structural optimizations reveal that ML-ZnSb is an anisotropic hexagonal structure while BL-ZnSb is composed of shifted ZnSb layers which are covalently binded. ML-ZnSb is found to be a ferromagnetic metal, in contrast BL-ZnSb has a non-magnetic indirect band gap semiconducting ground state. For the in-plane polarization, first absorption peak of ML-ZnSb and BL-ZnSb confirm the absorbance of the light within the infrared domain wand visible range, respectively. Moreover, our results reveal that the layer-layer chemical bonding in BL-ZnSb significantly enhances the mechanical response of ML-ZnSb whose in-plane stiness is the smallest among all 2D materials (2DM). Notably, the strong in-plane anisotropy of ML-ZnSb in its stiness reduces in BL-ZnSb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000599883200005 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.387 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2017R1A2B2011989). Computational resources were provided by the Flemish Supercomputer Center (VSC). M.Y. is supported by the Flemish Science Foundation (FWO-Vl) by a postdoctoral fellowship. B.M. and X. Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germanys Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). ; Approved Most recent IF: 3.387  
  Call Number UA @ admin @ c:irua:174956 Serial 6688  
Permanent link to this record
 

 
Author Bafekry, A.; Yagmurcukardes, M.; Shahrokhi, M.; Ghergherehchi, M. pdf  doi
openurl 
  Title (up) Electro-optical properties of monolayer and bilayer boron-doped C₃N: Tunable electronic structure via strain engineering and electric field Type A1 Journal article
  Year 2020 Publication Carbon Abbreviated Journal Carbon  
  Volume 168 Issue Pages 220-229  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this work, the structural, electronic and optical properties of monolayer and bilayer of boron doped C3N are investigated by means of density functional theory-based first-principles calculations. Our results show that with increasing the B dopant concentration from 3.1% to 12.5% in the hexagonal pattern, an indirect-to-direct band gap (0.8 eV) transition occurs. Furthermore, we study the effect of electric field and strain on the B doped C3N bilayer (B-C3N@2L). It is shown that by increasing E-field strength from 0.1 to 0.6V/angstrom, the band gap displays almost a linear decreasing trend, while for the > 0.6V/angstrom, we find dual narrow band gap with of 50 meV (in parallel E-field) and 0.4 eV (in antiparallel E-field). Our results reveal that in-plane and out-of-plane strains can modulate the band gap and band edge positions of the B-C3N@2L. Overall, we predict that B-C3N@2L is a new platform for the study of novel physical properties in layered two-dimensional materials (2DM) which may provide new opportunities to realize high-speed low-dissipation devices. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000565900900008 Publication Date 2020-07-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 10.9 Times cited 21 Open Access  
  Notes ; This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government(MSIT) (NRF-2017R1A2B2011989). M. Yagmurcukardes acknowledges Flemish Science Foundation (FWO-VI) by a postdoctoral fellowship. ; Approved Most recent IF: 10.9; 2020 IF: 6.337  
  Call Number UA @ admin @ c:irua:171914 Serial 6500  
Permanent link to this record
 

 
Author de Jong, M.; Florea, A.; Daems, D.; Van Loon, J.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title (up) Electrochemical Analysis of Speedball-like Polydrug Samples Type A1 Journal article
  Year 2020 Publication Analyst Abbreviated Journal Analyst  
  Volume Issue Pages  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Product development  
  Abstract Increasing global production, trafficking and consumption of drugs of abuse cause an emerging threat to people’s health and safety. Electrochemical approaches have proven to be useful for on-site analysis of drugs of abuse. However, few attention has been focused on the analysis of polydrug samples, despite these samples causing severe health concerns, certainly when stimulants and depressants are combined, as is the case for Speedball, a mixture of cocaine and heroin. In this work, we provide solutions for the selective detection of cocaine (stimulant) in polydrug samples adulterated with heroin and codeine (depressants). The presence of either one of these compounds in cocaine street samples leads to an overlap with the cocaine signal in square-wave voltammetry measurements at unmodified carbon screen-printed electrodes, leading to inconclusive screening results in the field. The provided solutions to this problem consist of two parallel approaches: (i) cathodic pretreatment of the carbon screen-printed electrode surface prior to measurement in both alkaline and neutral conditions; (ii) electropolymerization of orthophenylenediamine on graphene modified carbon screen-printed electrodes prior to measurement in neutral conditions. Both strategies allow simultaneous detection of cocaine and heroin in speedball samples as well as simultaneous detection of cocaine and codeine. Implementing these strategies in portable devices holds great potential for significantly improved accuracy of on-site cocaine screening in polydrug samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000568961600011 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2654 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.2 Times cited Open Access  
  Notes This work was supported by IOF-SBO and IOF-POC from University of Antwerp, Antwerp, Belgium; and VLAIO IM [HBC.2019.2181], Brussels, Belgium. Approved Most recent IF: 4.2; 2020 IF: 3.885  
  Call Number AXES @ axes @c:irua:170444 Serial 6395  
Permanent link to this record
 

 
Author Elia, A.; De Wael, K.; Dowsett, M.; Adriaens, A. doi  openurl
  Title (up) Electrochemical deposition of a copper carboxylate layer on copper as potential corrosion inhibitor Type A1 Journal article
  Year 2011 Publication Journal of solid state electrochemistry Abbreviated Journal J Solid State Electr  
  Volume 16 Issue 1 Pages 143-148  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Carboxylic acids and sodium carboxylates are used to protect metals against aqueous and atmospheric corrosion. In this paper, we describe the application of a layer of copper carboxylate on the surface of a copper electrode by means of cyclic voltammetry technique and tests which measure the corresponding resistance to aqueous corrosion. Unlike the soaking process, which also forms a film on the surface, the use of cyclic voltammetry allows one to follow the deposition process of the copper carboxylates onto the electrode. The modified electrodes have been characterised with infrared spectroscopy. In addition, the corrosion resistance of the film has been investigated using polarisation resistance and Tafel plot measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000298651700018 Publication Date 2011-01-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-8488 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.316 Times cited 8 Open Access  
  Notes ; Authors would like to acknowledge the Research Foundation-Flanders (FWO) for funding assistance (A. Elia is a FWO aspirant) and V. Vermeersch and S. Van Vlierberghe (Ghent University, Polymer Chemistry and Biomaterials Research Group) for the FTIR-ATR measurements. ; Approved Most recent IF: 2.316; 2011 IF: 2.131  
  Call Number UA @ admin @ c:irua:89618 Serial 5588  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title (up) Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Morales-Yánez, F.; Trashin, S.; Sariego, I.; Roucher, C.; Paredis, L.; Chico, M.; De Wael, K.; Muyldermans, S.; Cooper, P.; Polman, K. url  doi
openurl 
  Title (up) Electrochemical detection of Toxocara canis excretory-secretory antigens in children from rural communities in Esmeraldas Province, Ecuador : association between active infection and high eosinophilia Type A1 Journal article
  Year 2020 Publication Parasites & Vectors Abbreviated Journal Parasite Vector  
  Volume 13 Issue 1 Pages 245-247  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Background The diagnosis of active Toxocara canis infections in humans is challenging. Larval stages of T. canis do not replicate in human tissues and disease may result from infection with a single T. canis larva. Recently, we developed a nanobody-based electrochemical magnetosensor assay with superior sensitivity to detect T. canis excretory-secretory (TES) antigens. Here, we evaluate the performance of the assay in children from an Ecuadorian birth cohort that followed children to five years of age. Methods Samples were selected based on the presence of peripheral blood eosinophilia and relative eosinophil counts. The samples were analyzed by the nanobody-based electrochemical magnetosensor assay, which utilizes a bivalent biotinylated nanobody as capturing agent on the surface of streptavidin pre-coated paramagnetic beads. Detection was performed by a different nanobody chemically labelled with horseradish peroxidase. Results Of 87 samples tested, 33 (38%) scored positive for TES antigen recognition by the electrochemical magnetosensor assay. The average concentration of TES antigen in serum was 2.1 ng/ml (SD = 1.1). The positive result in the electrochemical assay was associated with eosinophilia > 19% (P = 0.001). Parasitological data were available for 57 samples. There was no significant association between positivity by the electrochemical assay and the presence of other soil-transmitted helminth infections. Conclusions Our nanobody-based electrochemical assay provides highly sensitive quantification of TES antigens in serum and has potential as a valuable tool for the diagnosis of active human toxocariasis.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000535618800003 Publication Date 2020-05-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1756-3305 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.2 Times cited Open Access  
  Notes ; This project was funded by the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Flanders), project No. G.0189.13N. The ECUAVIDA cohort was funded by the Wellcome Trust (grant 072405/Z/03/Z and 088862/Z/09/Z). ; Approved Most recent IF: 3.2; 2020 IF: 3.08  
  Call Number UA @ admin @ c:irua:168966 Serial 6501  
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K. url  doi
openurl 
  Title (up) Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
  Year 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem  
  Volume 291 Issue 36 Pages 18959-18966  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383242300031 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.125 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved Most recent IF: 4.125  
  Call Number UA @ admin @ c:irua:134340 Serial 5590  
Permanent link to this record
 

 
Author De Jong, M.; Sleegers, N.; Kim, J.; Van Durme, F.; Samyn, N.; Wang, J.; De Wael, K. url  doi
openurl 
  Title (up) Electrochemical fingerprint of street samples for fast on-site screening of cocaine in seized drug powders Type A1 Journal article
  Year 2016 Publication Chemical science Abbreviated Journal Chem Sci  
  Volume Issue Pages 1-7  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We report on a wearable fingertip sensor for on-the-spot identification of cocaine and its cutting agents in street samples. Traditionally, on-site screening is performed by means of colour tests which are difficult to interpret and lack selectivity. By presenting the distinct voltammetric response of cocaine, cutting agents, binary mixtures of cocaine and street samples in solution and powder street samples, we were able to elucidate the electrochemical fingerprint of all these compounds. The new electrochemical concept holds considerable promise as an on-site screening method.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000371021900094 Publication Date 2016-01-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-6520 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.668 Times cited 37 Open Access  
  Notes ; The authors acknowledge BELSPO for funding the APTADRU project (BR/314/PI/ APTADRU). ; Approved Most recent IF: 8.668  
  Call Number UA @ admin @ c:irua:130404 Serial 5591  
Permanent link to this record
 

 
Author Dragan, A.-M.; Truta, F.M.; Tertis, M.; Florea, A.; Schram, J.; Cernat, A.; Feier, B.; De Wael, K.; Cristea, C.; Oprean, R. url  doi
openurl 
  Title (up) Electrochemical fingerprints of illicit drugs on graphene and multi-walled carbon nanotubes Type A1 Journal article
  Year 2021 Publication Frontiers In Chemistry Abbreviated Journal Front Chem  
  Volume 9 Issue Pages 641147  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illicit drugs use and abuse remains an increasing challenge for worldwide authorities and, therefore, it is important to have accurate methods to detect them in seized samples, biological fluids and wastewaters. They are recently classified as the latest group of emerging pollutants as their consumption increased tremendously in recent years. Nanomaterials have gained much attention over the last decade in the development of sensors for a myriad of applications. The applicability of these nanomaterials, functionalized or not, significantly increases and it is therefore highly suitable for use in the detection of illicit drugs. We have assessed the suitability of various nanoplatforms, such as graphene (GPH), multi-walled carbon nanotubes (MWCNTs), gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) for the electrochemical detection of illicit drugs. GPH and MWCNTs were chosen as the most suitable platforms and cocaine, 3,4-methylendioxymethamfetamine (MDMA), 3-methylmethcathinone (MMC) and alpha-pyrrolidinovalerophenone (PVP) were tested. Due to the hydrophobicity of the nanomaterials-based platforms which led to low signals, two strategies were followed namely, pretreatment of the electrodes in sulfuric acid by cyclic voltammetry and addition of Tween 20 to the detection buffer. Both strategies led to an increase in the oxidation signal of illicit drugs. Binary mixtures of illicit drugs with common adulterants found in street samples were also investigated. The proposed strategies allowed the sensitive detection of illicit drugs in the presence of most adulterants. The suitability of the proposed sensors for the detection of illicit drugs in spiked wastewaters was finally assessed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634708900001 Publication Date 2021-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-2646 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.994 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.994  
  Call Number UA @ admin @ c:irua:177704 Serial 7861  
Permanent link to this record
 

 
Author De Paepe, J.; Clauwaert, P.; Gritti, M.C.; Ganigue, R.; Sas, B.; Vlaeminck, S.E.; Rabaey, K. pdf  url
doi  openurl
  Title (up) Electrochemical in situ pH control enables chemical-free full urine nitrification with concomitant nitrate extraction Type A1 Journal article
  Year 2021 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol  
  Volume 55 Issue 12 Pages 8287-8298  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urine is a valuable resource for nutrient recovery. Stabilization is, however, recommended to prevent urea hydrolysis and the associated risk for ammonia volatilization, uncontrolled precipitation, and malodor. This can be achieved by alkalinization and subsequent biological conversion of urea and ammonia into nitrate (nitrification) and organics into CO2. Yet, without pH control, the extent of nitrification is limited as a result of insufficient alkalinity. This study explored the feasibility of an integrated electrochemical cell to obtain on-demand hydroxide production through water reduction at the cathode, compensating for the acidification caused by nitritation, thereby enabling full nitrification. To deal with the inherent variability of the urine influent composition and bioprocess, the electrochemical cell was steered via a controller, modulating the current based on the pH in the bioreactor. This provided a reliable and innovative alternative to base addition, enabling full nitrification while avoiding the use of chemicals, the logistics associated with base storage and dosing, and the associated increase in salinity. Moreover, the electrochemical cell could be used as an in situ extraction and concentration technology, yielding an acidic concentrated nitrate-rich stream. The make-up of the end product could be tailored by tweaking the process configuration, offering versatility for applications on Earth and in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000663939900052 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-936x; 1520-5851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.198 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.198  
  Call Number UA @ admin @ c:irua:179779 Serial 7862  
Permanent link to this record
 

 
Author Van Echelpoel, R.; Schram, J.; Parrilla, M.; Daems, D.; Slosse, A.; Van Durme, F.; De Wael, K. url  doi
openurl 
  Title (up) Electrochemical methods for on-site multidrug detection at festivals Type A1 Journal article
  Year 2022 Publication Sensors & Diagnostics Abbreviated Journal  
  Volume 1 Issue 1 Pages 793-802  
  Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Two electrochemical methodologies, i.e. flowchart and dual-sensor, were developed to aid law enforcement present at festivals to obtain a rapid indication of the presence of four illicit drugs in suspicious samples encountered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2022-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:188521 Serial 8856  
Permanent link to this record
 

 
Author Schram, J.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van den Berg, J.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title (up) Electrochemical profiling and liquid chromatography–mass spectrometry characterization of synthetic cathinones : from methodology to detection in forensic samples Type A1 Journal article
  Year 2021 Publication Drug Testing And Analysis Abbreviated Journal Drug Test Anal  
  Volume 13 Issue 7 Pages 1282-1294  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The emergence of new psychoactive drugs in the market demands rapid and accurate tools for the on‐site classification of illegal and legal compounds with similar structures. Herein, a novel method for the classification of synthetic cathinones (SC) is presented based on their electrochemical profile. First, the electrochemical profile of five common SC (i.e., mephedrone, ethcathinone, methylone, butylone and 4‐chloro‐alpha‐pyrrolidinovalerophenone) is collected to build calibration curves using square wave voltammetry on graphite screen‐printed electrodes (SPE). Second, the elucidation of the oxidation pathways, obtained by liquid chromatography‐high resolution mass spectrometry, allows the pairing of the oxidation products to the SC electrochemical profile, providing a selective and robust classification. Additionally, the effect of common adulterants and illicit drugs on the electrochemical profile of the SC is explored. Interestingly, a cathodic pretreatment of the SPE allows the selective detection of each SC in presence of electroactive adulterants. Finally, the electrochemical approach is validated with gas‐chromatography‐mass spectrometry by analyzing 26 confiscated samples from seizures and illegal webshops. Overall, the electrochemical method exhibits a successful classification of SC including structural derivatives, a crucial attribute in an ever‐diversifying drug market.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000624902500001 Publication Date 2021-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.469 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.469  
  Call Number UA @ admin @ c:irua:175583 Serial 7863  
Permanent link to this record
 

 
Author Truta, F.; Drăgan, A.-M.; Tertis, M.; Parrilla, M.; Slosse, A.; Van Durme, F.; De Wael, K.; Cristea, C. url  doi
openurl 
  Title (up) Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform Type A1 Journal article
  Year 2023 Publication Sensors Abbreviated Journal  
  Volume 23 Issue 13 Pages 6193-18  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Methamphetamine (MAP) is a highly addictive and illegal stimulant drug that has a significant impact on the central nervous system. Its detection in biological and street samples is crucial for various organizations involved in forensic medicine, anti-drug efforts, and clinical diagnosis. In recent years, nanotechnology and nanomaterials have played a significant role in the development of analytical sensors for MAP detection. In this study, a fast, simple, and cost-effective electrochemical sensor is presented that is used for the sensitive detection of MAP in confiscated street samples with a complex matrix. The optimized screen-printed sensor based on a carbon working electrode modified with graphene demonstrated an excellent limit of detection, good sensitivity, and a wide dynamic range (1–500 μM) for the target illicit drug both for standard solutions and real samples (seized samples, tap water, and wastewater samples). It can detect MAP at concentrations as low as 300 nM in real samples. This limit of detection is suitable for the rapid preliminary screening of suspicious samples in customs, ports, airports, and on the street. Furthermore, the sensor exhibits a good recovery rate, indicating its reliability and repeatability. This quality is crucial for ensuring consistent and accurate results during screening processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001033277900001 Publication Date 2023-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:198181 Serial 8857  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title (up) Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Vega-Paredes, M.; Aymerich-Armengol, R.; Arenas Esteban, D.; Marti-Sanchez, S.; Bals, S.; Scheu, C.; Manjon, A.G. url  doi
openurl 
  Title (up) Electrochemical stability of rhodium-platinum core-shell nanoparticles : an identical location scanning transmission electron microscopy study Type A1 Journal article
  Year 2023 Publication ACS nano Abbreviated Journal  
  Volume 17 Issue 17 Pages 16943-16951  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Rhodium-platinum core-shell nanoparticleson a carbonsupport (Rh@Pt/C NPs) are promising candidates as anode catalystsfor polymer electrolyte membrane fuel cells. However, their electrochemicalstability needs to be further explored for successful applicationin commercial fuel cells. Here we employ identical location scanningtransmission electron microscopy to track the morphological and compositionalchanges of Rh@Pt/C NPs during potential cycling (10 000 cycles,0.06-0.8 V-RHE, 0.5 H2SO4)down to the atomic level, which are then used for understanding thecurrent evolution occurring during the potential cycles. Our resultsreveal a high stability of the Rh@Pt/C system and point toward particledetachment from the carbon support as the main degradation mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001051495900001 Publication Date 2023-08-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 17.1 Times cited 2 Open Access OpenAccess  
  Notes The authors would like to thank C. Bodirsky for providing the samples, N. Rivas Rivas for his corrections on the manuscript, and D. Chatain for providing her expertise on the equilibrium shape of nanoparticles. Special thanks to B. Breitbach for performing the XRD experiments. A.G.M. acknowledges the Grant RYC2021-033479- I funded by MCIN/AEI/10.13039/501100011033 and, as appropriate, by European Union NextGenerationEU/PRTR. Approved Most recent IF: 17.1; 2023 IF: 13.942  
  Call Number UA @ admin @ c:irua:199253 Serial 8859  
Permanent link to this record
 

 
Author Florea, A.; Schram, J.; De Jong, M.; Eliaerts, J.; Van Durme, F.; Kaur, B.; Samyn, N.; De Wael, K. url  doi
openurl 
  Title (up) Electrochemical strategies for adulterated heroin samples Type A1 Journal article
  Year 2019 Publication Analytical chemistry Abbreviated Journal Anal Chem  
  Volume 91 Issue 12 Pages 7920-7928  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Electrochemical strategies to selectively detect heroin in street samples without the use of complicated electrode modifications were developed for the first time. For this purpose, heroin, mixing agents (adulterants, cutting agent, and impurities), and their binary mixtures were subjected to square wave voltammetry measurements at bare graphite electrodes at pH 7.0 and pH 12.0, in order to elucidate the unique electrochemical fingerprint of heroin and mixing agents as well as possible interferences or reciprocal influences. Adjusting the pH from pH 7.0 to pH 12.0 allowed a more accurate detection of heroin in the presence of most common mixing agents. Furthermore, the benefit of introducing a preconditioning step prior to running square wave voltammetry on the electrochemical fingerprint enrichment was explored. Mixtures of heroin with other drugs (cocaine, 3,4-methylenedioxymethamphetamine, and morphine) were also tested to explore the possibility of their discrimination and simultaneous detection. The feasibility of the proposed electrochemical strategies was tested on realistic heroin street samples from forensic cases, showing promising results for fast, on-site detection tools of drugs of abuse.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472682000056 Publication Date 2019-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited 2 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge IOF (UAntwerp) and Belspo for financial support. ; Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:160061 Serial 5596  
Permanent link to this record
 

 
Author Florea, A.; De Jong, M.; De Wael, K. pdf  url
doi  openurl
  Title (up) Electrochemical strategies for the detection of forensic drugs Type A1 Journal article
  Year 2018 Publication Current opinion in electrochemistry Abbreviated Journal  
  Volume 11 Issue 11 Pages 34-40  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Illicit drugs consumption and trafficking is spread worldwide and remains an increasing challenge for local authorities. Forensic drugs and their metabolites are released into wastewaters due to human excretion after illegal consumption of drugs and occasionally due to disposal of clandestine laboratory wastes into sewage systems, being recently classified as the latest group of emerging pollutants. Hence, it is essential to have efficient and accurate methods to detect these type of compounds in seized street samples, biological fluids and wastewaters in order to reduce and prevent trafficking and consumption and negative effects on aquatic systems. Electrochemical strategies offer a fast, portable, low-cost and accurate alternative to chromatographic and spectrometric methods, for the analysis of forensic drugs and metabolites in different matrices. Recent electrochemical strategies applied to the detection of illicit drugs in wastewaters, biological fluids and street samples are presented in this review, together with the impact of drug consumption on the environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000453710900007 Publication Date 2018-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9103; 2451-9111 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 7 Open Access  
  Notes ; This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 753223 Narcoreader. The authors also acknowledge financial support from BELSPO, IOF-SBO and UAntwerp. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:152366 Serial 5597  
Permanent link to this record
 

 
Author Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M. pdf  url
doi  openurl
  Title (up) Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun  
  Volume 77 Issue Pages 81-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000399510400019 Publication Date 2017-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess  
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396  
  Call Number UA @ lucian @ c:irua:143648 Serial 4650  
Permanent link to this record
 

 
Author Sleegers, N.; van Nuijs, A.L.N.; van den Berg, M.; De Wael, K. pdf  doi
openurl 
  Title (up) Electrochemistry of intact versus degraded cephalosporin antibiotics facilitated by LC–MS analysis Type A1 Journal article
  Year 2021 Publication Analytical Chemistry Abbreviated Journal Anal Chem  
  Volume 93 Issue 4 Pages 2394-2402  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The electrochemical detection of cephalosporins is a promising approach for the monitoring of cephalosporin levels in process waters. However, this class of antibiotics, like penicillins, is composed of chemically active molecules and susceptible to hydrolysis and aminolysis of the four membered β-lactam ring present. In order to develop a smart monitoring strategy for cephalosporins, the influence of degradation (hydrolysis and aminolysis) on the electrochemical fingerprint has to be taken into account. Therefore, an investigation was carried out to understand the changes of the voltammetric fingerprints upon acidic and alkaline degradation. Changes in fingerprints were correlated to the degradation pathways through the combination of square wave voltammetry and liquid chromatography quadrupole time-of-flight analysis. The characteristic electrochemical signals of the β-lactam ring disappeared upon hydrolysis. Additional oxidation signals that appeared after degradation were elucidated and linked to different degradation products, and therefore, enrich the voltammetric fingerprints with information of the state of the cephalosporins. The applicability of the electrochemical monitoring system was explored by the analysis of the intact and degraded industrial process waters containing the key intermediate 7-aminodeacetoxycephalosporanic acid (7-ADCA). Clearly, the intact process samples exhibited the expected core signals of 7-ADCA and could be quantified, while the degraded samples only showed the newly formed degradation products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000618089100063 Publication Date 2021-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.32 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.32  
  Call Number UA @ admin @ c:irua:176206 Serial 7864  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H. doi  openurl
  Title (up) Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
  Year 2004 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 21 Issue Pages 270-274  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000220873300024 Publication Date 2004-01-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2004 IF: 0.898  
  Call Number UA @ lucian @ c:irua:44291 Serial 901  
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H. doi  openurl
  Title (up) Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 68 Issue Pages 195307,1-12  
  Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000187163000075 Publication Date 2003-11-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 4 Open Access  
  Notes Approved Most recent IF: 3.836; 2003 IF: NA  
  Call Number UA @ lucian @ c:irua:44290 Serial 902  
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Caratelli, D.; Chiapperino, M.A.; Stukach, O.; Gielis, J. url  doi
openurl 
  Title (up) Electromagnetic mathematical modeling of 3D supershaped dielectric lens antennas Type A1 Journal article
  Year 2016 Publication Mathematical problems in engineering: theory, methods, and applications Abbreviated Journal  
  Volume Issue Pages 8130160-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The electromagnetic analysis of a special class of 3D dielectric lens antennas is described in detail. This new class of lens antennas has a geometrical shape defined by the three-dimensional extension of Gielis formula. The analytical description of the lens shape allows the development of a dedicated semianalytical hybrid modeling approach based on geometrical tube tracing and physical optic. In order to increase the accuracy of the model, the multiple reflections occurring within the lens are also taken into account.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000372246600001 Publication Date 2016-02-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1024-123x; 1563-5147 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:131516 Serial 7866  
Permanent link to this record
 

 
Author Martínez-Dueñas, E.J.R.; de Jong van Coevorden, C.M.; Stukach, O.V.; Panokin, N.V.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title (up) Electromagnetic modeling and design of a novel class of complementary split‐ring resonators Type A1 Journal article
  Year 2019 Publication International journal of RF and microwave computer-aided engineering Abbreviated Journal  
  Volume 29 Issue 4 Pages e21582  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract This research study reports the assessment of complementary split ring resonators based on Gielis transformation as basic elements for the design of high‐performance microwave components in printed technology. From the electromagnetic simulation of said structures, suitable equivalent circuit models are extracted and analyzed. Physical prototypes are fabricated and tested for design validation. The obtained results confirm that the adoption of supershaped geometries enables the synthesis of very compact scalable microwave filters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000460308500020 Publication Date 2018-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1096-4290 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:155021 Serial 7867  
Permanent link to this record
 

 
Author Yu, M.Y.; Yu, W.; Chen, Z.Y.; Zhang, J.; Yin, Y.; Cao, L.H.; Lu, P.X.; Xu, Z.Z. url  doi
openurl 
  Title (up) Electron acceleration by an intense short-pulse laser in underdense plasma Type A1 Journal article
  Year 2003 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 10 Issue 6 Pages 2468-2474  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000183316500031 Publication Date 2003-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 41 Open Access  
  Notes Approved Most recent IF: 2.115; 2003 IF: 2.146  
  Call Number UA @ lucian @ c:irua:103293 Serial 904  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M.; Partoens, B.; Janssens, K.L. doi  openurl
  Title (up) Electron and hole localization in coupled InP/InGaP self-assembled quantum dots Type A1 Journal article
  Year 2002 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 13 Issue 2/4 Pages 237-240  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication Amsterdam Editor  
  Language Wos 000176869100035 Publication Date 2002-10-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.221; 2002 IF: 1.107  
  Call Number UA @ lucian @ c:irua:62427 Serial 905  
Permanent link to this record
 

 
Author Čukarić, N.; Tadić, M.; Peeters, F.M. doi  openurl
  Title (up) Electron and hole states in a quantum ring grown by droplet epitaxy. Influence of the layer inside the ring opening Type A1 Journal article
  Year 2010 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 48 Issue 5 Pages 491-501  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electronic structure of the conduction and valence bands of a quantum ring containing a layer inside the ring opening is modeled This structure (nanocup) consists of a GaAs nanodisk (the cup s bottom) and a GaAs nanoring (the cup s rim) which encircles the disk The whole system is embedded in an (Al Ga)As matrix and its shape resembles realistic ring structures grown by the droplet epitaxy technique The conduction-band states in the structure are modeled by the single-band effective-mass theory while the 4-band Luttinger-Kohn model is adopted to compute the valence-band states We analyze how the electronic structure of the nanocup evolves from the one of a quantum ring when the size of either the nanodisk or the nanoring is changed For that purpose (1) the width of the ring (2) the disk radius and (3) the disk height are separately varied For dimensions typical for experimentally realized structures we find that the electron wavefunctions are mainly localized inside the ring even when the thickness of the Inner layer is 90% of the ring thickness These calculations indicate that topological phenomena like the excitonic Aharonov-Bohm effect are negligibly affected by the presence of the layer inside the ring (C) 2010 Elsevier Ltd All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000284521400005 Publication Date 2010-09-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.123 Times cited 9 Open Access  
  Notes ; The authors would like to thank Prof B Partoens for useful discussions This work was supported by the EU NoE SANDiE the Ministry of Science of Serbia the Flemish Science Foundation (FWO-VI) and the Belgian Science Policy (IAP) ; Approved Most recent IF: 2.123; 2010 IF: 1.096  
  Call Number UA @ lucian @ c:irua:95551 Serial 906  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: