|   | 
Details
   web
Records
Author Clima, S.; Sankaran, K.; Chen, Y.Y.; Fantini, A.; Celano, U.; Belmonte, A.; Zhang, L.; Goux, L.; Govoreanu, B.; Degraeve, R.; Wouters, D.J.; Jurczak, M.; Vandervorst, W.; Gendt, S.D.; Pourtois, G.;
Title (up) RRAMs based on anionic and cationic switching : a short overview Type A1 Journal article
Year 2014 Publication Physica status solidi: rapid research letters Abbreviated Journal Phys Status Solidi-R
Volume 8 Issue 6 Pages 501-511
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Resistive random access memories are emerging as a new type of memory that has the potential to combine both the speed of volatile and the retention of nonvolatile memories. It operates based on the formation/dissolution of a low-resistivity filament being constituted of either metallic ions or atomic vacancies within an insulating matrix. At present, the mechanisms and the parameters controlling the performances of the device remain unclear. In that respect, first-principles simulations provide useful insights on the atomistic mechanisms, the thermodynamic and kinetics factors that modulate the material conductivity, providing guidance into the engineering of the operation of the device. In this paper, we review the current state-of-the-art knowledge on the atomistic switching mechanisms driving the operation of copper-based conductive bridge RRAM and HfOx valence change RRAM. [GRAPHICS] Conceptual illustration of the RRAM device with the filament formation and disruption during its operation. AE/IM/CE are the active electrode/insulating matrix/counterelectrode. The blue circles represent the conducting defects. (C) 2014 WILEY-VCH Verlag GmbH Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000338021200004 Publication Date 2014-04-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.032 Times cited 28 Open Access
Notes Approved Most recent IF: 3.032; 2014 IF: 2.142
Call Number UA @ lucian @ c:irua:118679 Serial 2933
Permanent link to this record
 

 
Author Phung, Q.M.; Vancoillie, S.; Delabie, A.; Pourtois, G.; Pierloot, K.
Title (up) Ruthenocene and cyclopentadienyl pyrrolyl ruthenium as precursors for ruthenium atomic layer deposition : a comparative study of dissociation enthalpies Type A1 Journal article
Year 2012 Publication Theoretical chemistry accounts : theory, computation, and modeling Abbreviated Journal Theor Chem Acc
Volume 131 Issue 7 Pages 1238
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract RuCp2 (ruthenocene) and RuCpPy (cyclopentadienyl pyrrolyl ruthenium) complexes are used in ruthenium (Ru) atomic layer deposition (ALD) but exhibit a markedly different reactivity with respect to the substrate and co-reactant. In search of an explanation, we report here the results of a comparative study of the heterolytic and homolytic dissociation enthalpy of these two ruthenium complexes, making use of either density functional theory (DFT) or multiconfigurational perturbation theory (CASPT2). While both methods predict distinctly different absolute dissociation enthalpies, they agree on the relative values between both molecules. A reduced heterolytic dissociation enthalpy is obtained for RuCpPy compared to RuCp2, although the difference obtained from CASPT2 (19.9 kcal/mol) is slightly larger than the one obtained with any of the DFT functionals (around 17 kcal/mol). Both methods also agree on the more pronounced stability of the Cp- ligand in RuCpPy than in RuCp2 (by around 9 kcal/mol with DFT and by 6 kcal/mol with CASPT2).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000307274300003 Publication Date 2012-07-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1432-881X;1432-2234; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.89 Times cited 5 Open Access
Notes Approved Most recent IF: 1.89; 2012 IF: 2.233
Call Number UA @ lucian @ c:irua:101139 Serial 2935
Permanent link to this record
 

 
Author Adriaensen, L.; Vangaever, F.; Lenaerts, J.; Gijbels, R.
Title (up) S-SIMS and MetA-SIMS study of organic additives in thin polymer coatings Type A1 Journal article
Year 2006 Publication Applied surface science Abbreviated Journal Appl Surf Sci
Volume 252 Issue 19 Pages 6628-6631
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000240609900057 Publication Date 2006-06-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.387 Times cited 3 Open Access
Notes Approved Most recent IF: 3.387; 2006 IF: 1.436
Call Number UA @ lucian @ c:irua:60083 Serial 2937
Permanent link to this record
 

 
Author van Straaten, M.; Vertes, A.; Gijbels, R.
Title (up) Sample erosion studies in a glow discharge ionization cell Type A3 Journal article
Year 1991 Publication Spectrochimica acta Abbreviated Journal
Volume 46b Issue Pages 283
Keywords A3 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0371-1951; 0371-1951 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:702 Serial 2940
Permanent link to this record
 

 
Author Tchakoua, T.; Gerrits, N.; Smeets, E.W.F.; Kroes, G.-J.
Title (up) SBH17 : benchmark database of barrier heights for dissociative chemisorption on transition metal surfaces Type A1 Journal article
Year 2023 Publication Journal of chemical theory and computation Abbreviated Journal
Volume 19 Issue 1 Pages 245-270
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Accurate barriers for rate controlling elementary reactions on metal surfaces are key to understanding, controlling, and predicting the rate of heterogeneously catalyzed processes. While barrier heights for gas phase reactions have been extensively benchmarked, dissociative chemisorption barriers for the reactions of molecules on metal surfaces have received much less attention. The first database called SBH10 and containing 10 entries was recently constructed based on the specific reaction parameter approach to density functional theory (SRP-DFT) and experimental results. We have now constructed a new and improved database (SBH17) containing 17 entries based on SRP-DFT and experiments. For this new SBH17 benchmark study, we have tested three algorithms (high, medium, and light) for calculating barrier heights for dissociative chemisorption on metals, which we have named for the amount of computational effort involved in their use. We test the performance of 14 density functionals at the GGA, GGA+vdW-DF, and meta-GGA rungs. Our results show that, in contrast with the previous SBH10 study where the BEEF-vdW-DF2 functional seemed to be most accurate, the workhorse functional PBE and the MS2 density functional are the most accurate of the GGA and meta-GGA functionals tested. Of the GGA+vdW functionals tested, the SRP32-vdW-DF1 functional is the most accurate. Additionally, we found that the medium algorithm is accurate enough for assessing the performance of the density functionals tested, while it avoids geometry optimizations of minimum barrier geometries for each density functional tested. The medium algorithm does require metal lattice constants and interlayer distances that are optimized separately for each functional. While these are avoided in the light algorithm, this algorithm is found not to give a reliable description of functional performance. The combination of relative ease of use and demonstrated reliability of the medium algorithm will likely pave the way for incorporation of the SBH17 database in larger databases used for testing new density functionals and electronic structure methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000903286100001 Publication Date 2022-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1549-9618 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 5.5; 2023 IF: 5.245
Call Number UA @ admin @ c:irua:193426 Serial 7274
Permanent link to this record
 

 
Author Gijbels, R.; Oleshko, V.
Title (up) Scanning microanalysis Type H3 Book chapter
Year 1998 Publication Abbreviated Journal
Volume Issue Pages 427-456
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24906 Serial 2943
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.
Title (up) Scanning microanalysis Type H3 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 661-690
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Vch Place of Publication Weinheim Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:20473 Serial 2944
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.
Title (up) Scanning microanalysis Type H1 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 427-456
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Wiley-VCH Place of Publication Weinheim Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:20474 Serial 2945
Permanent link to this record
 

 
Author Oleshko, V.; Gijbels, R.
Title (up) Scanning microanalysis Type H3 Book chapter
Year 1996 Publication Abbreviated Journal
Volume Issue Pages 661-690
Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Vch Place of Publication Weinheim Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:16249 Serial 2946
Permanent link to this record
 

 
Author Duan, Z.L.; Chen, Z.Y.; Zhang, J.T.; Feng, X.L.; Xu, Z.Z.
Title (up) Scheme for the generation of entangled atomic state in cavity QED Type A1 Journal article
Year 2004 Publication European physical journal : D : atomic, molecular and optical physics Abbreviated Journal Eur Phys J D
Volume 30 Issue 2 Pages 275-278
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We propose a scheme to generate the entangled state of two Lambda-type three-level atoms trapped in a cavity. The atoms are initially prepared in their excited state and the cavity in vacuum state. Each atom has two possibilities to deexcite to one of the ground states. If two different polarized photons are detected subsequently, it is sure that both atoms are in different ground states. But which atom is in which ground state cannot be determined, the atoms are thus prepared in a superposition of two ground states, i.e., an entangled state. In comparison with the proposal of Hong and Lee [Phys. Rev. Lett. 89, 237901 (2002)], the requirement of a single polarized photon source can be avoided in our scheme.
Address
Corporate Author Thesis
Publisher Place of Publication Berlin Editor
Language Wos 000223019400013 Publication Date 2004-07-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6060;1434-6079; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.288 Times cited 4 Open Access
Notes Approved Most recent IF: 1.288; 2004 IF: 1.692
Call Number UA @ lucian @ c:irua:94796 Serial 2954
Permanent link to this record
 

 
Author Lenaerts, J.; van Vaeck, L.; Gijbels, R.
Title (up) Secondary ion formation of low molecular weight organic dyes in time-of-flight static secondary ion mass spectrometry Type A1 Journal article
Year 2003 Publication Rapid communications in mass spectrometry Abbreviated Journal Rapid Commun Mass Sp
Volume 17 Issue 18 Pages 2115-2124
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Time-of-flight static secondary ion mass spectrometry (TOF-S-SIMS) was used to characterize thin layers of oxy- and thiocarbocyanine dyes on Ag and Si. Apart from adduct ions a variety of structural fragment ions were detected for which a fragmentation pattern is proposed. Peak assignments were confirmed by comparing spectra of dyes with very similar structures. All secondary ions were assigned with a mass accuracy better than 50 ppm. The intensity of molecular ions as well as fragment ions has been studied as a function of the type of organic dye, the substrate, the layer thickness and the type of primary ion. A large yield difference of two orders of magnitude was observed between the precursor ions of cationic carbocyanine dyes and the protonated molecules of the anionic dyes. Fragment ions, on the other hand, yielded similar intensities for both types of dye. As the dye layers deposited on an Ag substrate yielded higher secondary ion intensities than those deposited on a Si substrate, the Ag metal clearly acts as a promoting agent for secondary ion formation. The effect was more pronounced for precursor signals than for fragment ions. The promoting effect decreased as the deposited layer thickness of the organic dye layer was increased. Copyright (C) 2003 John Wiley Sons, Ltd.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000185230400014 Publication Date 2003-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0951-4198;1097-0231; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.998 Times cited 10 Open Access
Notes Approved Most recent IF: 1.998; 2003 IF: 2.789
Call Number UA @ lucian @ c:irua:104132 Serial 2958
Permanent link to this record
 

 
Author Chirumamilla, C.S.; Palagani, A.; Kamaraj, B.; Declerck, K.; Verbeek, M.W.C.; Ryabtsova, O.; De Bosscher, K.; Bougarne, N.; Ruttens, B.; Gevaert, K.; Houtman, R.; De Vos, W.H.; Joossens, J.; van der Veken, P.; Augustyns, K.; van Ostade, X.; Bogaerts, A.; De Winter, H.; Vanden Berghe, W.
Title (up) Selective glucocorticoid receptor properties of GSK866 analogs with cysteine reactive warheads Type Administrative Services
Year 2017 Publication Frontiers in immunology Abbreviated Journal Front Immunol
Volume 8 Issue Pages 1324
Keywords Administrative Services; A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Medicinal Chemistry (UAMC)
Abstract Synthetic glucocorticoids (GC) are the mainstay therapy for treatment of acute and chronic inflammatory disorders. Due to the high adverse effects associated with long-term use, GC pharmacology has focused since the nineties on more selective GC ligand-binding strategies, classified as selective glucocorticoid receptor (GR) agonists (SEGRAs) or selective glucocorticoid receptor modulators (SEGRMs). In the current study, GSK866 analogs with electrophilic covalent-binding warheads were developed with potential SEGRA properties to improve their clinical safety profile for long-lasting topical skin disease applications. Since the off-rate of a covalently binding drug is negligible compared to that of a non-covalent drug, its therapeutic effects can be prolonged and typically, smaller doses of the drug are necessary to reach the same level of therapeutic efficacy, thereby potentially reducing systemic side effects. Different analogs of SEGRA GSK866 coupled to cysteine reactive warheads were characterized for GR potency and selectivity in various biochemical and cellular assays. GR- and NFκB-dependent reporter gene studies show favorable anti-inflammatory properties with reduced GR transactivation of two non-steroidal GSK866 analogs UAMC-1217 and UAMC-1218, whereas UAMC-1158 and UAMC-1159 compounds failed to modulate cellular GR activity. These results were further supported by GR immuno-localization and S211 phospho-GR western analysis, illustrating significant GR phosphoactivation and nuclear translocation upon treatment of GSK866, UAMC-1217, or UAMC-1218, but not in case of UAMC-1158 or UAMC-1159. Furthermore, mass spectrometry analysis of tryptic peptides of recombinant GR ligand-binding domain (LBD) bound to UAMC-1217 or UAMC-1218 confirmed covalent cysteine-dependent GR binding. Finally, molecular dynamics simulations, as well as glucocorticoid receptor ligand-binding domain (GR-LBD) coregulator interaction profiling of the GR-LBD bound to GSK866 or its covalently binding analogs UAMC-1217 or UAMC-1218 revealed subtle conformational differences that might underlie their SEGRA properties. Altogether, GSK866 analogs UAMC-1217 and UAMC-1218 hold promise as a novel class of covalent-binding SEGRA ligands for the treatment of topical inflammatory skin disorders.
Address
Corporate Author Thesis
Publisher Place of Publication Place of publication unknown Editor
Language Wos 000414136300001 Publication Date 2017-11-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-3224 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.429 Times cited 2 Open Access OpenAccess
Notes Approved Most recent IF: 6.429
Call Number UA @ lucian @ c:irua:146485 Serial 4750
Permanent link to this record
 

 
Author Yi, Y.; Li, S.; Cui, Z.; Hao, Y.; Zhang, Y.; Wang, L.; Liu, P.; Tu, X.; Xu, X.; Guo, H.; Bogaerts, A.
Title (up) Selective oxidation of CH4 to CH3OH through plasma catalysis: Insights from catalyst characterization and chemical kinetics modelling Type A1 Journal Article;Methane conversion
Year 2021 Publication Applied Catalysis B-Environmental Abbreviated Journal Appl Catal B-Environ
Volume 296 Issue Pages 120384
Keywords A1 Journal Article;Methane conversion; Plasma catalysis; Selective oxidation; Methanol synthesis; Plasma chemistry; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract The selective oxidation of methane to methanol (SOMTM) by molecular oxygen is a holy grail in catalytic chemistry and remains a challenge in chemical industry. We perform SOMTM in a CH4/O2 plasma, at low temperature and atmospheric pressure, promoted by Ni-based catalysts, reaching 81 % liquid oxygenates selectivity and 50 % CH3OH selectivity, with an excellent catalytic stability. Chemical kinetics modelling shows that CH3OH in the plasma is mainly produced through radical reactions, i.e., CH4 + O(1D) → CH3O + H, fol­lowed by CH3O + H + M→ CH3OH + M and CH3O + HCO → CH3OH + CO. The catalyst characterization shows that the improved production of CH3OH is attributed to abundant chemisorbed oxygen species, originating from highly dispersed NiO phase with strong oxide support interaction with γ-Al2O3, which are capable of promoting CH3OH formation through E-R reactions and activating H2O molecules to facilitate CH3OH desorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000706860000003 Publication Date 2021-05-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.446 Times cited Open Access OpenAccess
Notes National Natural Science Foundation of China; PetroChina Innovation Foundation; We acknowledge financial support from the PetroChina Innovation Foundation [grant ID: 2018D-5007-0501], the Young Star Project of Dalian Science and Technology Bureau [grant ID: 2019RQ042], the National Natural Science Foundation of China [grant ID: 21503032] and the TOP research project of the Research Fund of the University of Antwerp [grant ID: 32249]. Approved Most recent IF: 9.446
Call Number PLASMANT @ plasmant @c:irua:178816 Serial 6793
Permanent link to this record
 

 
Author Khalilov, U.; Yusupov, M.; Bogaerts, A.; Neyts, E.C.
Title (up) Selective Plasma Oxidation of Ultrasmall Si Nanowires Type A1 Journal article
Year 2016 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 120 Issue 120 Pages 472-477
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Device performance of Si|SiOx core-shell based nanowires critically depends on the exact control over the oxide thickness. Low-temperature plasma oxidation is a highly promising alternative to thermal oxidation allowing for improved control over the oxidation process, in particular for ultrasmall Si nanowires. We here elucidate the room temperature plasma oxidation mechanisms of ultrasmall Si nanowires using hybrid molecular dynamics / force-bias Monte Carlo simulations. We demonstrate how the oxidation and concurrent water formation mechanisms are a function of the oxidizing plasma species and we demonstrate how the resulting core-shell oxide thickness can be controlled through these species. A new mechanism of water formation is discussed in detail. The results provide a detailed atomic level explanation of the oxidation process of highly curved Si surfaces. These results point out a route toward plasma-based formation of ultrathin core-shell Si|SiOx nanowires at room temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368562200057 Publication Date 2015-12-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 3 Open Access
Notes U.K. and M.Y. gratefully acknowledge financial support from the Research Foundation – Flanders (FWO), Grants 12M1315N and 1200216N. This work was carried out in part using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UA. We thank Prof. A. C. T. van Duin for sharing the ReaxFF code. Approved Most recent IF: 4.536
Call Number c:irua:130677 Serial 4002
Permanent link to this record
 

 
Author Nematollahi, P.
Title (up) Selectivity of Mo-NC sites for electrocatalytic N₂ reduction : a function of the single atom position on the surface and local carbon topologies Type A1 Journal article
Year 2023 Publication Applied surface science Abbreviated Journal
Volume 612 Issue Pages 155908-155909
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Transition metal (TM) doped two-dimensional single-atom catalysts are known as a promising class of catalysts for electrocatalytic gas conversion. However, the detailed mechanisms that occur at the surface of these catalysts are still unknown. In the present work, we simulate three Mo-doped nitrogenated graphene structures. In each catalyst, the position of the Mo active site and the corresponding local carbon topologies are different, i.e. MoN4C10 with in-plane Mo atom, MoN4C8 in which Mo atom bridges two adjacent armchair-like graphitic edges, and MoN2C3 in which Mo is doped at the edge of the graphene sheet. Using Density Functional Theory (DFT) calculations we discuss the electrocatalytic activity of Mosingle bondNsingle bondC structures for nitrogen reduction reaction (NRR) with a focus on unraveling the corresponding mechanisms concerning different Mo site positions and C topologies. Our results indicate that the position of the active site centers has a great effect on its electrocatalytic behavior. The gas phase N2 efficiently reduces to ammonia on MoN4C8 via the distal mechanism with an onset potential of −0.51 V. We confirm that the proposed pyridinic structure, MoN4C8, can catalyze NRR effectively with a low overpotential of 0.35 V.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000901469900003 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-4332 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.7; 2023 IF: 3.387
Call Number UA @ admin @ c:irua:192430 Serial 7275
Permanent link to this record
 

 
Author Khalilov, U.; Pourtois, G.; van Duin, A.C.T.; Neyts, E.C.
Title (up) Self-limiting oxidation in small-diameter Si nanowires Type A1 Journal article
Year 2012 Publication Chemistry of materials Abbreviated Journal Chem Mater
Volume 24 Issue 11 Pages 2141-2147
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Recently, core shell silicon nanowires (Si-NWs) have been envisaged to be used for field-effect transistors and photovoltaic applications. In spite of the constant downsizing of such devices, the formation of ultrasmall diameter core shell Si-NWs currently remains entirely unexplored. We report here on the modeling of the formation of such core shell Si-NWs using a dry thermal oxidation of 2 nm diameter (100) Si nanowires at 300 and 1273 K, by means of reactive molecular dynamics simulations using the ReaxFF potential. Two different oxidation mechanisms are discussed, namely a self-limiting process that occurs at low temperature (300 K), resulting in a Si core I ultrathin SiO2 silica shell nanowire, and a complete oxidation process that takes place at a higher temperature (1273 K), resulting in the formation of an ultrathin SiO2 silica nanowire. The oxidation kinetics of both cases and the resulting structures are analyzed in detail. Our results demonstrate that precise control over the Si-core radius of such NWs and the SiOx (x <= 2.0) oxide shell is possible by controlling the growth temperature used during the oxidation process.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000305092600021 Publication Date 2012-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 9.466 Times cited 45 Open Access
Notes Approved Most recent IF: 9.466; 2012 IF: 8.238
Call Number UA @ lucian @ c:irua:99079 Serial 2976
Permanent link to this record
 

 
Author Berezhnoi, S.; Kaganovich, I.; Misina, M.; Bogaerts, A.; Gijbels, R.
Title (up) Semianalytical description of nonlocal secondary electrons in a radio-frequency capacitively coupled plasma at intermediate pressures Type A1 Journal article
Year 1999 Publication IEEE transactions plasma science Abbreviated Journal Ieee T Plasma Sci
Volume 27 Issue Pages 1339-1347
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000083453000014 Publication Date 2002-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0093-3813; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.052 Times cited 7 Open Access
Notes Approved Most recent IF: 1.052; 1999 IF: 1.085
Call Number UA @ lucian @ c:irua:28314 Serial 2980
Permanent link to this record
 

 
Author Zhang, Q.-Z.; Zhao, S.-X.; Jiang, W.; Wang, Y.-N.
Title (up) Separate control between geometrical and electrical asymmetry effects in capacitively coupled plasmas Type A1 Journal article
Year 2012 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 45 Issue 30 Pages 305203
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Both geometrical and electrical asymmetry effects in capacitive argon discharges are investigated using a two-dimensional particle-in-cell coupled with Monte Carlo collision model. When changing the ratio of the top and bottom electrode surface areas and the phase shift between the two applied harmonics, the induced self-bias was found to develop separately. By adjusting the ratio between the high and low harmonic amplitudes, the electrical asymmetry effect at a fixed phase shift can be substantially optimized. However, the self-bias caused by the geometrical asymmetry hardly changed. Moreover, the separate control of these two asymmetry effects can also be demonstrated from their power absorption profiles. Both the axial and radial plasma density distributions can be modulated by the electrical asymmetry effect.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000306475200007 Publication Date 2012-07-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 20 Open Access
Notes Approved Most recent IF: 2.588; 2012 IF: 2.528
Call Number UA @ lucian @ c:irua:100751 Serial 2984
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Meng, S.; Yi, Y.; Wang, Y.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title (up) SF₆ catalytic degradation in a γ-Al₂O₃ packed bed plasma system : a combined experimental and theoretical study Type A1 Journal article
Year 2022 Publication High voltage Abbreviated Journal
Volume Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Effective abatement of the greenhouse gas sulphur hexafluoride (SF6) waste is of great importance for the environment protection. This work investigates the size effect and the surface properties of gamma-Al2O3 pellets on SF6 degradation in a packed bed dielectric barrier discharge (PB-DBD) system. Experimental results show that decreasing the packing size improves the filamentary discharges and promotes the ignition and the maintenance of plasma, enhancing the degradation performance at low input powers. However, too small packing pellets decrease the gas residence time and reduce the degradation efficiency, especially for the input power beyond 80 W. Besides, lowering the packing size promotes the generation of SO2, while reduces the yields of S-O-F products, corresponding to a better degradation. After the discharge, the pellet surface becomes smoother with the appearance of S and F elements. Density functional theory calculations show that SF6 is likely to be adsorbed at the Al-III site over the gamma-Al2O3(110) surface, and it is much more easily to decompose than in the gas phase. The fluorine gaseous products can decompose and stably adsorb on the pellet surface to change the surface element composition. This work provides a better understanding of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000827312700001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-7264 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 4.4
Call Number UA @ admin @ c:irua:189603 Serial 7208
Permanent link to this record
 

 
Author Cui, Z.; Zhou, C.; Jafarzadeh, A.; Zhang, X.; Hao, Y.; Li, L.; Bogaerts, A.
Title (up) SF₆ degradation in γ-Al₂O₃ packed DBD system : effects of hydration, reactive gases and plasma-induced surface charges Type A1 Journal article
Year 2023 Publication Plasma chemistry and plasma processing Abbreviated Journal
Volume 43 Issue Pages 635-656
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Packed-bed DBD (PB-DBD) plasmas hold promise for effective degradation of greenhouse gases like SF6. In this work, we conducted a combined experimental and theoretical study to investigate the effect of the packing surface structure and the plasma surface discharge on the SF6 degradation in a gamma-Al2O3 packing DBD system. Experimental results show that both the hydration effect of the surface (upon moisture) and the presence of excessive reactive gases in the plasma can significantly reduce the SF6 degradation, but they hardly change the discharge behavior. DFT results show that the pre-adsorption of species such as H, OH, H2O and O-2 can occupy the active sites (Al-III site) which negatively impacts the SF6 adsorption. H2O molecules pre-adsorbed at neighboring sites can promote the activation of SF6 molecules and lower the reaction barrier for the S-F bond-breaking process. Surface-induced charges and local external electric fields caused by the plasma can both improve the SF6 adsorption and enhance the elongation of the S-F bonds. Our results indicate that both the surface structure of the packing material and the plasma surface discharge are crucial for SF6 degradation performance, and the packing beads should be kept dry during the degradation. This work helps to understand the underlying mechanisms of SF6 degradation in a PB-DBD system.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000966639200001 Publication Date 2023-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-4324 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.6 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.6; 2023 IF: 2.355
Call Number UA @ admin @ c:irua:196033 Serial 8516
Permanent link to this record
 

 
Author Cai, H.-bo; Yu, W.; Zhu, S.-ping; Zheng, C.-yang; Cao, L.-hua; Li, B.; Chen, Z.Y.; Bogaerts, A.
Title (up) Short-pulse laser absorption in very steep plasma density gradients Type A1 Journal article
Year 2006 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 13 Issue Pages 094504,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Woodbury, N.Y. Editor
Language Wos 000240877800057 Publication Date 2006-09-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 17 Open Access
Notes Approved Most recent IF: 2.115; 2006 IF: 2.258
Call Number UA @ lucian @ c:irua:59375 Serial 2995
Permanent link to this record
 

 
Author van den Broek, B.; Houssa, M.; Lu, A.; Pourtois, G.; Afanas'ev, V.; Stesmans, A.
Title (up) Silicene nanoribbons on transition metal dichalcogenide substrates : effects on electronic structure and ballistic transport Type A1 Journal article
Year 2016 Publication Nano Research Abbreviated Journal Nano Res
Volume 9 Issue 9 Pages 3394-3406
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The idea of stacking multiple monolayers of different two-dimensional materials has become a global pursuit. In this work, a silicene armchair nanoribbon of width W and van der Waals-bonded to different transition-metal dichalcogenide (TMD) bilayer substrates MoX2 and WX2, where X = S, Se, Te is considered. The orbital resolved electronic structure and ballistic transport properties of these systems are simulated by employing van der Waals-corrected density functional theory and nonequilibrium Green's functions. We find that the lattice mismatch with the underlying substrate determines the electronic structure, correlated with the silicene buckling distortion and ultimately with the contact resistance of the two-terminal system. The smallest lattice mismatch, obtained with the MoTe2 substrate, results in the silicene ribbon properties coming close to those of a freestanding one. With the TMD bilayer acting as a dielectric layer, the electronic structure is tunable from a direct to an indirect semiconducting layer, and subsequently to a metallic electronic dispersion layer, with a moderate applied perpendicular electric field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000386770300018 Publication Date 2016-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1998-0124 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.354 Times cited 2 Open Access
Notes Approved Most recent IF: 7.354
Call Number UA @ lucian @ c:irua:138210 Serial 4469
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title (up) Similarities and differences between direct current and radio-frequency glow discharges: a mathematical simulation Type A1 Journal article
Year 2000 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom
Volume 15 Issue Pages 1191-1201
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000089141900019 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0267-9477;1364-5544; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.379 Times cited 25 Open Access
Notes Approved Most recent IF: 3.379; 2000 IF: 3.488
Call Number UA @ lucian @ c:irua:34076 Serial 3001
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A.
Title (up) Similarities and differences between gliding glow and gliding arc discharges Type A1 Journal article
Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T
Volume 24 Issue 24 Pages 065023
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work we have analyzed the properties of a gliding dc discharge in argon at atmospheric pressure. Despite the usual designation of these discharges as ‘gliding arc discharges’, it was found previously that they operate in two different regimes—glow and arc. Here we analyze the differences in both regimes by means of two dimensional fluid modeling. In order to address different aspects of the discharge operation, we use two models—Cartesian and axisymmetric in a cylindrical coordinate system. The obtained results show that the two types of discharges produce a similar plasma column for a similar discharge current. However, the different mechanisms of plasma channel attachment to the cathode could produce certain differences in the plasma parameters (i.e. arc elongation), and this can affect gas treatments applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000368117100028 Publication Date 2015-11-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.302 Times cited 12 Open Access
Notes This work is financially supported by the Methusalem financing and by the IAP/7 (Inter-university Attraction Pole) program ‘Physical Chemistry of Plasma-Surface Interactions’ from the Belgian Federal Office for Science Policy (BELSPO). The work was carried out in part using the Turing HPC infrastructure of the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen Approved Most recent IF: 3.302; 2015 IF: 3.591
Call Number c:irua:129214 Serial 3952
Permanent link to this record
 

 
Author de Witte, H.; Conard, T.; Vandervorst, W.; Gijbels, R.
Title (up) SIMS analysis of oxynitrides: evidence for nitrogen diffusion induced by oxygen flooding Type A1 Journal article
Year 2000 Publication Surface and interface analysis Abbreviated Journal Surf Interface Anal
Volume 29 Issue Pages 761-765
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000165476500006 Publication Date 2002-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0142-2421;1096-9918; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.132 Times cited 4 Open Access
Notes Approved Most recent IF: 1.132; 2000 IF: 1.215
Call Number UA @ lucian @ c:irua:34072 Serial 3007
Permanent link to this record
 

 
Author Gijbels, R.; Verlinden, G.; Geuens, I.
Title (up) SIMS/TOF-SIMS study of microparticles: surface analysis, imaging and quantification Type H1 Book chapter
Year 2000 Publication Abbreviated Journal
Volume Issue Pages 331-332
Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher London Institute of Physics Place of Publication Bristol Editor
Language Wos 000166835400166 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:34078 Serial 3008
Permanent link to this record
 

 
Author Tchakoua, T.; Powell, A.D.; Gerrits, N.; Somers, M.F.; Doblhoff-Dier, K.; Busnengo, H.F.; Kroes, G.-J.
Title (up) Simulating highly activated sticking of H₂ on Al(110) : quantum versus quasi-classical dynamics Type A1 Journal article
Year 2023 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal
Volume 127 Issue 11 Pages 5395-5407
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We evaluate the importance of quantum effects on the sticking of H2 on Al(110) for conditions that are close to those of molecular beam experiments that have been done on this system. Calculations with the quasi-classical trajectory (QCT) method and with quantum dynamics (QD) are performed using a model in which only motion in the six molecular degrees of freedom is allowed. The potential energy surface used has a minimum barrier height close to the value recently obtained with the quantum Monte Carlo method. Monte Carlo averaging over the initial rovibrational states allowed the QD calculations to be done with an order of magnitude smaller computational expense. The sticking probability curve computed with QD is shifted to lower energies relative to the QCT curve by 0.21 to 0.05 kcal/mol, with the highest shift obtained for the lowest incidence energy. Quantum effects are therefore expected to play a small role in calculations that would evaluate the accuracy of electronic structure methods for determining the minimum barrier height to dissociative chemisorption for H2 + Al(110) on the basis of the standard procedure for comparing results of theory with molecular beam experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000971346700001 Publication Date 2023-03-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 3.7; 2023 IF: 4.536
Call Number UA @ admin @ c:irua:196071 Serial 8525
Permanent link to this record
 

 
Author Lindner, H.; Murtazin, A.; Groh, S.; Niemax, K.; Bogaerts, A.
Title (up) Simulation and experimental studies on plasma temperature, flow velocity, and injector diameter effects for an inductively coupled plasma Type A1 Journal article
Year 2011 Publication Analytical chemistry Abbreviated Journal Anal Chem
Volume 83 Issue 24 Pages 9260-9266
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract An inductively coupled plasma (ICP) is analyzed by means of experiments and numerical simulation. Important plasma properties are analyzed, namely, the effective temperature inside the central channel and the mean flow velocity inside the plasma. Furthermore, the effect of torches with different injector diameters is studied by the model. The temperature inside the central channel is determined from the end-on collected line-to-background ratio in dependence of the injector gas flow rates. Within the limits of 3% deviation, the results of the simulation and the experiments are in good agreement in the range of flow rates relevant for the analysis of relatively large droplets, i.e., 50 μm. The deviation increases for higher gas flow rates but stays below 6% for all flow rates studied. The velocity of the gas inside the coil region was determined by side-on analyte emission measurements with single monodisperse droplet introduction and by the analysis of the injector gas path lines in the simulation. In the downstream region significantly higher velocities were found than in the upstream region in both the simulation and the experiment. The quantitative values show good agreement in the downstream region. In the upstream region, deviations were found in the absolute values which can be attributed to the flow conditions in that region and because the methods used for velocity determination are not fully consistent. Eddy structures are found in the simulated flow lines. These affect strongly the way taken by the path lines of the injector gas and they can explain the very long analytical signals found in the experiments at low flow rates. Simulations were performed for different injector diameters in order to find conditions where good analyte transport and optimum signals can be expected. The results clearly show the existence of a transition flow rate which marks the lower limit for effective analyte transport conditions through the plasma. A rule-of-thumb equation was extracted from the results from which the transition flow rate can be estimated for different injector diameters and different injector gas compositions.
Address
Corporate Author Thesis
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000297946900013 Publication Date 2011-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700;1520-6882; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.32 Times cited 34 Open Access
Notes Approved Most recent IF: 6.32; 2011 IF: 5.856
Call Number UA @ lucian @ c:irua:94001 Serial 3009
Permanent link to this record
 

 
Author Chuon, S.
Title (up) Simulation numérique multi-échelles du procédé de dépôt par pulvérisation cathodique magnétron Type Doctoral thesis
Year 2019 Publication Abbreviated Journal
Volume Issue Pages 137 p.
Keywords Doctoral thesis; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:166091 Serial 6322
Permanent link to this record
 

 
Author Tinck, S.; Boullart, W.; Bogaerts, A.
Title (up) Simulation of an Ar/Cl2 inductively coupled plasma: study of the effect of bias, power and pressure and comparison with experiments Type A1 Journal article
Year 2008 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 41 Issue 6 Pages 065207,1-14
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A hybrid model, called the hybrid plasma equipment model, was used to study Ar/Cl(2) inductively coupled plasmas used for the etching of Si. The effects of substrate bias, source power and gas pressure on the plasma characteristics and on the fluxes and energies of plasma species bombarding the substrate were observed. A comparison with experimentally measured etch rates was made to investigate how the etch process is influenced and which plasma species mainly account for the etch process. First, the general plasma characteristics are investigated at the following operating conditions: 10% Ar 90% Cl(2) gas mixture, 5mTorr total gas pressure, 100 sccm gas flow rate, 250W source power, -200V dc bias at the substrate electrode and an operating frequency of 13.56MHz applied to the coil and to the substrate electrode. Subsequently, the pressure is varied from 5 to 80mTorr, the substrate bias from -100 to -300V and the source power from 250 to 1000W. Increasing the total gas pressure results in a decrease of the etch rate and a less anisotropic flux to the substrate due to more collisions of the ions in the sheath. Increasing the substrate bias has an effect on the energy of the ions bombarding the substrate and to a lesser extent on the magnitude of the ion flux. When source power is increased, it was found that, not the energy, but the magnitude of the ion flux is increased. The etch rate was more influenced by a variation of the substrate bias than by a variation of the source power, at these operating conditions. These results suggest that the etch process is mainly affected by the energy of the ions bombarding the substrate and the magnitude of the ion flux, and to a lesser extent by the magnitude of the radical flux.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000254153900022 Publication Date 2008-02-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727;1361-6463; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited 31 Open Access
Notes Approved Most recent IF: 2.588; 2008 IF: 2.104
Call Number UA @ lucian @ c:irua:67019 Serial 3010
Permanent link to this record