toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Dong, H.M.; Tao, Z.H.; Li, L.L.; Huang, F.; Xu, W.; Peeters, F.M.
  Title Substrate dependent terahertz response of monolayer WS₂ Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 116 Issue 20 Pages 1-4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We investigate experimentally the terahertz (THz) optoelectronic properties of monolayer (ML) tungsten disulfide (WS2) placed on different substrates using THz time-domain spectroscopy (TDS). We find that the THz optical response of n-type ML WS2 depends sensitively on the choice of the substrate. This dependence is found to be a consequence of substrate induced charge transfer, extra scattering centers, and electronic localization. Through fitting the experimental results with the Drude-Smith formula, we can determine the key sample parameters (e.g., the electronic relaxation time, electron density, and electronic localization factor) of ML WS2 on different substrates. The temperature dependence of these parameters is examined. Our results show that the THz TDS technique is an efficient non-contact method that can be utilized to characterize and investigate the optoelectronic properties of nano-devices based on ML WS2.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000536282300001 Publication Date 2020-05-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4 Times cited (up) 17 Open Access
  Notes ; This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2018GF09) and by the National Natural Science foundation of China (Nos. U1930116 and 11574319). ; Approved Most recent IF: 4; 2020 IF: 3.411
  Call Number UA @ admin @ c:irua:170255 Serial 6620
Permanent link to this record
 

 
Author Wahab, O.J.; Daviddi, E.; Xin, B.; Sun, P.Z.; Griffin, E.; Colburn, A.W.; Barry, D.; Yagmurcukardes, M.; Peeters, F.M.; Geim, A.K.; Lozada-Hidalgo, M.; Unwin, P.R.
  Title Proton transport through nanoscale corrugations in two-dimensional crystals Type A1 Journal article
  Year 2023 Publication Nature Abbreviated Journal
  Volume 620 Issue 7975 Pages 1-17
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract Defect-free graphene is impermeable to all atoms(1-5) and ions(6,7) under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom(2,5). Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium(6,7). By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms(8,9). There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability(10-14) or even on whether it requires defects in graphene's crystal lattice(6,8,15-17). Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials. A study using high-resolution scanning electrochemical cell microscopy attributes proton permeation through defect-free graphene and hexagonal boron nitride to transport across areas of the structure that are under strain.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001153630400007 Publication Date 2023-08-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0028-0836; 1476-4687 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 64.8 Times cited (up) 17 Open Access
  Notes Approved Most recent IF: 64.8; 2023 IF: 40.137
  Call Number UA @ admin @ c:irua:203827 Serial 9078
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Giantomassi, M.; Rangel, T.; Goossens, E.; Rignanese, G.-M.; Gonze, X.; Peeters, F.M.
  Title Convergence of quasiparticle band structures of Si and Ge nanowires in the GW approximation and the validity of scissor shifts Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 83 Issue 4 Pages 045306-045306,6
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Starting from fully converged density-functional theory calculations, the quasiparticle corrections are calculated for different sized Si and Ge nanowires using the GW approximation. The effectiveness of recently developed techniques in speeding up the convergence of the quasiparticle calculations is demonstrated. The complete quasiparticle band structures are also obtained using an interpolation technique based on maximallylocalized Wannier functions. From the quasiparticle results, we assess the correctness of the commonly applied scissor-shift correction. Dispersion changes are observed, which are also reflected in changes in the effective band masses calculated taking into account quasiparticle corrections.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000286771400004 Publication Date 2011-01-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; We are grateful to Yann Pouillon for valuable technical support with the build system of ABINIT, related to the WANNIER90 library. This work was supported by the Flemish Science Foundation (FWO-Vl) and by the Interuniversity Attraction Poles Program (P6/42)-Belgian State-Belgian Science Policy. X. G. and G.-M. R. acknowledge funding from the EU's 7th Framework Programme through the ETSF I3 e-Infrastructure project (Grant No. 211956), the Communaute francaise de Belgique through the Action de Recherche Concertee 07/12-003 “Nanosystemes hybrides metal-organiques,” and the Wallon Region Project No. 816849 “ European Theoretical Spectroscopy Facility” (WALL ETSF). M. G. acknowledges funding from the FRFC Project No. 2.4.589.09.F. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:86905 Serial 510
Permanent link to this record
 

 
Author da Costa, W.B.; Peeters, F.M.
  Title Diagonalization of the generalized Feynman bipolaron model in a magnetic field Type A1 Journal article
  Year 1995 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 7 Issue Pages 1293-1304
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1995QJ24700011 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.346 Times cited (up) 18 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:12199 Serial 687
Permanent link to this record
 

 
Author Neek-Amal, M.; Peeters, F.M.
  Title Effect of grain boundary on the buckling of graphene nanoribbons Type A1 Journal article
  Year 2012 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 100 Issue 10 Pages 101905-101905,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The buckling of graphene nano-ribbons containing a grain boundary is studied using atomistic simulations where free and supported boundary conditions are invoked. We consider the buckling transition of two kinds of grain boundaries with special symmetry. When graphene contains a large angle grain boundary with theta = 21.8 degrees, the buckling strains are larger than those of perfect graphene when the ribbons with free (supported) boundary condition are subjected to compressive tension parallel (perpendicular) to the grain boundary. This is opposite for the results of theta = 32.2 degrees. The shape of the deformations of the buckled graphene nanoribbons depends on the boundary conditions, the presence of the particular used grain boundaries, and the direction of applied in-plane compressive tension. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3692573]
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000301655500021 Publication Date 2012-03-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.411; 2012 IF: 3.794
  Call Number UA @ lucian @ c:irua:97794 Serial 809
Permanent link to this record
 

 
Author Zhang, S.H.; Xu, W.; Peeters, F.M.; Badalyan, S.M.
  Title Electron energy and temperature relaxation in graphene on a piezoelectric substrate Type A1 Journal article
  Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 89 Issue 19 Pages 195409
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We study the energy and temperature relaxation of electrons in graphene on a piezoelectric substrate. Scattering from the combined potential of extrinsic piezoelectric surface acoustical (PA) phonons of the substrate and intrinsic deformation acoustical phonons of graphene is considered for a (non) degenerate gas of Dirac fermions. It is shown that in the regime of low energies or temperatures the PA phonons dominate the relaxation and change qualitatively its character. This prediction is relevant for quantum metrology and electronic applications using graphene devices and suggests an experimental setup for probing electron-phonon coupling in graphene.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000336000400008 Publication Date 2014-05-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
  Call Number UA @ lucian @ c:irua:117675 Serial 928
Permanent link to this record
 

 
Author Milovanović, S.P.; Masir, M.R.; Peeters, F.M.
  Title Interplay between snake and quantum edge states in a graphene Hall bar with a pn-junction Type A1 Journal article
  Year 2014 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
  Volume 105 Issue 12 Pages 123507
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The magneto- and Hall resistance of a locally gated cross shaped graphene Hall bar is calculated. The edge of the top gate is placed diagonally across the center of the Hall cross. Four-probe resistance is calculated using the Landauer-Büttiker formalism, while the transmission coefficients are obtained using the non-equilibrium Green's function approach. The interplay between transport due to edge channels and snake states is investigated. When two edge channels are occupied, we predict oscillations in the Hall and the bend resistance as function of the magnetic field, which are a consequence of quantum interference between the occupied snake states.
  Address
  Corporate Author Thesis
  Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
  Language Wos 000343004400090 Publication Date 2014-09-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951;1077-3118; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.411 Times cited (up) 18 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 3.411; 2014 IF: 3.302
  Call Number UA @ lucian @ c:irua:121119 Serial 1704
Permanent link to this record
 

 
Author Li, L.L.; Xu, W.; Peeters, F.M.
  Title Intrinsic optical anisotropy of [001]-grown short-period InAs/GaSb superlattices Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 82 Issue 23 Pages 235422-235422,10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We theoretically investigate the intrinsic optical anisotropy or polarization induced by the microscopic interface asymmetry (MIA) in no-common-atom (NCA) InAs/GaSb superlattices (SLs) grown along the [001] direction. The eight-band K⋅P model is used to calculate the electronic band structures and incorporates the MIA effect. A Boltzmann equation approach is employed to calculate the optical properties. We found that in NCA InAs/GaSb SLs, the MIA effect causes a large in-plane optical anisotropy for linearly polarized light and the largest anisotropy occurs for light polarized along the [110] and [11̅ 0] directions. The relative difference between the optical-absorption coefficient for [110]-polarized light and that for [11̅ 0]-polarized light is found to be larger than 50%. The dependence of the in-plane optical anisotropy on temperature, photoexcited carrier density, and layer width is examined in detail. This study is important for optical devices which require the polarization control and selectivity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000286768800007 Publication Date 2010-12-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was supported partly by the Flemish Science Foundation (FWO-VL), the Belgium Science Policy (IAP), the NSF of China (Grants No. 10664006, No. 10504036, and No. 90503005), Special Funds of 973 Project of China (Grant No. 2005CB623603), and Knowledge Innovation Program of the Chinese Academy of Sciences. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:88909 Serial 1717
Permanent link to this record
 

 
Author Xu, W.; Peeters, F.M.; Devreese, J.T.
  Title Normal and hot electro-phonon resonance effect in a quasi-two-dimensional semiconductor system Type A1 Journal article
  Year 1993 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 5 Issue 15 Pages 2307-2320
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
  Abstract The electro-phonon resonance effect is a consequence of a resonant interaction between two electric subbands mediated by an optical phonon. It occurs in a quasi-two-dimensional electron system each time the energy difference between two electric subbands equals the energy of a Lo phonon. We study the influence of this effect on the electron mobility by using the momentum balance equation. The temperature and electron density dependences of the resonances are studied in the linear and non-linear response regimes.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1993KX70100004 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.346 Times cited (up) 18 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:102984 Serial 2367
Permanent link to this record
 

 
Author Piacente, G.; Peeters, F.M.; Betouras, J.J.
  Title Normal modes of a quasi-one-dimensional multichain complex plasma Type A1 Journal article
  Year 2004 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E
  Volume 70 Issue 3Part 2 Pages
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We studied equally charged particles, suspended in a complex plasma, which move in a plane and interact with a screened Coulomb potential (Yukawa type) and with an additional external confining parabolic potential in one direction, which makes the system quasi-one-dimensional (Q1D). The normal modes of the system are studied in the presence of dissipation. We also investigated how a perpendicular magnetic field couples the phonon modes with each other. Two different ways of exciting the normal modes are discussed: (1) a uniform excitation of the Q1D lattice, and (2) a local forced excitation of the system in which one particle is driven by, e.g., a laser. Our results are in very good agreement with recent experimental findings on a finite single chain system [Liu , Phys. Rev. Lett. 91, 255003 (2003)]. Predictions are made for the normal modes of multichain structures in the presence of damping.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000224302300081 Publication Date 2004-09-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (up) 18 Open Access
  Notes Approved Most recent IF: 2.366; 2004 IF: NA
  Call Number UA @ lucian @ c:irua:69417 Serial 2369
Permanent link to this record
 

 
Author Gonzalez, A.; Partoens, B.; Peeters, F.M.
  Title Padé approximants for the groundstate energy of closed-shell quantum dots Type A1 Journal article
  Year 1997 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 56 Issue Pages 15740-15743
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000071251000036 Publication Date 2002-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes Approved Most recent IF: 3.836; 1997 IF: NA
  Call Number UA @ lucian @ c:irua:19270 Serial 2550
Permanent link to this record
 

 
Author Arsoski, V.V.; Tadić, M.Z.; Peeters, F.M.
  Title Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots Type A1 Journal article
  Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 87 Issue 8 Pages 085314-14
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments. DOI: 10.1103/PhysRevB.87.085314
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000315278000003 Publication Date 2013-02-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was supported by the EU NoE: SANDiE, the Ministry of Education, Science, and Technological Development of Serbia, and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
  Call Number UA @ lucian @ c:irua:107656 Serial 3165
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Cabral, L.R.E.; Peeters, F.M.
  Title Surface barrier for flux entry and exit in mesoscopic superconducting systems Type A1 Journal article
  Year 2005 Publication Journal of mathematical physics Abbreviated Journal J Math Phys
  Volume 46 Issue 9 Pages 095105
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The energy barrier which has to be overcome for a single vortex to enter or exit the sample is studied for thin superconducting disks, rings, and squares using the nonlinear Ginzburg-Landau theory. The shape and the height of the nucleation barrier is investigated for different sample radii and thicknesses and for different values of the Ginzburg-Landau parameter kappa. It is shown that the London theory considerably overestimates (underestimates) the energy barrier for vortex expulsion (penetration). (c) 2005 American Institute of Physics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000232206700005 Publication Date 2005-09-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-2488; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.077 Times cited (up) 18 Open Access
  Notes Approved Most recent IF: 1.077; 2005 IF: 1.192
  Call Number UA @ lucian @ c:irua:103142 Serial 3393
Permanent link to this record
 

 
Author Schweigert, V.A.; Peeters, F.M.
  Title Time dependent properties of classical artificial atoms Type A1 Journal article
  Year 1998 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
  Volume 10 Issue Pages 2417-2435
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000072951000006 Publication Date 2002-08-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.649 Times cited (up) 18 Open Access
  Notes Approved Most recent IF: 2.649; 1998 IF: 1.645
  Call Number UA @ lucian @ c:irua:24175 Serial 3665
Permanent link to this record
 

 
Author Lin, N.S.; Misko, V.R.; Peeters, F.M.
  Title Unconventional vortex dynamics in mesoscopic superconducting corbino disks Type A1 Journal article
  Year 2009 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 102 Issue 19 Pages 197003,1-197003,4
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The discrete shell structure of vortex matter strongly influences the flux dynamics in mesoscopic superconducting Corbino disks. While the dynamical behavior is well understood in large and in very small disks, in the intermediate-size regime it occurs to be much more complex and unusual, due to (in)commensurability between the vortex shells. We demonstrate unconventional vortex dynamics (inversion of shell velocities with respect to the gradient driving force) and angular melting (propagating from the boundary where the shear stress is minimum, towards the center) in mesoscopic Corbino disks.
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000266207700063 Publication Date 2009-05-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited (up) 18 Open Access
  Notes Approved Most recent IF: 8.462; 2009 IF: 7.328
  Call Number UA @ lucian @ c:irua:77396 Serial 3800
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
  Title Vortices induced in a superconducting loop by asymmetric kinetic inductance and their detection in transport measurements Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 81 Issue 14 Pages 144511,1-144511,5
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using time-dependent Ginzburg-Landau theory, we study the dynamic properties of a rectangular superconducting loop, which are found to depend on the position of the current leads. For asymmetric positioning of the leads, different kinetic inductance of the two paths for injected electric current leads to different critical conditions in the two branches. System self-regulates by allowing vortex entry, as vortex currents bring equilibration between the two current flows and the conventional resistive state can be realized. We also demonstrate that individual vortex entry in the loop can be detected by measuring the voltage between normal-metal leads, for applied currents comparable in magnitude to the screening currents.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000277210200107 Publication Date 2010-04-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the ESF-NES program, and the ESF-AQDJJ network. G.R.B. acknowledges support from FWO-Vlaanderen. The authors thank S. Michotte for useful discussions. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
  Call Number UA @ lucian @ c:irua:82804 Serial 3901
Permanent link to this record
 

 
Author Torun, E.; Sahin, H.; Peeters, F.M.
  Title Optical properties of GaS-Ca(OH)2 bilayer heterostructure Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 075111
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Finding novel atomically thin heterostructures and understanding their characteristic properties are critical for developing better nanoscale optoelectronic devices. In this study, we investigate the electronic and optical properties of a GaS-Ca(OH)(2) heterostructure using first-principle calculations. The band gap of the GaS-Ca(OH)(2) heterostructure is significantly reduced when compared to those of the isolated constituent layers. Our calculations showthat the GaS-Ca(OH)(2) heterostructure is a type-II heterojunction which can be used to separate photoinduced charge carriers where electrons are localized in GaS and holes in the Ca(OH)(2) layer. This leads to spatially indirect excitons which are important for solar energy and optoelectronic applications due to their long lifetime. By solving the Bethe-Salpeter equation on top of a single shot GW calculation (G(0)W(0)), the dielectric function and optical oscillator strength of the constituent monolayers and the heterostructure are obtained. The oscillator strength of the optical transition for the GaS monolayer is an order of magnitude larger than the Ca(OH)(2) monolayer. We also found that the calculated optical spectra of different stacking types of the heterostructure show dissimilarities, although their electronic structures are rather similar. This prediction can be used to determine the stacking type of ultrathin heterostructures.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000369401000001 Publication Date 2016-02-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem Foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus long Marie Curie Fellowship. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:131614 Serial 4220
Permanent link to this record
 

 
Author Sobrino Fernandez, M.; Misko, V.R.; Peeters, F.M.
  Title Self-assembly of Janus particles into helices with tunable pitch Type A1 Journal article
  Year 2015 Publication Physical review : E : statistical, nonlinear, and soft matter physics Abbreviated Journal Phys Rev E
  Volume 92 Issue 92 Pages 042309
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Janus particles present an important class of building blocks for directional assembly. These are compartmentalized colloids with two different hemispheres. In this work we consider a three-dimensional model of Janus spheres that contain one hydrophobic and one charged hemisphere. Using molecular dynamics simulations, we study the morphology of these particles when confined in a channel-like environment. The interplay between the attractive and repulsive forces on each particle gives rise to a rich phase space where the relative orientation of each particle plays a dominant role in the formation of large-scale clusters. The interest in this system is primarily due to the fact that it could give a better understanding of the mechanisms of the formation of polar membranes. A variety of ordered membranelike morphologies is found consisting of single and multiple connected chain configurations. The helicity of these chains can be chosen by simply changing the salt concentration of the solution. Special attention is given to the formation of Bernal spirals. These helices are composed of regular tetrahedra and are known to exhibit nontrivial translational and rotational symmetry.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication Melville, N.Y. Editor
  Language Wos 000362903700004 Publication Date 2015-10-15
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1539-3755; 1550-2376 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.366 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Fund for Scientific Research Flanders (FWO) and by the “Odysseus” program of the Flemish government and FWO. ; Approved Most recent IF: 2.366; 2015 IF: 2.288
  Call Number UA @ lucian @ c:irua:129416 Serial 4241
Permanent link to this record
 

 
Author Zarenia, M.; Neilson, D.; Partoens, B.; Peeters, F.M.
  Title Wigner crystallization in transition metal dichalcogenides : a new approach to correlation energy Type A1 Journal article
  Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 95 Issue 95 Pages 115438
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract We introduce a new approach for the correlation energy of one- and two-valley two-dimensional electron gas (2DEG) systems. Our approach is based on an interpolation between two limits, a random phase approximation at high densities and a classical approach at low densities which gives excellent agreement with available Quantum Monte Carlo (QMC) calculations. The two-valley 2DEG model is introduced to describe the electron correlations in monolayer transition metal dichalcogenides (TMDs). We study the zero-temperature transition from a Fermi liquid to a quantum Wigner crystal phase in monolayer TMDs. Consistent with QMC, we find that electrons crystallize at r(s) = 31 in one-valley 2DEG. For two valleys, we predict Wigner crystallization at r(s) = 30, implying that valley degeneracy has little effect on the critical r(s), in contrast to an earlier claim.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000399141200003 Publication Date 2017-03-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; This work was partially supported by the Flanders Research Foundation (FWO) and the Methusalem program of the Flemish government. D.N. acknowledges support by the University of Camerino FAR project CESEMN. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:142428 Serial 4613
Permanent link to this record
 

 
Author Conti, S.; Perali, A.; Peeters, F.M.; Neilson, D.
  Title Multicomponent electron-hole superfluidity and the BCS-BEC crossover in double bilayer graphene Type A1 Journal article
  Year 2017 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 119 Issue 25 Pages 257002
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap Eg. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap E-g similar to 80-120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-Tc superfluidity.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000418619100017 Publication Date 2017-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited (up) 18 Open Access
  Notes ; We thank Mohammad Zarenia for useful discussions. Part of this work was supported by FWO-VI (Flemish Science Foundation) and the Methusalem program. ; Approved Most recent IF: 8.462
  Call Number UA @ lucian @ c:irua:148509 Serial 4885
Permanent link to this record
 

 
Author Wang, Y.-L.; Glatz, A.; Kimmel, G.J.; Aranson, I.S.; Thoutam, L.R.; Xiao, Z.-L.; Berdiyorov, G.R.; Peeters, F.M.; Crabtree, G.W.; Kwok, W.-K.
  Title Parallel magnetic field suppresses dissipation in superconducting nanostrips Type A1 Journal article
  Year 2017 Publication America Abbreviated Journal P Natl Acad Sci Usa
  Volume 114 Issue 48 Pages E10274-E10280
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract <script type='text/javascript'>document.write(unpmarked('The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the \u0022holy grail\u0022 of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative state with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.'));
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000416891600007 Publication Date 2017-11-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0027-8424; 1091-6490 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.661 Times cited (up) 18 Open Access
  Notes ; This work was supported by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The simulation was supported by the Scientific Discovery through Advanced Computing program funded by US DOE, Office of Science, Advanced Scientific Computing Research and Basic Energy Science, Division of Materials Science and Engineering. L.R.T. and Z.-L.X. acknowledge support through National Science Foundation Grant DMR-1407175. Use of the Center for Nanoscale Materials, an Office of Science user facility, was supported by the DOE, Office of Science, Office of Basic Energy Sciences, under Contract DE-AC02-06CH11357. ; Approved Most recent IF: 9.661
  Call Number UA @ lucian @ c:irua:147697 Serial 4889
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M.
  Title Magnetic field dependence of electronic properties of MoS2 quantum dots with different edges Type A1 Journal article
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 8 Pages 085437
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the tight-binding approach, we investigate the energy spectrum of square, triangular, and hexagonal MoS2 quantum dots (QDs) in the presence of a perpendicular magnetic field. Novel edge states emerge in MoS2 QDs, which are distributed over the whole edge which we call ring states. The ring states are robust in the presence of spin-orbit coupling (SOC). The corresponding energy levels of the ring states oscillate as a function of the perpendicular magnetic field which are related to Aharonov-Bohm oscillations. Oscillations in the magnetic field dependence of the energy levels and the peaks in the magneto-optical spectrum emerge (disappear) as the ring states are formed (collapsed). The period and the amplitude of the oscillation decrease with the size of the MoS2 QDs.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication New York, N.Y Editor
  Language Wos 000426042800009 Publication Date 2018-02-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 18 Open Access
  Notes ; Q. Chen acknowledges financial support from the (China Scholarship Council (CSC)). This work was also supported by Hunan Provincial Natural Science Foundation of China (Grant No. 2015JJ2040) and by the Scientific Research Fund of Hunan Provincial Education Department (Grant No. 15A042). Additional support from the FLAG-ERA TRANS-2D-TMD is acknowledged. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:149905UA @ admin @ c:irua:149905 Serial 4941
Permanent link to this record
 

 
Author Saberi-Pouya, S.; Conti, S.; Perali, A.; Croxall, A.F.; Hamilton, A.R.; Peeters, F.M.; Neilson, D.
  Title Experimental conditions for the observation of electron-hole superfluidity in GaAs heterostructures Type A1 Journal article
  Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
  Volume 101 Issue 14 Pages 140501-140506
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The experimental parameter ranges needed to generate superfluidity in optical and drag experiments in GaAs double quantum wells are determined using a formalism that includes self-consistent screening of the Coulomb pairing interaction in the presence of the superfluid. The very different electron and hole masses in GaAs make this a particularly interesting system for superfluidity with exotic superfluid phases predicted in the BCS-Bose-Einstein condensation crossover regime. We find that the density and temperature ranges for superfluidity cover the range for which optical experiments have observed indications of superfluidity but that existing drag experiments lie outside the superfluid range. We also show that, for samples with low mobility with no macroscopically connected superfluidity, if the superfluidity survives in randomly distributed localized pockets, standard quantum capacitance measurements could detect these pockets.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000523627600001 Publication Date 2020-04-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.7 Times cited (up) 18 Open Access
  Notes ; We thank K. Das Gupta, F. Dubin, U. Siciliani de Cumis, M. Pini, and J. Waldie for illuminating discus-sions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics (Project No. CE170100039). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
  Call Number UA @ admin @ c:irua:168561 Serial 6517
Permanent link to this record
 

 
Author Kong, X.; Li, L.; Liang, L.; Peeters, F.M.; Liu, X.-J.
  Title The magnetic, electronic, and light-induced topological properties in two-dimensional hexagonal FeX₂ (X=Cl, Br, I) monolayers Type A1 Journal article
  Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
  Volume 116 Issue 19 Pages 192404-192405
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using Floquet-Bloch theory, we propose to realize chiral topological phases in two-dimensional (2D) hexagonal FeX2 (X=Cl, Br, I) monolayers under irradiation of circularly polarized light. Such 2D FeX2 monolayers are predicted to be dynamically stable and exhibit both ferromagnetic and semiconducting properties. To capture the full topological physics of the magnetic semiconductor under periodic driving, we adopt ab initio Wannier-based tight-binding methods for the Floquet-Bloch bands, with the light-induced bandgap closings and openings being obtained as the light field strength increases. The calculations of slabs with open boundaries show the existence of chiral edge states. Interestingly, the topological transitions with branches of chiral edge states changing from zero to one and from one to two by tuning the light amplitude are obtained, showing that the topological Floquet phase of high Chern number can be induced in the present Floquet-Bloch systems. Published under license by AIP Publishing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000533500900001 Publication Date 2020-05-11
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4 Times cited (up) 18 Open Access
  Notes ; This work was supported by the Ministry of Science and Technology of China (MOST) (Grant No. 2016YFA0301604), the National Natural Science Foundation of China (NSFC) (Nos. 11574008, 11761161003, 11825401, and 11921005), the Strategic Priority Research Program of Chinese Academy of Science (Grant No. XDB28000000), the Fonds voor Wetenschappelijk Onderzoek (FWO-Vl), and the FLAG-ERA Project TRANS 2D TMD. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation-Flanders (FWO) and the Flemish Government-Department EWI-and the National Supercomputing Center in Tianjin, funded by the Collaborative Innovation Center of Quantum Matter. This research also used resources of the Compute and Data Environment for Science (CADES) at the Oak Ridge National Laboratory, which was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. X.K. and L.L. also acknowledge the work conducted at the Center for Nanophase Materials Sciences, which is a U.S. Department of Energy Office of Science User Facility. ; Approved Most recent IF: 4; 2020 IF: 3.411
  Call Number UA @ admin @ c:irua:169496 Serial 6623
Permanent link to this record
 

 
Author Berdiyorov, G.; Harrabi, K.; Maneval, J.P.; Peeters, F.M.
  Title Effect of pinning on the response of superconducting strips to an external pulsed current Type A1 Journal article
  Year 2015 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
  Volume 28 Issue 28 Pages 025004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using the anisotropic time-dependent Ginzburg-Landau theory we study the effect of ordered and disordered pinning on the time response of superconducting strips to an external current that switched on abruptly. The pinning centers result in a considerable delay of the response time of the system to such abrupt switching on of the current, whereas the output voltage is always larger when pinning is present. The resistive state in both cases are characterized either by dynamically stable phase-slip centers/lines or expanding in-time hot-spots, which are the main mechanisms for dissipation in current-carrying superconductors. We find that hot-spots are always initiated by the phase-slip state. However, the range of the applied current for the phase-slip state increases significantly when pinning is introduced. Qualitative changes are observed in the dynamics of the superconducting condensate in the presence of pinning.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Bristol Editor
  Language Wos 000351046300010 Publication Date 2014-12-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.878 Times cited (up) 19 Open Access
  Notes ; This work was supported by EU Marie Curie (Project No: 253057), the Flemish Science Foundation (FWO-Vl) and King Fahd University of Petroleum and Minerals, Saudi Arabia, under the IN131034 DSR project. ; Approved Most recent IF: 2.878; 2015 IF: 2.325
  Call Number c:irua:125491 Serial 829
Permanent link to this record
 

 
Author Zhu, J.; Badalyan, S.M.; Peeters, F.M.
  Title Electron-phonon bound states in graphene in a perpendicular magnetic field Type A1 Journal article
  Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
  Volume 109 Issue 25 Pages 256602-256605
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The spectrum of electron-phonon complexes in monolayer graphene is investigated in the presence of a perpendicular quantizing magnetic field. Despite the small electron-phonon coupling, usual perturbation theory is inapplicable for the calculation of the scattering amplitude near the threshold of optical phonon emission. Our findings, beyond perturbation theory, show that the true spectrum near the phonon-emission threshold is completely governed by new branches, corresponding to bound states of an electron and an optical phonon with a binding energy of the order of alpha omega(0), where alpha is the electron-phonon coupling and omega(0) the phonon energy. DOI: 10.1103/PhysRevLett.109.256602
  Address
  Corporate Author Thesis
  Publisher Place of Publication New York, N.Y. Editor
  Language Wos 000312841700011 Publication Date 2012-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0031-9007;1079-7114; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.462 Times cited (up) 19 Open Access
  Notes ; We acknowledge support from the Belgian Science Policy (BELSPO) and EU, the ESF EuroGRAPHENE project CONGRAN, and the Flemisch Science Foundation (FWO-Vl). ; Approved Most recent IF: 8.462; 2012 IF: 7.943
  Call Number UA @ lucian @ c:irua:105962 Serial 983
Permanent link to this record
 

 
Author Anisimovas, E.; Peeters, F.M.
  Title Excitonic trions in vertically coupled quantum dots Type A1 Journal article
  Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 68 Issue Pages 115310,1-9
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lancaster, Pa Editor
  Language Wos 000185829300062 Publication Date 2003-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 19 Open Access
  Notes Approved Most recent IF: 3.836; 2003 IF: NA
  Call Number UA @ lucian @ c:irua:69375 Serial 1124
Permanent link to this record
 

 
Author Verbist, G.; Peeters, F.M.; Devreese, J.T.
  Title Extended stability region for large bipolarons through interaction with multiple phonon branches Type A1 Journal article
  Year 1992 Publication Ferroelectrics Abbreviated Journal Ferroelectrics
  Volume 130 Issue 1-3 Pages 27-34
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
  Abstract The large (bi)polaron is investigated for the case where the electron interacts with multiple LO-phonon branches. Explicit expressions for the groundstate energy and the effective mass are obtained within the Feynman polaron model approximation and they are applied to the material SrTiO3. The results of an effective LO-phonon branch approximation are compared with the results in which all LO-phonon branches are explicitly included. We show how the stability region for large bipolaron formation is enlarged when the electrons interact with multiple LO-phonon branches. The possible relevance of this result for the high-T(c) superconductors is pointed out.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos A1992JV42600004 Publication Date 2011-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0015-0193;1563-5112; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 0.469 Times cited (up) 19 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:103065 Serial 1157
Permanent link to this record
 

 
Author Nowak, M.P.; Szafran, B.; Peeters, F.M.
  Title Fano resonances and electron spin transport through a two-dimensional spin-orbit-coupled quantum ring Type A1 Journal article
  Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
  Volume 84 Issue 23 Pages 235319-235319,8
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Electron transport through a spin-orbit-coupled quantum ring is investigated within linear response theory. We show that the finite width of the ring results in the appearance of Fano resonances in the conductance. This turns out to be a consequence of the spin-orbit interaction that leads to a breaking of the parity of the states localized in the ring. The resonances appear when the system is close to maxima of Aharonov-Casher conductance oscillations where spin transfer is heavily modified. When the spin-orbit coupling strength is detuned from the Aharonov-Casher maxima the resonances are broadened resulting in a dependence of the spin transport on the electron Fermi energy in contrast to predictions from one-dimensional models.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000298605700002 Publication Date 2011-12-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited (up) 19 Open Access
  Notes ; This work was supported by the “Krakow Interdisciplinary PhD Project in Nanoscience and Advanced Nanostructures” operated within the Foundation for Polish Science MPD Programme cofinanced by the EU European Regional Development Fund, Project No. N N202103938 supported by the Ministry of Science and Higher Education (MNiSW) for 2010-2013, the Belgian Science Policy (IAP), and the Flemish Science Foundation (FWO-V1). This research was supported in part by PL-Grid Infrastructure. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
  Call Number UA @ lucian @ c:irua:94292 Serial 1171
Permanent link to this record
 

 
Author Milovanović, S.P.; Moldovan, D.; Peeters, F.M.
  Title Veselago lensing in graphene with a p-n junction: Classical versus quantum effects Type A1 Journal article
  Year 2015 Publication Journal of applied physics Abbreviated Journal J Appl Phys
  Volume 118 Issue 118 Pages 154308
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The feasibility of Veselago lensing in graphene with a p-n junction is investigated numerically for realistic injection leads. Two different set-ups with two narrow leads are considered with absorbing or reflecting side edges. This allows us to separately determine the influence of scattering on electron focusing for the edges and the p-n interface. Both semiclassical and tight-binding simulations show a distinctive peak in the transmission probability that is attributed to the Veselago lensing effect. We investigate the robustness of this peak on the width of the injector, the position of the p-n interface, and different gate potential profiles. Furthermore, the influence of scattering by both short- and long-range impurities is considered.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000363535800022 Publication Date 2015-10-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8979;1089-7550; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.068 Times cited (up) 19 Open Access
  Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EUROCORES Program EuroGRAPHENE within the project CONGRAN, and the Methusalem Foundation of the Flemish government. Approved Most recent IF: 2.068; 2015 IF: 2.183
  Call Number c:irua:129452 Serial 3969
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: