|   | 
Details
   web
Records
Author Moors, K.; Soree, B.; Tokei, Z.; Magnus, W.
Title (up) Electron relaxation times and resistivity in metallic nanowires due to tilted grain boundary planes Type P1 Proceeding
Year 2015 Publication On Ultimate Integration On Silicon (eurosoi-ulis) Abbreviated Journal
Volume Issue Pages 201-204
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We calculate the resistivity contribution of tilted grain boundaries with varying parameters in sub-10nm diameter metallic nanowires. The results have been obtained with the Boltzmann transport equation and Fermi's golden rule, retrieving correct state-dependent relaxation times. The standard approximation schemes for the relaxation times are shown to fail when grain boundary tilt is considered. Grain boundaries tilted under the same angle or randomly tilted induce a resistivity decrease.
Address
Corporate Author Thesis
Publisher Ieee Place of Publication New york Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-4799-6911-1 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:144776 Serial 4651
Permanent link to this record
 

 
Author Moors, K.; Sorée, B.; Tokei, Z.; Magnus, W.
Title (up) Resistivity scaling and electron relaxation times in metallic nanowires Type A1 Journal article
Year 2014 Publication Journal of applied physics Abbreviated Journal J Appl Phys
Volume 116 Issue 6 Pages 063714
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10. (C) 2014 AIP Publishing LLC.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000341179400036 Publication Date 2014-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.068 Times cited 17 Open Access
Notes ; ; Approved Most recent IF: 2.068; 2014 IF: 2.183
Call Number UA @ lucian @ c:irua:119260 Serial 2882
Permanent link to this record