|
Record |
Links |
|
Author |
Saberi-Pouya, S.; Conti, S.; Perali, A.; Croxall, A.F.; Hamilton, A.R.; Peeters, F.M.; Neilson, D. |
|
|
Title |
Experimental conditions for the observation of electron-hole superfluidity in GaAs heterostructures |
Type |
A1 Journal article |
|
Year |
2020 |
Publication |
Physical Review B |
Abbreviated Journal |
Phys Rev B |
|
|
Volume |
101 |
Issue |
14 |
Pages |
140501-140506 |
|
|
Keywords |
A1 Journal article; Condensed Matter Theory (CMT) |
|
|
Abstract |
The experimental parameter ranges needed to generate superfluidity in optical and drag experiments in GaAs double quantum wells are determined using a formalism that includes self-consistent screening of the Coulomb pairing interaction in the presence of the superfluid. The very different electron and hole masses in GaAs make this a particularly interesting system for superfluidity with exotic superfluid phases predicted in the BCS-Bose-Einstein condensation crossover regime. We find that the density and temperature ranges for superfluidity cover the range for which optical experiments have observed indications of superfluidity but that existing drag experiments lie outside the superfluid range. We also show that, for samples with low mobility with no macroscopically connected superfluidity, if the superfluidity survives in randomly distributed localized pockets, standard quantum capacitance measurements could detect these pockets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Wos |
000523627600001 |
Publication Date |
2020-04-06 |
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2469-9969; 2469-9950 |
ISBN |
|
Additional Links |
UA library record; WoS full record; WoS citing articles |
|
|
Impact Factor |
3.7 |
Times cited |
18 |
Open Access |
|
|
|
Notes |
; We thank K. Das Gupta, F. Dubin, U. Siciliani de Cumis, M. Pini, and J. Waldie for illuminating discus-sions. This work was partially supported by the Flemish Science Foundation (FWO-Vl) and the Australian Government through the Australian Research Council Centre of Excellence in Future Low-Energy Electronics (Project No. CE170100039). ; |
Approved |
Most recent IF: 3.7; 2020 IF: 3.836 |
|
|
Call Number |
UA @ admin @ c:irua:168561 |
Serial |
6517 |
|
Permanent link to this record |