toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Houben, K.; Jochum, J.K.; Lozano, D.P.; Bisht, M.; Menendez, E.; Merkel, D.G.; Ruffer, R.; Chumakov, A., I; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Couet, S.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title In situ study of the \alpha-Sn to \beta-Sn phase transition in low-dimensional systems : phonon behavior and thermodynamic properties Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 100 Issue 7 Pages 075408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The densities of phonon states of thin Sn films on InSb substrates are determined during different stages of the alpha-Sn to beta-Sn phase transition using nuclear inelastic x-ray scattering. The vibrational entropy and internal energy per atom as a function of temperature are obtained by numerical integration of the phonon density of states. The free energy as a function of temperature for the nanoscale samples is compared to the free energy obtained from ab initio calculations of bulk tin in the alpha-Sn and beta-Sn phase. In thin films this phase transition is governed by the interplay between the vibrational behavior of the film (the phase transition is driven by the vibrational entropy) and the stabilizing influence of the substrate (which depends on the film thickness). This brings a deeper understanding of the role of lattice vibrations in the phase transition of nanoscale Sn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000478992800005 Publication Date 2019-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 9 Open Access  
  Notes ; This work was supported by the Research Foundation Flanders (FWO) and the Concerted Research Action (Grant No. GOA14/007). K.H., S.C., D.P.L., and E.M. wish to thank the FWO for financial support. The authors gratefully acknowledge the European Synchrotron Radiation Facility (ESRF) for the granted beam time and the use of the in situ UHV preparation chamber. The authors thank B. Opperdoes for technical support and T. Peissker and R. Lieten for fruitful discussions. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:161836 Serial 5416  
Permanent link to this record
 

 
Author Plumadore, R.; Baskurt, M.; Boddison-Chouinard, J.; Lopinski, G.; Modarresi, M.; Potasz, P.; Hawrylak, P.; Sahin, H.; Peeters, F.M.; Luican-Mayer, A. url  doi
openurl 
  Title Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 102 Issue 20 Pages 205408  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Atomic scale defects in semiconductors enable their technological applications and realization of different quantum states. Using scanning tunneling microscopy and spectroscopy complemented by ab initio calculations we determine the nature of defects in the anisotropic van der Waals layered semiconductor ReS2. We demonstrate the in-plane anisotropy of the lattice by directly visualizing chains of rhenium atoms forming diamond-shaped clusters. Using scanning tunneling spectroscopy we measure the semiconducting gap in the density of states. We reveal the presence of lattice defects and by comparison of their topographic and spectroscopic signatures with ab initio calculations we determine their origin as oxygen atoms absorbed at lattice point defect sites. These results provide an atomic-scale view into the semiconducting transition metal dichalcogenides, paving the way toward understanding and engineering their properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000587595800007 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.7 Times cited (down) 9 Open Access  
  Notes ; The authors acknowledge funding from National Sciences and Engineering Research Council (NSERC) Discovery Grant No. RGPIN-2016-06717. We also acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) through QC2DM Strategic Project No. STPGP 521420. P.H. thanks uOttawa Research Chair in Quantum Theory of Materials for support. P.P. acknowledges partial financial support from National Science Center (NCN), Poland, Grant Maestro No. 2014/14/A/ST3/00654, and calculations were performed in theWroclaw Center for Networking and Supercomputing. H.S. acknowledges financial support from TUBITAK under Project No. 117F095 and from Turkish Academy of Sciences under the GEBIP program. Our computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid eInfrastructure). ; Approved Most recent IF: 3.7; 2020 IF: 3.836  
  Call Number UA @ admin @ c:irua:173525 Serial 6584  
Permanent link to this record
 

 
Author Cunha, S.M.; de Costa, D.R.; Pereira Jr, J.M.; Costa Filho, R.N.; Van Duppen, B.; Peeters, F.M. url  doi
openurl 
  Title Band-gap formation and morphing in alpha-T-3 superlattices Type A1 Journal article
  Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 104 Issue 11 Pages 115409  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrons in alpha-T-3 lattices behave as condensed-matter analogies of integer-spin Dirac fermions. The three atoms making up the unit cell bestow the energy spectrum with an additional energy band that is completely flat, providing unique electronic properties. The interatomic hopping term, alpha, is known to strongly affect the electronic spectrum of the two-dimensional (2D) lattice, allowing it to continuously morph from graphenelike responses to the behavior of fermions in a dice lattice. For pristine lattice structures the energy bands are gapless, but small deviations in the atomic equivalence of the three sublattices will introduce gaps in the spectrum. It is unknown how these affect transport and electronic properties such as the energy spectrum of superlattice minibands. Here we investigate the dependency of these properties on the parameter a accounting for different symmetry-breaking terms, and we show how it affects band-gap formation. Furthermore, we find that superlattices can force band gaps to close and shift in energy. Our results demonstrate that alpha-T-3 superlattices provide a versatile material for 2D band-gap engineering purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000696091600003 Publication Date 2021-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:181544 Serial 6972  
Permanent link to this record
 

 
Author Akbali, B.; Yagmurcukardes, M.; Peeters, F.M.; Lin, H.-Y.; Lin, T.-Y.; Chen, W.-H.; Maher, S.; Chen, T.-Y.; Huang, C.-H. pdf  doi
openurl 
  Title Determining the molecular orientation on the metal nanoparticle surface through surface-enhanced Raman spectroscopy and density functional theory simulations Type A1 Journal article
  Year 2021 Publication Journal Of Physical Chemistry C Abbreviated Journal J Phys Chem C  
  Volume 125 Issue 29 Pages 16289-16295  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We report here the efficacy of surface-enhanced Raman spectroscopy (SERS) measurements as a probe for molecular orientation. 4-Aminobenzoic acid (PABA) on a surface consisting of silver (Ag) nanoparticles (NPs) is investigated. We find that the orientation of the PABA molecule on the SERS substrate is estimated based on the relative change in the magnitude of the C-H stretching bands on the SERS substrate, and it is found that the molecule assumes a horizontal orientation on the Ag-NP surface. The strong molecule-metal interaction is determined by an abnormal enhanced SERS band appearing at 980 cm(-1), and the peak is assigned to an out-of-plane amine vibrational mode, which is supported by our ab initio calculations. DFT-based Raman activity calculations corroborate the SERS results, revealing that (i) the PABA molecule attaches to the surface of Ag-NPs with its alpha dimers rather than single-molecule binding and (ii) the molecule preserves its alpha dimers in an aqueous environment. Our results demonstrate that SERS can be used to gain deeper insights into the molecular orientation on metal nanoparticle surfaces.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000680445800055 Publication Date 2021-07-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-7447; 1932-7455 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.536 Times cited (down) 9 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.536  
  Call Number UA @ admin @ c:irua:180455 Serial 6978  
Permanent link to this record
 

 
Author Conti, S.; Saberi-Pouya, S.; Perali, A.; Virgilio, M.; Peeters, F.M.; Hamilton, A.R.; Scappucci, G.; Neilson, D. url  doi
openurl 
  Title Electron-hole superfluidity in strained Si/Ge type II heterojunctions Type A1 Journal article
  Year 2021 Publication npj Quantum Materials Abbreviated Journal  
  Volume 6 Issue 1 Pages 41  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Excitons are promising candidates for generating superfluidity and Bose-Einstein condensation (BEC) in solid-state devices, but an enabling material platform with in-built band structure advantages and scaling compatibility with industrial semiconductor technology is lacking. Here we predict that spatially indirect excitons in a lattice-matched strained Si/Ge bilayer embedded into a germanium-rich SiGe crystal would lead to observable mass-imbalanced electron-hole superfluidity and BEC. Holes would be confined in a compressively strained Ge quantum well and electrons in a lattice-matched tensile strained Si quantum well. We envision a device architecture that does not require an insulating barrier at the Si/Ge interface, since this interface offers a type II band alignment. Thus the electrons and holes can be kept very close but strictly separate, strengthening the electron-hole pairing attraction while preventing fast electron-hole recombination. The band alignment also allows a one-step procedure for making independent contacts to the electron and hole layers, overcoming a significant obstacle to device fabrication. We predict superfluidity at experimentally accessible temperatures of a few Kelvin and carrier densities up to similar to 6 x 10(10) cm(-2), while the large imbalance of the electron and hole effective masses can lead to exotic superfluid phases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000642904200001 Publication Date 2021-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited (down) 9 Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:178226 Serial 6984  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  url
doi  openurl
  Title Arresting aqueous swelling of layered graphene-oxide membranes with H3O+ and OH- ions Type A1 Journal article
  Year 2022 Publication ACS applied materials and interfaces Abbreviated Journal Acs Appl Mater Inter  
  Volume 14 Issue 30 Pages 34946-34954  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Over the past decade, graphene oxide (GO) has emerged as a promising membrane material with superior separation performance and intriguing mechanical/chemical stability. However, its practical implementation remains very challenging primarily because of its undesirable swelling in an aqueous environment. Here, we demonstrated that dissociation of water molecules into H3O+ and OH- ions inside the interlayer gallery of a layered GO membrane can strongly affect its stability and performance. We reveal that H3O+ and OH- ions form clusters inside the GO laminates that impede the permeance of water and salt ions through the membrane. Dynamics of those clusters is sensitive to an external ac electric field, which can be used to tailor the membrane performance. The presence of H3O+ and OH- ions also leads to increased stability of the hydrogen bond (H-bond) network among the water molecules and the GO layers, which further reduces water permeance through the membrane, while crucially imparting stability to the layered GO membrane against undesirable swelling. KEYWORDS: layered graphene-oxide membrane, aqueous stability, H3O+ and OH- ions, external electric field, molecular dynamics  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000835946500001 Publication Date 2022-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-8244 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.5 Times cited (down) 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 9.5  
  Call Number UA @ admin @ c:irua:189467 Serial 7127  
Permanent link to this record
 

 
Author Jiang, J.; Milošević, M.V.; Wang, Y.-L.; Xiao, Z.-L.; Peeters, F.M.; Chen, Q.-H. url  doi
openurl 
  Title Field-free superconducting diode in a magnetically nanostructured superconductor Type A1 Journal article
  Year 2022 Publication Physical review applied Abbreviated Journal Phys Rev Appl  
  Volume 18 Issue 3 Pages 034064-34069  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong superconducting diode effect (SDE) is revealed in a thin superconducting film periodically nanostructured with magnetic dots. The SDE is caused by the current-activated dissipation mitigated by vortex-antivortex pairs (VAPs), which periodically nucleate under the dots, move and annihilate in the superconductor-eventually driving the system to the high-resistive state. Inversing the polarity of the applied current destimulates the nucleation of VAPs, the system remains superconducting up to far larger currents, leading to the pronounced diodic response. Our dissipative Ginzburg-Landau simulations detail the involved processes, and provide reliable geometric and parametric ranges for the experimental realiza-tion of such a nonvolatile superconducting diode, which operates in the absence of any applied magnetic field while being fluxonic by design.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000870234200001 Publication Date 2022-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.6 Times cited (down) 9 Open Access OpenAccess  
  Notes Approved Most recent IF: 4.6  
  Call Number UA @ admin @ c:irua:191539 Serial 7307  
Permanent link to this record
 

 
Author Ramos, I.R.O.; Ferreira, W.P.; Munarin, F.F.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Bilayer crystals of charged magnetic dipoles : structure and phonon spectrum Type A1 Journal article
  Year 2012 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E  
  Volume 85 Issue 5:1 Pages 051404-051404,12  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We study the structure and phonon spectrum of a two-dimensional bilayer system of classical charged dipoles oriented perpendicular to the plane of the layers for equal density in each layer. This system can be tuned through six different crystalline phases by changing the interlayer separation or the charge and/or dipole moment of the particle. The presence of the charge on the dipole particles is responsible for the nucleation of five staggered phases and a disordered phase which are not found in the magnetic dipole bilayer system. These extra phases are a consequence of the competition between the repulsive Coulomb and the attractive dipole interlayer interaction. We present the phase diagram and determine the order of the phase transitions. The phonon spectrum of the system was calculated within the harmonic approximation, and a nonmonotonic behavior of the phonon spectrum is found as a function of the effective strength of the interparticle interaction. The stability of the different phases is determined.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication Woodbury (NY) Editor  
  Language Wos 000304403400002 Publication Date 2012-05-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited (down) 8 Open Access  
  Notes ; This work was supported by the Brazilian agencies CNPq, CAPES, and FUNCAP (PRONEX grant), the Flemish Science Foundation (FWO-Vl), the bilateral program between Flanders and Brazil, and the CNPq-FWO collaborating project. The authors are grateful to Prof. G. Goldoni for some technical clarifications concerning Ref. [18]. ; Approved Most recent IF: 2.366; 2012 IF: 2.313  
  Call Number UA @ lucian @ c:irua:98940 Serial 233  
Permanent link to this record
 

 
Author Anisimovas, E.; Matulis, A.; Peeters, F.M. url  doi
openurl 
  Title Currents in a many-particle parabolic quantum dot under a strong magnetic field Type A1 Journal article
  Year 2004 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 70 Issue Pages 195334,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000225477800112 Publication Date 2004-11-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2004 IF: 3.075  
  Call Number UA @ lucian @ c:irua:69397 Serial 596  
Permanent link to this record
 

 
Author Peeters, F.M.; Vasilopoulos, P.; Shi, J. pdf  doi
openurl 
  Title Density of states and Fermi level of a periodically modulated two-dimensional electron gas Type A1 Journal article
  Year 2002 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 14 Issue 38 Pages 8803-8816  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Explicit analytic expressions are obtained for the density of states D(E) and Fermi energy E-F of a two-dimensional electron gas in the presence of a weak and periodic unidirectional electric or magnetic modulation and of a uniform perpendicular magnetic field B. The Landau levels broaden into bands and their width, proportional to the modulation strength, oscillates with B and gives rise to Weiss oscillations in D(E), E-F and the transport coefficients. When both electric and magnetic modulations are present the position of the resulting oscillations depends on the ratio delta between the two modulation strengths. When the modulations are out of phase there is no shift in the position of the oscillations when delta varies and for a particular value of delta the oscillations are suppressed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000178678400008 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 2.649; 2002 IF: 1.775  
  Call Number UA @ lucian @ c:irua:104140 Serial 640  
Permanent link to this record
 

 
Author Yampolskii, S.V.; Peeters, F.M.; Baelus, B.J.; Fink, H.J. doi  openurl
  Title Effective radius of superconducting rings and hollow cylinders Type A1 Journal article
  Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 64 Issue Pages 052504  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000170267000018 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2001 IF: NA  
  Call Number UA @ lucian @ c:irua:37290 Serial 854  
Permanent link to this record
 

 
Author Nogaret, A.; Peeters, F.M. url  doi
openurl 
  Title Electrically induced spin resonance fluorescence: 1: theory Type A1 Journal article
  Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We calculate the fluorescence of electron spins confined to a plane and driven into resonance by a magnetic field gradient and a constant magnetic field applied at right angles to each other. We solve the equation of motion of two-dimensional electrons in the magnetic field gradient to derive the dispersion curve of spin oscillators, the amplitude of electron oscillations, the effective magnetic field sensed by the electron spin, and the rate at which electrons are injected from an electrode into spin oscillators. We then switch on the interaction between the spin magnetic dipole and the electromagnetic field to find the fluorescence power radiated by the individual spin oscillators. The rate of radiative decay is first derived, followed by the probability of sequential photon emission whereby a series of spontaneous decays occurs at random times separated by intervals during which the spin performs Rabi oscillations. The quantum correlations between random radiative decays manifest as bursts of emission at regular intervals along the wire. We integrate all multiphoton processes to obtain an exact analytical expression for the radiated electromagnetic power. The present theory obtains all parameters of the problem including magnetodipole coupling, the particle dwell time in the magnetic field gradient, and the spin polarization of the incoming current. The output power contains a fine structure arising from the anharmonicity of electron oscillations and from nonlinear optical effects which both give satellite emission peaks at odd multiples of the fundamental frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300091 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66117 Serial 897  
Permanent link to this record
 

 
Author Nogaret, A.; Lambert, N.J.; Peeters, F.M. url  doi
openurl 
  Title Electrically induced spin resonance fluorescence : 2 : fluorescence spectra Type A1 Journal article
  Year 2007 Publication Physical Review B Abbreviated Journal Phys Rev B  
  Volume 76 Issue 7 Pages  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We model the fluorescence spectra of planar spin oscillators to find conditions that maximize spin resonance fluorescence. Spin oscillators perform Rabi oscillations under the effect of a periodic effective magnetic field caused by the winding motion of an electron in a gradient of magnetic field. We show that, despite the weak coupling of the spin magnetic dipole to the vacuum, spin oscillators excited by a direct current output a few nanowatts of microwave power, which is comparable to the best microwave sources. The large quantum efficiency relies on the combination of two effects. On the one hand, the spontaneous emission rate is enhanced by the synchronization of spin oscillators, which interact through the microwave field that they emit. On the other hand, the huge Rabi frequencies experienced by spin oscillators promote spins into upper levels of Zeeman transitions, from which a radiative cascade is triggered. We demonstrate different regimes of fluorescence which correspond to different values of the Rabi period relative to the spontaneous decay time and to the oscillator dwell time in the gradient of magnetic field. We investigate the device parameters which make these regimes experimentally accessible and find conditions that optimize microwave output. We find that microwave emission is centered around the cutoff frequency of spin oscillators. This has the advantage that the peak emission frequency may be tuned from zero continuously up to a few hundred gigahertz using an electrostatic gate. Quite remarkably for a spintronics effect, electrically induced spin resonance fluorescence does not require the injection of a spin polarized current. In fact, we show that microwave spectra are mostly independent of the incoming spin polarization except for magnetic waveguides which are shorter than a certain critical length, which we will specify.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000249155300092 Publication Date 2007-08-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2007 IF: 3.172  
  Call Number UA @ lucian @ c:irua:66118 Serial 898  
Permanent link to this record
 

 
Author Tadić, M.; Peeters, F.M. url  doi
openurl 
  Title Excitonic properties of strained triple quantum-ring molecules Type A1 Journal article
  Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B  
  Volume 79 Issue 15 Pages 153305,1-153305,4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The tunneling coupling in three vertically stacked (In,Ga)As/GaAs quantum rings is investigated. With increasing inter-ring separation (d), we find that the nonuniform strain results into a crossing of the lowest-energy electron states. Strain is also responsible for an increase in the ground electron energy above the level in the single quantum ring. The ground hole energy level exhibits decrease when d decreases, which is typical for antibonding states in an unstrained structure. These effects lead to a local maximum in the dependence of the ground-state exciton energy on d. Our theoretical results compare well with recent photoluminescence measurements but deviate considerably from the calculations for flat bands in quantum-ring molecules. We conclude that the nonuniform character of the strain distribution gives rise to a peculiar exciton hybridization in self-assembled quantum-ring molecules.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000265944200018 Publication Date 2009-04-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2009 IF: 3.475  
  Call Number UA @ lucian @ c:irua:77024 Serial 1123  
Permanent link to this record
 

 
Author Ghosh, S.; Tongay, S.; Hebard, A.F.; Sahin, H.; Peeters, F.M. doi  openurl
  Title Ferromagnetism in stacked bilayers of Pd/C60 Type A1 Journal article
  Year 2014 Publication Journal of magnetism and magnetic materials Abbreviated Journal J Magn Magn Mater  
  Volume 349 Issue Pages 128-134  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We provide experimental evidence for the existence of ferromagnetism in bilayers of Pd/C-60 which is supported by theoretical calculations based on density functional theory (DFT). The observed ferromagnetism is surprising as C-60 and Pd films are both non-ferromagnetic in the non-interacting limit. Magnetization (M) versus applied field (H) data acquired at different temperatures (T) show magnetic hysteresis with typical coercive fields (H-c) on the order of 50 Oe. From the temperature-dependent magnetization M(T) we extract a Curie temperature (T-c >= 550 K) using Bloch-like power law extrapolations to high temperatures. Using DFT calculations we investigated all plausible scenarios for the interaction between the C-60 molecules and the Pd slabs, Pd single atoms and Pd clusters. DFT shows that while the C-60 molecules are nonmagnetic, Pd films have a degenerate ground state that subject to a weak perturbation, can become ferromagnetic. Calculations also show that the interaction of C-60 molecules with excess Pd atoms and with sharp edges of a Pd slab is the most likely configuration that render the system ferromagnetic Interestingly, the calculated charge transfer (0.016 e per surface Pd atom, 0.064 e per Pd for intimate contact region) between C-60 and Pd does not appear to play an important role. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000326037600022 Publication Date 2013-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-8853; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.63 Times cited (down) 8 Open Access  
  Notes ; We thank Prof. Amlan Biswas and Daniel Grant for Atomic Force Microscopy measurements. This work is supported by the National Science Foundation (NSF) under Contract Number 1005301 (AFH). The authors also thank S. Ciraci for fruitful discussions. All the computational resources have been provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H. Sahin is also supported by a FWO Pegasus Marie Curie Long Fellowship during the study. ; Approved Most recent IF: 2.63; 2014 IF: 1.970  
  Call Number UA @ lucian @ c:irua:112214 Serial 1184  
Permanent link to this record
 

 
Author Li, X.Q.; Peeters, F.M.; Geim, A.K. openurl 
  Title The Hall effect of an inhomogeneous magnetic field in mesoscopic structures Type A1 Journal article
  Year 1997 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 9 Issue Pages 8065-8073  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1997XY64300012 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 2.649; 1997 IF: 1.479  
  Call Number UA @ lucian @ c:irua:19290 Serial 1401  
Permanent link to this record
 

 
Author Földi, P.; Szaszkó-Bogár, V.; Peeters, F.M. url  doi
openurl 
  Title High-temperature conductance of a two-dimensional superlattice controlled by spin-orbit interaction Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 11 Pages 115313-115313,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Rashba-type spin-orbit interaction (SOI) controlled band structure of a two-dimensional superlattice allows for the modulation of the conductance of finite size devices by changing the strength of the SOI. We consider rectangular arrays and find that the temperature dependence of the conductance disappears for high temperatures, but the strength of the SOI still affects the conductance at these temperatures. The modulation effect can be seen even in the presence of strong dephasing, which can be important for practical applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000288242800007 Publication Date 2011-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes ; We thank M. G. Benedict and F. Bartha for useful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the Hungarian Scientific Research Fund (OTKA) under Contracts No. T81364 and M045596 and by the “TAMOP-4.2.1/B-09/1/KONV-2010-0005 project: Creating the Center of Excellence at the University of Szeged” supported by the EU and the European Regional Development Fund. P.F. was supported by a J. Bolyai grant of the Hungarian Academy of Sciences. ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88778 Serial 1466  
Permanent link to this record
 

 
Author Nga, T.T.N.; Peeters, F.M. url  doi
openurl 
  Title Influence of electron-electron interaction on the cyclotron resonance spectrum of magnetic quantum dots containing few electrons Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 83 Issue 7 Pages 075419-075419,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The configuration interaction method is used to obtain the magneto-optical absorption spectrum of a few-electron (Ne=1,2,,5) quantum dot containing a single magnetic ion. We find that the IR spectrum (the position, the number, and the oscillator strength of the cyclotron resonance peaks) depends on the strength of the Coulomb interaction, the number of electrons, and the position of the magnetic ion. We find that the Kohn theorem is no longer valid as a consequence of the electron-spin-magnetic-ion-spin-exchange interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000287584600011 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes ; This work was supported by FWO-Vl (Flemish Science Foundation), the Brazilian science foundation CNPq, and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2011 IF: 3.691  
  Call Number UA @ lucian @ c:irua:88912 Serial 1620  
Permanent link to this record
 

 
Author Leao, S.A.; Hipolito, O.; Peeters, F.M. doi  openurl
  Title Inter and intrasubband transitions via lo phonons in quantum wires Type A1 Journal article
  Year 1993 Publication Superlattices and microstructures Abbreviated Journal Superlattice Microst  
  Volume 13 Issue 1 Pages 37-40  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the effects of the finite confining potential V0 on the absorption and emission scattering rates of electrons interacting with LO phonons for a cylindrical GaAs quantum wire. The emission rates are qualitatively similar to those of the 2D case. The absorption rates on the other hand exhibit two different regimes: 1) for a wire radius smaller than a certain value (80 Å in the case where V0 = 190 meV) the behavior is similar to the 2D and 3D analogues, but 2) for larger radius the absorption rates initially increase with increasing energy, reach a maximum value and then decrease monotonicaly. A complete study is made as a function of wire radius, and electron energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos A1993KK13700007 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-6036; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.097 Times cited (down) 8 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:103011 Serial 1680  
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Studart, N.; Wang, Y.J.; McCombe, B.D. doi  openurl
  Title Interface effects on magnetopolarons in GaAs/AlxGa1-xAs quantum wells at high magnetic fields Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 58 Issue Pages 7822-7829  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000076130500055 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24161 Serial 1693  
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M. pdf  doi
openurl 
  Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
  Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett  
  Volume 102 Issue 2 Pages 27003-27006  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris Editor  
  Language Wos 000319617700019 Publication Date 2013-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.957 Times cited (down) 8 Open Access  
  Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269  
  Call Number UA @ lucian @ c:irua:109859 Serial 2257  
Permanent link to this record
 

 
Author da Costa, W.B.; Peeters, F.M. doi  openurl
  Title Phase diagram for large two dimensional bipolarons in a magnetic field Type A1 Journal article
  Year 1998 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 57 Issue Pages 10569-10575  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000073464500063 Publication Date 2002-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 1998 IF: NA  
  Call Number UA @ lucian @ c:irua:24168 Serial 2581  
Permanent link to this record
 

 
Author Shi, J.M.; Peeters, F.M.; Devreese, J.T. doi  openurl
  Title Polaron correction to the D-center in a quantum well Type A1 Journal article
  Year 1993 Publication Physica: B : condensed matter Abbreviated Journal Physica B  
  Volume 184 Issue Pages 417-421  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos A1993KU62100082 Publication Date 2002-10-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.319 Times cited (down) 8 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:5740 Serial 2662  
Permanent link to this record
 

 
Author Farias, G.A.; Peeters, F.M. openurl 
  Title Polaron impurity states on a liquid helium film Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 55 Issue Pages 3763-3768  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos A1997WJ87500071 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 0163-1829 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 1997 IF: NA  
  Call Number UA @ lucian @ c:irua:19288 Serial 2669  
Permanent link to this record
 

 
Author Chang, K.; Xia, J.B.; Wu, H.B.; Feng, S.L.; Peeters, F.M. doi  openurl
  Title Quantum-confined magneto-Stark effect in diluted magnetic semiconductor coupled quantum wells Type A1 Journal article
  Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 80 Issue 10 Pages 1788-1790  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000174181800036 Publication Date 2002-07-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.411; 2002 IF: 4.207  
  Call Number UA @ lucian @ c:irua:94932 Serial 2775  
Permanent link to this record
 

 
Author Vasilopoulos; Peeters, F.M. doi  openurl
  Title Quantum magnetotransport of a 2-dimensional electron-gas subject to periodic electric or magnetic modulations Type A1 Journal article
  Year 1991 Publication Physica scripta : supplements T2 – 11TH GENERAL CONF OF THE CONDENSED MATTER DIVISION OF THE EUROPEAN, PHYSICAL SOC, APR 08-11, 1991, EXETER, ENGLAND Abbreviated Journal Phys Scripta  
  Volume T39 Issue Pages 177-181  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Electrical transport properties of the two-dimensional electron gas are studied in the presence of a perpendicular magnetic field B = Bz and of a weak one-dimensional electric (V0 cos (Kx)) or magnetic (B0 = B0 cos (Kx)z) modulation where B0 << B, K = 2-pi/a, and a is the modulation period. In either case the discrete Landau levels broaden into bands whose width: (1) is proportional to the modulation strength, (2) it oscillates with B, and (3) it gives rise to magnetoresistance oscillations, at low B, that are different in period and temperature dependence from the Shubnikov-de Haas (SdH) ones, at higher B. For equal energy modulation strengths, V0 = heB0/m*, the magnetic bandwidth at the Fermi energy is about one order of magnitude larger than the electric one. The same holds for the oscillation amplitude of the electrical magnetoresistivity tensor. For two-dimensional modulations the energy spectrum has the same structure but with different scales. For weak magnetic fields and equal modulation strengths the gaps in the spectrum can be much larger in the magnetic case thus making easier the observability of the spectrum's fine structure.  
  Address  
  Corporate Author Thesis  
  Publisher Royal swedish acad sciences Place of Publication Stockholm Editor  
  Language Wos A1991GV57300028 Publication Date 2007-01-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949;1402-4896; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.126 Times cited (down) 8 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:95508 Serial 2778  
Permanent link to this record
 

 
Author Vasilopoulos, P.; Peeters, F.M. openurl 
  Title Quantum magnetotransport of a two-dimensional electron gas subject to periodic electric and magnetic modulations Type A1 Journal article
  Year 1991 Publication Physica scripta Abbreviated Journal Phys Scripta  
  Volume T39 Issue Pages 177-181  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Stockholm Editor  
  Language Wos A1991GV57300028 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8949 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.126 Times cited (down) 8 Open Access  
  Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #  
  Call Number UA @ lucian @ c:irua:968 Serial 2779  
Permanent link to this record
 

 
Author Krstajic, P.; Peeters, F.M. url  doi
openurl 
  Title Spin-dependent tunneling in diluted magnetic semiconductor trilayer structures Type A1 Journal article
  Year 2005 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 72 Issue 12 Pages 125350-125356  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Tunneling of holes through a trilayer structure made of two diluted magnetic semiconductors, (Ga,Mn)As, separated by a thin layer of nonmagnetic AlAs is investigated. The problem is treated within the 6x6 Luttinger-Kohn model for valence bands with the split-off band included. The influence of the spin-orbit coupling is pronounced as the spin-splitting Delta(ex) is comparable with the split-off Delta(SO) splitting. It is assumed that direct tunneling is the dominant mechanism due to the high quality of the tunnel junctions. Our theoretical results predict the correct order of magnitude for the tunneling magnetoresistance ratio, but various other effects, such as scattering on impurities and defects, should be included in order to realize a quantitative agreement with experiment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000232229400116 Publication Date 2005-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 3.836; 2005 IF: 3.185  
  Call Number UA @ lucian @ c:irua:104068 Serial 3086  
Permanent link to this record
 

 
Author Ferreira, W.P.; Partoens, B.; Peeters, F.M.; Farias, G.A. url  doi
openurl 
  Title Structural phase transitions and unusual melting behavior in a classical two-dimensional Coulomb bound cluster Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 021501,1-4  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000228245700023 Publication Date 2005-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited (down) 8 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62445 Serial 3251  
Permanent link to this record
 

 
Author Vansweevelt, R.; Mortet, V.; D' Haen, J.; Ruttens, bart; van Haesendonck, C.; Partoens, B.; Peeters, F.M.; Wagner, P. doi  openurl
  Title Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes Type A1 Journal article
  Year 2011 Publication Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A  
  Volume 208 Issue 6 Pages 1252-1258  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In this paper, we report on the electronic transport properties of mesoscopic, ultrathin graphite flakes with a thickness corresponding to a stack of 150 graphene layers. The graphite flakes show an unexpectedly strong positive magnetoresistance (PMR) already at room temperature, which scales in good approximation with the square of the magnetic field. Furthermore, we show that the resistivity is unaffected by magnetic fields oriented in plane with the graphene layers. Hall effect measurements indicate that the charge carriers are p-type and their concentration increases with increasing temperature while the mobility is decreasing. The Hall voltage is non-linear in higher magnetic fields. Possible origins of the observed effects are discussed. Ball and stick model of the two topmost carbon layers of the hexagonal graphite structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000292945800008 Publication Date 2011-02-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.775 Times cited (down) 8 Open Access  
  Notes ; The authors gratefully acknowledge the support by FWO – Research Foundation Flanders (project G.0159.07 “Structural and electronic properties of biologically modified, graphene-based layers”), by the Federal Belgian Interuniversity Attraction Poles Programme BELSPO (project TAP VI P6/42 “Quantum effects in clusters and nanowires”) and by the Methusalem network “NANO – Antwerp-Hasselt,” funded by the Flemish Community. Technical assistance by Stoffel D. Janssens (magnet calibration and software development), Dr. Hong Yin (AFM-based thickness studies), Dr. Ronald Thoelen (data analysis), and Prof. Hans-Gerd Boyen (XPS spectroscopy) is greatly appreciated. ; Approved Most recent IF: 1.775; 2011 IF: 1.463  
  Call Number UA @ lucian @ c:irua:91941 Serial 3343  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: