|   | 
Details
   web
Records
Author Vizarim, N.P.; Souza, J.C.B.; Reichhardt, C.J.O.; Reichhardt, C.; Milošević, M.V.; Venegas, P.A.
Title Soliton motion in skyrmion chains : stabilization and guidance by nanoengineered pinning Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 22 Pages 224409-224412
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a particle-based model we examine the depinning motion of solitons in skyrmion chains in quasi -onedimensional (1D) and two-dimensional (2D) systems containing embedded 1D interfaces. The solitons take the form of a particle or hole in a commensurate chain of skyrmions. Under an applied drive, just above a critical depinning threshold, the soliton moves with a skyrmion Hall angle of zero. For higher drives, the entire chain depins, and in a 2D system we observe that both the solitons and chain move at zero skyrmion Hall angle and then transition to a finite skyrmion Hall angle as the drive increases. In a 2D system with a 1D interface that is at an angle to the driving direction, there can be a reversal of the sign of the skyrmion Hall angle from positive to negative. Our results suggest that solitons in skyrmion systems could be used as information carriers in racetrack geometries that would avoid the drawbacks of finite skyrmion Hall angles. The soliton states become mobile at significantly lower drives than the depinning transition of the skyrmion chains themselves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000823038900004 Publication Date 2022-06-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (up) 2 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:189671 Serial 7209
Permanent link to this record
 

 
Author Nasr Esfahani, D.; Covaci, L.; Peeters, F.M.
Title Electric-field-induced shift of the Mott metal-insulator transition in thin films Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 8 Pages 085110-085110,8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The ground-state properties of a paramagnetic Mott insulator at half-filling are investigated in the presence of an external electric field using the inhomogeneous Gutzwiller approximation for a single-band Hubbard model in a slab geometry. We find that the metal-insulator transition is shifted toward higher Hubbard repulsions by applying an electric field perpendicular to the slab. The main reason is the accumulation of charges near the surface. The spatial distribution of site-dependent quasiparticle weight shows that it is maximal in a few layers beneath the surface, while the central sites where the field is screened have a very low quasiparticle weight. Our results show that above a critical-field value, states near the surface will be metallic, while the bulk quasiparticle weight is extremely suppressed but never vanishing, even for large Hubbard repulsions above the bulk zero-field critical value. Below the critical-field value, our results hint toward an insulating state in which the electric field is totally screened and the slab is again at half-filling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000300240100002 Publication Date 2012-02-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:97208 Serial 884
Permanent link to this record
 

 
Author Anisimovas, E.; Tavernier, M.B.; Peeters, F.M.
Title Electron-vortex separation in quantum dots Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 4 Pages 045327,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252863100097 Publication Date 2008-01-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67888 Serial 993
Permanent link to this record
 

 
Author Krstajie, P.M.; Peeters, F.M.
Title Energy-momentum dispersion relation of plasmarons in bilayer graphene Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 16 Pages 165420-165424
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The relation between the energy and momentum of plasmarons in bilayer graphene is investigated within the Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find that the Dirac-like spectrum is shifted by Delta E(k) similar to 100 divided by 150 meV depending on the electron concentration n(e) and electron momentum. The shift increases with electron concentration as the energy of plasmons becomes larger. The dispersion of plasmarons is more pronounced than in the case of single layer graphene, which is explained by the fact that the energy dispersion of electrons is quadratic and not linear. We expect that these predictions can be verified using angle-resolved photoemission spectroscopy (ARPES).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326089400004 Publication Date 2013-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the ESF-EuroGRAPHENE project CON-GRAN, and by the Serbian Ministry of Education and Science, within the Project No. TR 32008. ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112224 Serial 1042
Permanent link to this record
 

 
Author Shakouri, K.; Badalyan, S.M.; Peeters, F.M.
Title Helical liquid of snake states Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 88 Issue 19 Pages 195404-195405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We derive an exact solution to the problem of spin snake states induced in a nonhomogeneous magnetic field by a combined action of the Rashba spin-orbit and Zeeman fields. The electron spin behavior as a function of the cyclotron orbit center position and an external homogeneous magnetic field was obtained. It is shown that in an antisymmetric magnetic field the electron spin in the snake states has only an in-plane projection, perpendicular to the magnetic interface, which vanishes at large positive momenta. Applying an external homogeneous magnetic field adds a finite out-of-plane spin component and simultaneously gaps out the spectral branches, which results in regular beating patterns of the spin current components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000326820200007 Publication Date 2013-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Methusalem program of the Flemish government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:112712 Serial 1416
Permanent link to this record
 

 
Author Zha, G.-Q.; Chen, Y.; Peeters, F.M.; Zhou, S.-P.
Title Impurity-induced modulations of orders in d-wave superconductors Type A1 Journal article
Year 2009 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 80 Issue 6 Pages 064518,1-064518,5
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract By using a model Hamiltonian with competing antiferromagnetic (AFM) and d-wave superconductivity orders, the impurity-induced structures of orders in d-wave superconductors is investigated. We find that the transition between one-dimensional stripe and two-dimensional checkerboardlike modulation around a single nonmagnetic impurity can take place as the strength of the AFM interaction U or the impurity scattering strength V0 is varied. It is also found that the impurity-induced stripe can first transit to checkerboardlike modulation and then disappears with increasing the next-nearest-neighbor hopping strength |t|. Phase diagrams of V0 versus U and |t| for various modulations of the spin order are presented. In addition, the quantum interference effect on the modulations of orders due to two strong nonmagnetic impurities is briefly examined, and the checkerboardlike and quasistripe patterns can occur depending on the sites where two impurities are placed.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000269638800074 Publication Date 2009-09-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 2009 IF: 3.475
Call Number UA @ lucian @ c:irua:78293 Serial 1572
Permanent link to this record
 

 
Author Tavares, M.R.S.; Hai, G.-Q.; Peeters, F.M.; Studart, N.
Title Intersubband plasmons in quasi-one-dimensional electron systems on a liquid helium surface Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages 140504,1-4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000186422500016 Publication Date 2003-10-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:69376 Serial 1713
Permanent link to this record
 

 
Author Munarin, F.F.; Ferreira, W.P.; Farias, G.A.; Peeters, F.M.
Title Molecular states of two vertically coupled systems of classical charged particles confined by a Coulomb potential Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue Pages 035336,1-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000248500800111 Publication Date 2007-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:69657 Serial 2184
Permanent link to this record
 

 
Author Esfahani, D.N.; Covaci, L.; Peeters, F.M.
Title Nonlinear response to electric field in extended Hubbard models Type A1 Journal article
Year 2014 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 90 Issue 20 Pages 205121
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electric-field response of a one-dimensional ring of interacting fermions, where the interactions are described by the extended Hubbard model, is investigated. By using an accurate real-time propagation scheme based on the Chebyshev expansion of the evolution operator, we uncover various nonlinear regimes for a range of interaction parameters that allows modeling of metallic and insulating (either charge density wave or spin density wave insulators) rings. The metallic regime appears at the phase boundary between the two insulating phases and provides the opportunity to describe either weakly or strongly correlated metals. We find that the fidelity susceptibility of the ground state as a function of magnetic flux piercing the ring provides a very good measure of the short-time response. Even completely different interacting regimes behave in a similar manner at short time scales as long as the ground-state fidelity susceptibility is the same. Depending on the strength of the electric field we find various types of responses: persistent currents in the insulating phase, a dissipative regime, or damped Bloch-like oscillations with varying frequencies or even irregular in nature. Furthermore, we also consider the dimerization of the ring and describe the response of a correlated band insulator. In this case the distribution of the energy levels is more clustered and the Bloch-like oscillations become even more irregular.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000345423300002 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (Fonds Wetenschappelijk Onderzoek – FWO) and the Methusalem program of the Flemish government. One of us (L. C.) receives support as a postdoctoral fellow of the FWO. ; Approved Most recent IF: 3.836; 2014 IF: 3.736
Call Number UA @ lucian @ c:irua:122204 Serial 2355
Permanent link to this record
 

 
Author Kato, H.; Peeters, F.M.
Title Remote Wigner polaron in a magnetic field Type A1 Journal article
Year 1999 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue Pages 14342-14348
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000080780700027 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24155 Serial 2871
Permanent link to this record
 

 
Author Zalipaev, V.; Linton, C.M.; Croitoru, M.D.; Vagov, A.
Title Resonant tunneling and localized states in a graphene monolayer with a mass gap Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 91 Issue 91 Pages 085405
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We study tunneling of quasiparticles through potential barriers in a graphene monolayer with the mass gap using a semiclassical (WKB) approach. The main equations are derived in away similar to the WKB theory for the Schrodinger equation, which allows for explicit solutions at all orders. The analog of the classical action is used to distinguish types of possible stationary states in the system. The analysis focuses on the resonant scattering and the hole states localized in the vicinity of a barrier that are often overlooked. The scattering coefficients for the physically interesting limits are obtained by matching the WKB approximation with the known solutions at turning points. The localized states demonstrate unconventional properties and lead to alterations of the single particle density of states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000351773900004 Publication Date 2015-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; M.D.C. acknowledges the Belgian Science Policy (BELSPO Back to Belgium Grant). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:125523 Serial 2891
Permanent link to this record
 

 
Author Shakouri, K.; Peeters, F.M.
Title Spin- and pseudospin-polarized quantum Hall liquids in HgTe quantum wells Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 045416
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A Hg(Cd)Te insulator heterostructure hosts a two-dimensional electron system that can simulate the physics of Dirac fermions with only a single valley. We investigate the magnetotransport properties of this structure and show that, unlike most two-dimensional crystals with spin and valley coupled levels, the Shubnikov-de Haas oscillations exhibit a high spin polarization in the absence of any valley degree of freedom. This effect can be observed using magnetospectroscopy measurements for quantum well thicknesses corresponding to either the topologically trivial or quantum spin Hall phases. The pseudospin texture of the electrons near the Fermi level is also studied and we show that a tunable pseudospin-polarized quantum Hall liquid can only be observed for thicknesses corresponding to the inverted regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000358032000002 Publication Date 2015-07-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program of the Flemish government. ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number c:irua:127097 Serial 3077
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A.
Title Temperature effect on the 002 structure factor of ternary Ga1-xInxAs crystals Type A1 Journal article
Year 2007 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 76 Issue 7 Pages 073303,1-4
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000249155300011 Publication Date 2007-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes Approved Most recent IF: 3.836; 2007 IF: 3.172
Call Number UA @ lucian @ c:irua:66116 Serial 3499
Permanent link to this record
 

 
Author Galvan-Moya; Misko, V.R.; Peeters, F.M.
Title Chainlike transitions in Wigner crystals : sequential versus nonsequential Type A1 Journal article
Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 92 Issue 92 Pages 064112
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The structural transitions of the ground state of a system of repulsively interacting particles confined in a quasi-one-dimensional channel, and the effect of the interparticle interaction as well as the functional form of the confinement potential on those transitions are investigated. Although the nonsequential ordering of transitions (non-SOT), i.e., the 1 – 2 – 4 – 3 – 4 – 5 – 6 – ... sequence of chain configurations with increasing density, is widely robust as predicted in a number of theoretical studies, the sequential ordering of transitions (SOT), i.e., the 1 – 2 – 3 – 4 – 5 – 6 – ... chain, is found as the ground state for long-ranged interparticle interaction and hard-wall-like confinement potentials. We found an energy barrier between every two different phases around its transition point, which plays an important role in the preference of the system to follow either a SOT or a non-SOT. However, that preferential transition requires also the stability of the phases during the transition. Additionally, we analyze the effect of a small structural disorder on the transition between the two phases around its transition point. Our results show that a small deformation of the triangular structure changes dramatically the picture of the transition between two phases, removing in a considerable region the non-SOT in the system. This feature could explain the fact that the non-SOT is, up to now, not observed in experimental systems, and suggests a more advanced experimental setup to detect the non-SOT.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000359859400003 Publication Date 2015-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Odysseus and Methusalem programmes of the Flemish government. Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.836; 2015 IF: 3.736
Call Number UA @ lucian @ c:irua:127753 Serial 4148
Permanent link to this record
 

 
Author Zhao, H.J.; Wu, W.; Zhou, W.; Shi, Z.X.; Misko, V.R.; Peeters, F.M.
Title Reentrant dynamics of driven pancake vortices in layered superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 024514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of driven pancake vortices in layered superconductors is studied using molecular-dynamics simulations. We found that, with increasing driving force, for strong interlayer coupling, the preexisted vortex lines either directly depin or first transform to two-dimensional (2D) pinned states before they are depinned, depending on the pinning strength. In a narrow region of pinning strengths, we found an interesting repinning process, which results in a negative differential resistance. For weak interlayer coupling, individually pinned pancake vortices first form disordered 2D flow and then transform to ordered three-dimensional (3D) flow with increasing driving force. However, for extremely strong pinning, the random pinning-induced thermal-like Langevin forces melt 3D vortex lines, which results in a persistent 2D flow in the fast-sliding regime. In the intermediate regime, the peak effect is found: With increasing driving force, the moving pancake vortices first crystallize to moving 3D vortex lines, and then these 3D vortex lines are melted, leading to the appearance of a reentrant 2D flow state. Our results are summarized in a dynamical phase diagram.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000380097800006 Publication Date 2016-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; We acknowledge useful discussions with C. Olson Reichhardt. This work was supported by the Natural Science Foundation of Jiangsu Province (Grant No. BK20150595), National Natural Science Foundation of China (Grants No. NSFC-U1432135 and No. 11611140101). V.R.M. acknowledges support from the “Odysseus” program of the Flemish Government and Flemish Science Foundation (FWO-Vl), the FWO-Vl, and the Research Fund of the University of Antwerp. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134943 Serial 4238
Permanent link to this record
 

 
Author De Beule, C.; Ziani, N.T.; Zarenia, M.; Partoens, B.; Trauzettel, B.
Title Correlation and current anomalies in helical quantum dots Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 155111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We theoretically investigate the ground-state properties of a quantum dot defined on the surface of a strong three-dimensional time-reversal invariant topological insulator. Confinement is realized by ferromagnetic barriers and Coulomb interaction is treated numerically for up to seven electrons in the dot. Experimentally relevant intermediate interaction strengths are considered. The topological origin of the dot has several consequences: (i) spin polarization increases and the ground state exhibits quantum phase transitions at specific angular momenta as a function of interaction strength, (ii) the onset of Wigner correlations takes place mainly in one spin channel, and (iii) the ground state is characterized by a robust persistent current that changes sign as a function of the distance from the center of the dot.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000385242200001 Publication Date 2016-10-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; We thank F. Cavaliere, F. Crepin, C. Felser, and B. Yan for interesting discussions, and S. Curreli for performing the finite-element calculation of the magnetic field in COMSOL. C.D.B. and M.Z. are supported by the Flemish Research Foundation (FWO). N.T.Z. and B.T. acknowledge financial support by the DFG (SPP1666 and SFB1170 “ToCoTronics”), the Helmholtz Foundation (VITI), and the ENB Graduate School on “Topological Insulators.” ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:137234 Serial 4351
Permanent link to this record
 

 
Author Ghorbanfekr-Kalashami, H.; Peeters, F.M.; Novoselov, K.S.; Neek-Amal, M.
Title Spatial design and control of graphene flake motion Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 6 Pages 060101
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000406860300001 Publication Date 2017-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. M.N.-A. was supported by Iran National Science Foundation (INSF). K.S.N. was supported by the EU Graphene Flagship Program, European Research Council Synergy Grant Hetero2D, the Royal Society, Engineering and Physical Research Council (UK), US Army Research Office. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:145166 Serial 4724
Permanent link to this record
 

 
Author Carmesin, C.; Schowalter, M.; Lorke, M.; Mourad, D.; Grieb, T.; Müller-Caspary, K.; Yacob, M.; Reithmaier, J.P.; Benyoucef, M.; Rosenauer, A.; Jahnke, F.
Title Interplay of morphology, composition, and optical properties of InP-based quantum dots emitting at the 1.55 \mum telecom wavelength Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 23 Pages 235309
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Results for the development and detailed analysis of self-organized InAs/InAlGaAs/InP quantum dots suitable for single-photon emission at the 1.55 mu m telecom wavelength are reported. The structural and compositional properties of the system are obtained from high-resolution scanning transmission electron microscopy of individual quantum dots. The system is composed of almost pure InAs quantum dots embedded in quaternary InAlGaAs barrier material, which is lattice matched to the InP substrate. When using the measured results for a representative quantum-dot geometry as well as experimentally reconstructed alloy concentrations, a combination of strain-field and electronic-state calculations is able to reproduce the quantum-dot emission wavelength in agreement with the experimentally determined photoluminescence spectrum. The inhomogeneous broadening of the latter can be related to calculated variations of the emission wavelength for the experimentally deduced In-concentration fluctuations and size variations.'));
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000418654200009 Publication Date 2017-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access OpenAccess
Notes ; The authors gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft Project No. JA 14-1, the BMBF Projects Q.com-H No. 16KIS0111 and No. 16KIS0112, as well as computational resources from HLRN (Hannover, Berlin). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:148505 Serial 4882
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
Title Magnetic field dependence of atomic collapse in bilayer graphene Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 11 Pages 115406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The spectrum of a Coulomb impurity in bilayer graphene is investigated as function of the strength of a perpendicular magnetic field for different values of the angular quantum number m and for different values of the gate voltage. We point out fundamental differences between the results from the two-band and four-band model. The supercritical instability and fall-to-center phenomena are investigated in the presence of a magnetic field. We find that in the four-band model the fall-to-center phenomenon occurs as in monolayer graphene, while this is not the case in the two-band model. We find that in a magnetic field the supercritical instability manifests itself as a series of anticrossings in the hole part of the spectrum for states coming from the low-energy band. However, we also find very distinct anticrossings in the electron part of the spectrum that continue into the hole part, which are related to the higher energy band of the four-band model. At these anticrossings, we find a very sharp peak in the probability density close to the impurity, reminiscent for the fall-to-center phenomenon. In this paper, these peculiar and interesting effects are studied for different magnetic field, interlayer coupling, and bias potential strengths.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000443671900010 Publication Date 2018-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; We thank Matthias Van der Donck and Ben Van Duppen for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153654UA @ admin @ c:irua:153654 Serial 5113
Permanent link to this record
 

 
Author Aslani, Z.; Sisakht, E.T.; Fazileh, F.; Ghorbanfekr-Kalashami, H.; Peeters, F.M.
Title Conductance fluctuations of monolayer GeSnH2$ in the topological phase using a low-energy effective tight-binding Hamiltonian Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115421
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract An effective tight-binding (TB) Hamiltonian for monolayer GeSnH2 is constructed which has an inversion-asymmetric honeycomb structure. The low-energy band structure of our TB model agrees very well with previous ab initio calculations even under biaxial tensile strain. Our model predicts a phase transition at 7.5% biaxial tensile strain in agreement with DFT calculations. Upon 8.5% strain the system exhibits a band gap of 134 meV, suitable for room temperature applications. It is shown that an external applied magnetic field produces a special phase which is a combination of the quantum Hall (QH) and quantum spin Hall (QSH) phases; and at a critical magnetic field strength the QSH phase completely disappears. The topological nature of the phase transition is confirmed from: (1) the calculation of the Z(2) topological invariant, and (2) quantum transport properties of disordered GeSnH2 nanoribbons which allows us to determine the universality class of the conductance fluctuations. The application of an external applied magnetic field reduces the conductance fluctuations by a factor of root 2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461958900006 Publication Date 2019-03-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the FLAG-ERA project TRANS-2D-TMD. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158538 Serial 5199
Permanent link to this record
 

 
Author Neek-Amal, M.; Rashidi, R.; Nair, R.R.; Neilson, D.; Peeters, F.M.
Title Electric-field-induced emergent electrical connectivity in graphene oxide Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 11 Pages 115425
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Understanding the appearance of local electrical connectivity in liquid filled layered graphene oxide subjected to an external electric field is important to design electrically controlled smart permeable devices and also to gain insight into the physics behind electrical effects on confined water permeation. Motivated by recent experiments [K. G. Zhou et al. Nature (London) 559, 236 (2018)], we introduce a new model with random percolating paths for electrical connectivity in micron thick water filled layered graphene oxide, which mimics parallel resistors connected across the top and bottom electrodes. We find that a strong nonuniform radial electric field of the order similar to 10-50 mV/nm can be induced between layers depending on the current flow through the formed conducting paths. The maxima of the induced fields are not necessarily close to the electrodes and may be localized in the middle region of the layered material. The emergence of electrical connectivity and the associated electrical effects have a strong influence on the surrounding fluid in terms of ionization and wetting which subsequently determines the permeation properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461960100001 Publication Date 2019-03-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158534 Serial 5206
Permanent link to this record
 

 
Author Yuan, H.F.; Xu, W.; Zhao, X.N.; Song, D.; Zhang, G.R.; Xiao, Y.M.; Ding, L.; Peeters, F.M.
Title Quantum and transport mobilities of a Na3Bi-based three-dimensional Dirac system Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 23 Pages 235303
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The electronic and transport properties of a three-dimensional (3D) Dirac system are investigated theoretically, which is motivated by recent experimental measurements on quantum and transport mobilities in the 3D Dirac semimetal Na3Bi by J. Xiong et al. [Science 350, 413 (2015); Europhys. Lett. 114, 27002 (2016)]. The electron Hamiltonian is taken from a simplified k center dot p approach. From the obtained electronic band structure and the Fermi energy, we explain why the anomalous effect induced by the chiral anomaly and the Berry curvature in the energy band can be observed experimentally in magnetotransport coefficients in both low-and high-density samples. Moreover, the quantum and transport mobilities are calculated on the basis of the momentum-balance equation derived from a semiclassical Boltzmann equation with the electron-impurity interaction. The quantum and transport mobilities obtained from this study agree both qualitatively and quantitatively with those measured experimentally. We also examine the electron mobilities along different crystal directions in Na3Bi and find them largely anisotropic. The theoretical findings from this work can be helpful in gaining an in-depth understanding of the experimental results and of the basic electronic and transport properties of newly developed 3D Dirac systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000471983500006 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 3 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161329 Serial 5425
Permanent link to this record
 

 
Author Wang, J.; Andelkovic, M.; Wang, G.; Peeters, F.M.
Title Molecular collapse in graphene: Sublattice symmetry effect Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 6 Pages 064108-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Atomic collapse can be observed in graphene because of its large “effective” fine structure constant, which enables this phenomenon to occur for an impurity charge as low as Z(c) similar to 1-2. Here we investigate the effect of the sublattice symmetry on molecular collapse in two spatially separated charge tunable vacancies, which are located on the same (A-A type) or different (A-B type) sublattices. We find that the broken sublattice symmetry: (1) does not affect the location of the main bonding and antibonding molecular collapse peaks, (2) but shifts the position of the satellite peaks, because they are a consequence of the breaking of the local sublattice symmetry, and (3) there are vacancy characteristic collapse peaks that only occur for A-B type vacancies, which can be employed to distinguish them experimentally from the A-A type. As the charge, energy, and separation distance increase, the additional collapse features merge with the main molecular collapse peaks. We show that the spatial distribution around the vacancy site of the collapse states allows us to differentiate the molecular from the frustrated collapse.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000562320700002 Publication Date 2020-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (up) 3 Open Access
Notes ; This work was supported by the National Natural Science Foundation of China (Grants No. 61874038 and No. 61704040), National Key R&D Program Grant 2018YFE0120000, the scholarship from China Scholarship Council (CSC: 201908330548), and TRANS2DTMD FlagEra project. ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:172065 Serial 6562
Permanent link to this record
 

 
Author Wang, J.; Van Pottelberge, R.; Zhao, W.-S.; Peeters, F.M.
Title Coulomb impurity on a Dice lattice : atomic collapse and bound states Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 3 Pages 035427
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The modification of the quantum states in a Dice lattice due to a Coulomb impurity are investigated. The energy-band structure of a pristine Dice lattice consists of a Dirac cone and a flat band at the Dirac point. We use the tight-binding formalism and find that the flat band states transform into a set of discrete bound states whose electron density is localized on a ring around the impurity mainly on two of the three sublattices. Its energy is proportional to the strength of the Coulomb impurity. Beyond a critical strength of the Coulomb potential atomic collapse states appear that have some similarity with those found in graphene with the difference that the flat band states contribute with an additional ringlike electron density that is spatially decoupled from the atomic collapse part. At large value of the strength of the Coulomb impurity the flat band bound states anticross with the atomic collapse states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000749375200002 Publication Date 2022-01-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (up) 3 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:186387 Serial 6977
Permanent link to this record
 

 
Author Zhang, H.Y.; Xiao, Y.M.; N. Li, Q.; Ding, L.; Van Duppen, B.; Xu, W.; Peeters, F.M.
Title Anisotropic and tunable optical conductivity of a two-dimensional semi-Dirac system in the presence of elliptically polarized radiation Type A1 Journal article
Year 2022 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 105 Issue 11 Pages 115423-115429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the effect of ellipticity ratio of the polarized radiation field on optoelectronic properties of a two-dimensional (2D) semi-Dirac (SD) system. The optical conductivity is calculated within the energy balance equation approach derived from the semiclassical Boltzmann equation. We find that there exists the anisotropic optical absorption induced via both the intra-and interband electronic transition channels in the perpendicular xx and yy directions. Furthermore, we examine the effects of the ellipticity ratio, the temperature, the carrier density, and the band-gap parameter on the optical conductivity of the 2D SD system placed in transverse and vertical directions, respectively. It is shown that the ellipticity ratio, temperature, carrier density, and band-gap parameter can play the important roles in tuning the strength, peak position, and shape of the optical conductivity spectrum. The results obtained from this study indicate that the 2D SD system can be a promising anisotropic and tunable optical and optoelectronic material for applications in innovative 2D optical and optoelectronic devices, which are active in the infrared and terahertz bandwidths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000802810700002 Publication Date 2022-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (up) 3 Open Access OpenAccess
Notes Approved Most recent IF: 3.7
Call Number UA @ admin @ c:irua:188660 Serial 7125
Permanent link to this record
 

 
Author Chwiej, T.; Bednarek, S.; Adamowski, J.; Peeters, F.M.
Title Broken one-particle symmetry in few-electron coupled quantum dots Type A1 Journal article
Year 2006 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 73 Issue 7 Pages 075422,1-10
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000235668900113 Publication Date 2006-02-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 4 Open Access
Notes Approved Most recent IF: 3.836; 2006 IF: 3.107
Call Number UA @ lucian @ c:irua:57003 Serial 257
Permanent link to this record
 

 
Author Lipavsky, P.; Elmurodov, A.; Lin, P.-J.; Matlock, P.; Berdiyorov, G.R.
Title Effect of normal current corrections on the vortex dynamics in type-II superconductors Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 86 Issue 14 Pages 144516-144518
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Within the time-dependent Ginzburg-Landau theory we discuss the effect of nonmagnetic interactions between the normal current and supercurrent in the presence of electric and magnetic fields. The correction due to the current-current interactions is shown to have a transient character so that it contributes only when a system evolves. Numerical studies for thin current-carrying superconducting strips with no magnetic feedback show that the effect of the normal current corrections is more pronounced in the resistive state where fast-moving kinematic vortices are formed. Simulations also reveal that the largest contribution due to current-current interactions appears near the sample edges, where the vortices reach their maximal velocity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000309809700007 Publication Date 2012-10-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 4 Open Access
Notes ; The authors are grateful to Alex Gurevich and Tom Lemberger who brought the longitudinal f-sum rule to our attention. This work was supported by Grants GACR P204/10/0687 and P204/11/0015. We also acknowledge the support from the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vl. P.-J.L. acknowledges support from Old Dominion University. P.M. acknowledges support through UA research index SR-614-1203. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:102168 Serial 827
Permanent link to this record
 

 
Author Palacios, J.J.; Peeters, F.M.; Baelus, B.J.
Title An effective lowest Landau level treatment of demagnetization in superconducting mesoscopic disks Type A1 Journal article
Year 2001 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 64 Issue Pages 134514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000171426700097 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 4 Open Access
Notes Approved Most recent IF: 3.836; 2001 IF: NA
Call Number UA @ lucian @ c:irua:37283 Serial 852
Permanent link to this record
 

 
Author Croitoru, M.D.; Gladilin, V.N.; Fomin, V.M.; Devreese, J.T.; Kemerink, M.; Koenraad, P.M.; Sauthoff, K.; Wolter, J.H.
Title Electroluminescence spectra of an STM-tip-induced quantum dot Type A1 Journal article
Year 2003 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 68 Issue Pages 195307,1-12
Keywords A1 Journal article; Theory of quantum systems and complex systems; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000187163000075 Publication Date 2003-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 4 Open Access
Notes Approved Most recent IF: 3.836; 2003 IF: NA
Call Number UA @ lucian @ c:irua:44290 Serial 902
Permanent link to this record
 

 
Author Ramos, A.C.A.; Chaves, A.; Farias, G.A.; Peeters, F.M.
Title Electronic states above a helium film suspended on a ring-shaped substrate Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 4 Pages 045415,1-6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000252863100117 Publication Date 2008-01-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (up) 4 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:67889 Serial 1006
Permanent link to this record