|   | 
Details
   web
Records
Author van der Sluijs, M.M.; Salzmann, B.B.V.; Arenas Esteban, D.; Li, C.; Jannis, D.; Brafine, L.C.; Laning, T.D.; Reinders, J.W.C.; Hijmans, N.S.A.; Moes, J.R.; Verbeeck, J.; Bals, S.; Vanmaekelbergh, D.
Title Study of the Mechanism and Increasing Crystallinity in the Self-Templated Growth of Ultrathin PbS Nanosheets Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Colloidal 2D semiconductor nanocrystals, the analogue of solid-state quantum wells, have attracted strong interest in material science and physics. Molar quantities of suspended quantum objects with spectrally pure absorption and emission can be synthesized. For the visible region, CdSe nanoplatelets with atomically precise thickness and tailorable emission have been (almost) perfected. For the near-infrared region, PbS nanosheets (NSs) hold strong promise, but the photoluminescence quantum yield is low and many questions on the crystallinity, atomic structure, intriguing rectangular shape, and formation mechanism remain to be answered. Here, we report on a detailed investigation of the PbS NSs prepared with a lead thiocyanate single source precursor. Atomically resolved HAADF-STEM imaging reveals the presence of defects and small cubic domains in the deformed orthorhombic PbS crystal lattice. Moreover, variations in thickness are observed in the NSs, but only in steps of 2 PbS monolayers. To study the reaction mechanism, a synthesis at a lower temperature allowed for the study of reaction intermediates. Specifically, we studied the evolution of pseudo-crystalline templates towards mature, crystalline PbS NSs. We propose a self-induced templating mechanism based on an oleylamine-lead-thiocyanate (OLAM-Pb-SCN) complex with two Pb-SCN units as a building block; the interactions between the long-chain ligands regulate the crystal structure and possibly the lateral dimensions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000959572100001 Publication Date 2023-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited (down) 2 Open Access OpenAccess
Notes H2020 Research Infrastructures, 731019 ; H2020 European Research Council, 692691 815128 ; Nederlandse Organisatie voor Wetenschappelijk Onderzoek, 715.016.002 ; Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number EMAT @ emat @c:irua:195894 Serial 7255
Permanent link to this record
 

 
Author Birkholzer, Y.A.; Sotthewes, K.; Gauquelin, N.; Riekehr, L.; Jannis, D.; van der Minne, E.; Bu, Y.; Verbeeck, J.; Zandvliet, H.J.W.; Koster, G.; Rijnders, G.
Title High-strain-induced local modification of the electronic properties of VO₂ thin films Type A1 Journal article
Year 2022 Publication ACS applied electronic materials Abbreviated Journal
Volume 4 Issue 12 Pages 6020-6028
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vanadium dioxide (VO2) is a popular candidate for electronic and optical switching applications due to its well-known semiconductor-metal transition. Its study is notoriously challenging due to the interplay of long- and short-range elastic distortions, as well as the symmetry change and the electronic structure changes. The inherent coupling of lattice and electronic degrees of freedom opens the avenue toward mechanical actuation of single domains. In this work, we show that we can manipulate and monitor the reversible semiconductor-to-metal transition of VO2 while applying a controlled amount of mechanical pressure by a nanosized metallic probe using an atomic force microscope. At a critical pressure, we can reversibly actuate the phase transition with a large modulation of the conductivity. Direct tunneling through the VO2-metal contact is observed as the main charge carrier injection mechanism before and after the phase transition of VO2. The tunneling barrier is formed by a very thin but persistently insulating surface layer of the VO2. The necessary pressure to induce the transition decreases with temperature. In addition, we measured the phase coexistence line in a hitherto unexplored regime. Our study provides valuable information on pressure-induced electronic modifications of the VO2 properties, as well as on nanoscale metal-oxide contacts, which can help in the future design of oxide electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000890974900001 Publication Date 2022-11-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited (down) 2 Open Access OpenAccess
Notes This work received financial support from the project Green ICT (grant number 400.17.607) of the research program NWA, which is financed by the Dutch Research Council (NWO), Research Foundation Flanders (FWO grant number G0F1320N), and the European Union’s Horizon 2020 research and innovation program within a contract for Integrating Activities for Advanced Communities (grant number 823717 − ESTEEM3). The K2 camera was funded through the Research Foundation Flanders (FWO-Hercules grant number G0H4316N – “Direct electron detector for soft matter TEM”).; esteem3reported; esteem3jra Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:192712 Serial 7309
Permanent link to this record
 

 
Author Gauquelin, N.; Forte, F.; Jannis, D.; Fittipaldi, R.; Autieri, C.; Cuono, G.; Granata, V.; Lettieri, M.; Noce, C.; Miletto-Granozio, F.; Vecchione, A.; Verbeeck, J.; Cuoco, M.
Title Pattern Formation by Electric-Field Quench in a Mott Crystal Type A1 Journal article
Year 2023 Publication Nano letters Abbreviated Journal
Volume Issue Pages
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The control of Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2 RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron

microscopy. The nanotexture depends on the orientation of the electric field, it is non-volatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of non-volatile electronics based on voltage-controlled nanometric phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001012061600001 Publication Date 2023-05-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited (down) 2 Open Access OpenAccess
Notes This project has received funding from the European Union’s Horizon 2020 research and innova- tion programme under grant agreement No 823717 – ESTEEM3. The Merlin camera used in the experiment received funding from the FWO-Hercules fund G0H4316N ’Direct electron detector 15for soft matter TEM’. C. A. and G. C. are supported by the Foundation for Polish Science through the International Research Agendas program co-financed by the European Union within the Smart Growth Operational Programme. C. A. and G. C. acknowledge the access to the computing facil- ities of the Interdisciplinary Center of Modeling at the University of Warsaw, Grant No. GB84-0, GB84-1 and GB84-7 and GB84-7 and Poznan Supercomputing and Networking Center Grant No. 609.. C. A. and G. C. acknowledge the CINECA award under the ISCRA initiative IsC85 “TOP- MOST” Grant, for the availability of high-performance computing resources and support. We acknoweldge A. Guarino and C. Elia for providing support about the electrical characterization of the sample. M.C., R.F., and A.V. acknowledge support from the EU’s Horizon 2020213 research and innovation program under Grant Agreement No. 964398 (SUPERGATE). Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number EMAT @ emat @c:irua:196970 Serial 8789
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Bals, S.; Erni, R.; van Dyck, D.; Van Tendeloo, G.
Title Atomic resolution mapping using quantitative high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 15 Issue S:2 Pages 464-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos 000208119100230 Publication Date 2009-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.891 Times cited (down) 1 Open Access
Notes Approved Most recent IF: 1.891; 2009 IF: 3.035
Call Number UA @ lucian @ c:irua:96555UA @ admin @ c:irua:96555 Serial 178
Permanent link to this record
 

 
Author Bals, S.; Verbeeck, J.; Van Tendeloo, G.; Liu, Y.-L.; Grivel, J.-C.
Title Quantitative electron microscopy of (Bi,Pb)2Sr2Ca2Cu3O10+\delta/Ag multifilament tapes during initial stages of annealing Type A1 Journal article
Year 2005 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
Volume 88 Issue 2 Pages 431-436
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The microstructural and compositional evolution during initial annealing of a superconducting (Bi,Pb)(2)Sr2Ca2Cu3O10+delta/Ag tape is studied using quantitative transmission electron microscopy. Special attention is devoted to the occurrence of Pb-rich liquids, which are crucial for the Bi2Sr2CaCu2O8+delta to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta transformation. Ca and/or Pb-rich (Bi,Pb)(2)Sr2CaCu2O8+delta grains dissolve into a liquid, which reacts with Ca-rich phases to increase the liquid's Ca-content. This leads to (Bi,Pb)(2)Sr2Ca2Cu3O10+delta formation. Apparently, a Ca/Sr ratio of around I is sufficient to keep (Bi,Pb)(2)Sr2Ca2Cu3O10+delta nucleation going. It is confirmed that Ag particles are transported from the Ag-sheath into the oxide core by the liquid and not by mechanical treatment of the tape.
Address
Corporate Author Thesis
Publisher Place of Publication Columbus, Ohio Editor
Language Wos 000227510200030 Publication Date 2005-02-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.841 Times cited (down) 1 Open Access
Notes Approved Most recent IF: 2.841; 2005 IF: 1.586
Call Number UA @ lucian @ c:irua:54876UA @ admin @ c:irua:54876 Serial 2754
Permanent link to this record
 

 
Author van den Broek, W.; Verbeeck, J.; Schryvers, D.; de Backer, S.; Scheunders, P.
Title Tomographic spectroscopic imaging; an experimental proof of concept Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 4 Pages 296-303
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract Recording the electron energy loss spectroscopy data cube with a series of energy filtered images is a dose inefficient process because the energy slit blocks most of the electrons. When recording the data cube by scanning an electron probe over the sample, perfect dose efficiency is attained; but due to the low current in nanoprobes, this often is slower, with a smaller field of view. In W. Van den Broek et al. [Ultramicroscopy, 106 (2006) 269], we proposed a new method to record the data cube, which is more dose efficient than an energy filtered series. It produces a set of projections of the data cube and then tomographically reconstructs it. In this article, we demonstrate these projections in practice, we present a simple geometrical model that allows for quantification of the projection angles and we present the first successful experimental reconstruction, all on a standard post-column instrument.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000265345400003 Publication Date 2008-12-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited (down) 1 Open Access
Notes Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:77271 Serial 3671
Permanent link to this record
 

 
Author Sankaran, K.J.; Deshmukh, S.; Korneychuk, S.; Yeh, C.-J.; Thomas, J.P.; Drijkoningen, S.; Pobedinskas, P.; Van Bael, M.K.; Verbeeck, J.; Leou, K.-C.; Leung, K.-T.; Roy, S.S.; Lin, I.-N.; Haenen, K.
Title Fabrication, microstructure, and enhanced thermionic electron emission properties of vertically aligned nitrogen-doped nanocrystalline diamond nanorods Type A1 Journal article
Year 2018 Publication MRS communications Abbreviated Journal Mrs Commun
Volume 8 Issue 3 Pages 1311-1320
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Vertically aligned nitrogen-doped nanocrystalline diamond nanorods are fabricated from nitrogen-doped nanocrystalline diamond films using reactive ion etching in oxygen plasma. These nanorods show enhanced thermionic electron emission (TEE) characteristics, viz.. a high current density of 12.0 mA/cm(2) and a work function value of 4.5 eV with an applied voltage of 3 Vat 923 K. The enhanced TEE characteristics of these nanorods are ascribed to the induction of nanographitic phases at the grain boundaries and the field penetration effect through the local field enhancement from nanorods owing to a high aspect ratio and an excellent field enhancement factor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000448887900089 Publication Date 2018-08-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-6859; 2159-6867 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.01 Times cited (down) 1 Open Access
Notes The authors thank the financial support of the Research Foundation Flanders (FWO) via Research Grant 12I8416N and Research Project 1519817N, and the Methusalem “NANO” network. The Hercules Foundation Flanders is acknowledged for financial support of the Raman equipment. The Qu-Ant-EM microscope used for the TEM experiments was partly funded by the Hercules fund from the Flemish Government. S.K. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. K.J. Sankaran and P. Pobedinskas are Postdoctoral Fellows of FWO. Approved Most recent IF: 3.01
Call Number UA @ admin @ c:irua:155521 Serial 5364
Permanent link to this record
 

 
Author Jovanović, Z.; Gauquelin, N.; Koster, G.; Rubio-Zuazo, J.; Ghosez, P.; Verbeeck, J.; Suvorov, D.; Spreitzer, M.
Title Simultaneous heteroepitaxial growth of SrO (001) and SrO (111) during strontium-assisted deoxidation of the Si (001) surface Type A1 Journal article
Year 2020 Publication Rsc Advances Abbreviated Journal Rsc Adv
Volume 10 Issue 52 Pages 31261-31270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Epitaxial integration of transition-metal oxides with silicon brings a variety of functional properties to the well-established platform of electronic components. In this process, deoxidation and passivation of the silicon surface are one of the most important steps, which in our study were controlled by an ultra-thin layer of SrO and monitored by using transmission electron microscopy (TEM), electron energy-loss spectroscopy (EELS), synchrotron X-ray diffraction (XRD) and reflection high energy electron diffraction (RHEED) methods. Results revealed that an insufficient amount of SrO leads to uneven deoxidation of the silicon surface<italic>i.e.</italic>formation of pits and islands, whereas the composition of the as-formed heterostructure gradually changes from strontium silicide at the interface with silicon, to strontium silicate and SrO in the topmost layer. Epitaxial ordering of SrO, occurring simultaneously with silicon deoxidation, was observed. RHEED analysis has identified that SrO is epitaxially aligned with the (001) Si substrate both with SrO (001) and SrO (111) out-of-plane directions. This observation was discussed from the point of view of SrO desorption, SrO-induced deoxidation of the Si (001) surface and other interfacial reactions as well as structural ordering of deposited SrO. Results of the study present an important milestone in understanding subsequent epitaxial integration of functional oxides with silicon using SrO.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000566579400025 Publication Date 2020-08-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2046-2069 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.9 Times cited (down) 1 Open Access OpenAccess
Notes Vlaamse regering, Hercules Fund ; Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja, III 45006 ; Javna Agencija za Raziskovalno Dejavnost RS, J2-9237 P2-0091 ; Fonds Wetenschappelijk Onderzoek, G.0044.13N ; Ministerio de Ciencia, Innovación y Universidades; Universiteit Antwerpen, GOA project Solarpaint ; F.R.S.-FNRS, PDR project PROMOSPAN ; Consejo Superior de Investigaciones Cientificas; University of Liège, ARC project AIMED ; Ministry of Education, Science and Sport, M.ERA-NET project SIOX ; Approved Most recent IF: 3.9; 2020 IF: 3.108
Call Number EMAT @ emat @c:irua:172059 Serial 6416
Permanent link to this record
 

 
Author Lebedev, N.; Stehno, M.; Rana, A.; Gauquelin, N.; Verbeeck, J.; Brinkman, A.; Aarts, J.
Title Inhomogeneous superconductivity and quasilinear magnetoresistance at amorphous LaTiO₃/SrTiO₃ interfaces Type A1 Journal article
Year 2020 Publication Journal Of Physics-Condensed Matter Abbreviated Journal J Phys-Condens Mat
Volume 33 Issue 5 Pages 055001
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract We have studied the transport properties of LaTiO3/SrTiO3 (LTO/STO) heterostructures. In spite of 2D growth observed in reflection high energy electron diffraction, transmission electron microscopy images revealed that the samples tend to amorphize. Still, we observe that the structures are conducting, and some of them exhibit high conductance and/or superconductivity. We established that conductivity arises mainly on the STO side of the interface, and shows all the signs of the two-dimensional electron gas usually observed at interfaces between STO and LTO or LaAlO3, including the presence of two electron bands and tunability with a gate voltage. Analysis of magnetoresistance (MR) and superconductivity indicates the presence of spatial fluctuations of the electronic properties in our samples. That can explain the observed quasilinear out-of-plane MR, as well as various features of the in-plane MR and the observed superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000588209300001 Publication Date 2020-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.7 Times cited (down) 1 Open Access OpenAccess
Notes ; NL and JA gratefully acknowledge the financial support of the research program DESCO, which is financed by the Netherlands Organisation for Scientific Research (NWO). The authors thank J Jobst, S Smink, K Lahabi and G Koster for useful discussion. ; Approved Most recent IF: 2.7; 2020 IF: 2.649
Call Number UA @ admin @ c:irua:173679 Serial 6545
Permanent link to this record
 

 
Author Savchenko, T.M.; Buzzi, M.; Howald, L.; Ruta, S.; Vijayakumar, J.; Timm, M.; Bracher, D.; Saha, S.; Derlet, P.M.; Béché, A.; Verbeeck, J.; Chantrell, R.W.; Vaz, C.A.F.; Nolting, F.; Kleibert, A.
Title Single femtosecond laser pulse excitation of individual cobalt nanoparticles Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 102 Issue 20 Pages 205418
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Laser-induced manipulation of magnetism at the nanoscale is a rapidly growing research topic with potential for applications in spintronics. In this work, we address the role of the scattering cross section, thermal effects, and laser fluence on the magnetic, structural, and chemical stability of individual magnetic nanoparticles excited by single femtosecond laser pulses. We find that the energy transfer from the fs laser pulse to the nanoparticles is limited by the Rayleigh scattering cross section, which in combination with the light absorption of the supporting substrate and protective layers determines the increase in the nanoparticle temperature. We investigate individual Co nanoparticles (8 to 20 nm in size) as a prototypical model system, using x-ray photoemission electron microscopy and scanning electron microscopy upon excitation with single femtosecond laser pulses of varying intensity and polarization. In agreement with calculations, we find no deterministic or stochastic reversal of the magnetization in the nanoparticles up to intensities where ultrafast demagnetization or all-optical switching is typically reported in thin films. Instead, at higher fluences, the laser pulse excitation leads to photo-chemical reactions of the nanoparticles with the protective layer, which results in an irreversible change in the magnetic properties. Based on our findings, we discuss the conditions required for achieving laser-induced switching in isolated nanomagnets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000589602000005 Publication Date 2020-11-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.7 Times cited (down) 1 Open Access OpenAccess
Notes This work received funding by the Swiss National Foundation (SNF) (Grants No. 200021160186 and No. 2002153540), the Swiss Nanoscience Institute (SNI) (Grant No. SNI P1502), the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 737093 (FEMTOTERABYTE), and the COST Action CA17123 (MAGNETOFON). Part of this work was performed at the SIM beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. Part of the simulations were undertaken on the VIKING cluster, which is a high-performance compute facility provided by the University of York. We kindly acknowledge Anja Weber from PSI for preparation of substrates with marker structures. A.B. and Jo Verbeeck acknowledge funding through FWO Project No. G093417N (“Compressed sensing enabling low dose imaging in transmission electron microscopy”) from the Flanders Research Fund. Jo Verbeeck acknowledges funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 823717 – ESTEEM3. S.S. acknowledges ETH Zurich Post-Doctoral fellowship and Marie Curie actions for people COFUND program.; esteem3JRA; esteem3reported Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number EMAT @ emat @c:irua:174273 Serial 6669
Permanent link to this record
 

 
Author Chen, B.; Gauquelin, N.; Green, R.J.; Verbeeck, J.; Rijnders, G.; Koster, G.
Title Asymmetric Interfacial Intermixing Associated Magnetic Coupling in LaMnO3/LaFeO3 Heterostructures Type A1 Journal article
Year 2021 Publication Frontiers in physics Abbreviated Journal Front. Phys.
Volume 9 Issue Pages
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The structural and magnetic properties of LaMnO<sub>3</sub>/LaFeO<sub>3</sub>(LMO/LFO) heterostructures are characterized using a combination of scanning transmission electron microscopy, electron energy-loss spectroscopy, bulk magnetometry, and resonant x-ray reflectivity. Unlike the relatively abrupt interface when LMO is deposited on top of LFO, the interface with reversed growth order shows significant cation intermixing of Mn<sup>3+</sup>and Fe<sup>3+</sup>, spreading ∼8 unit cells across the interface. The asymmetric interfacial chemical profiles result in distinct magnetic properties. The bilayer with abrupt interface shows a single magnetic hysteresis loop with strongly enhanced coercivity, as compared to the LMO plain film. However, the bilayer with intermixed interface shows a step-like hysteresis loop, associated with the separate switching of the “clean” and intermixed LMO sublayers. Our study illustrates the key role of interfacial chemical profile in determining the functional properties of oxide heterostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000745284500001 Publication Date 2021-12-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-424X ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited (down) 1 Open Access OpenAccess
Notes This work is supported by the international M-ERA.NET project SIOX (project 4288) and H2020 project ULPEC (project 732642). The X-Ant-EM microscope and the direct electron detector were partly funded by the Hercules fund from the Flemish Government. NG and JV acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. RG was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). Part of the research described in this paper was performed at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan, and the University of Saskatchewan. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:185176 Serial 6901
Permanent link to this record
 

 
Author Vlasov, E.; Denisov, N.; Verbeeck, J.
Title Low-cost electron detector for scanning electron microscope Type A1 Journal article
Year 2023 Publication HardwareX Abbreviated Journal HardwareX
Volume 14 Issue Pages e00413
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron microscopy is an indispensable tool for the characterization of (nano) materials. Electron microscopes are typically very expensive and their internal operation is often shielded from the user. This situation can provide fast and high quality results for researchers focusing on e.g. materials science if they have access to the relevant instruments. For researchers focusing on technique development, wishing to test novel setups, however, the high entry price can lead to risk aversion and deter researchers from innovating electron microscopy technology further. The closed attitude of commercial entities about how exactly the different parts of electron microscopes work, makes it even harder for newcomers in this field. Here we propose an affordable, easy-to-build electron detector for use in a scanning electron microscope (SEM). The aim of this project is to shed light on the functioning of such detectors as well as show that even a very modest design can lead to acceptable performance while providing high flexibility for experimentation and customization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001042486000001 Publication Date 2023-03-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2468-0672 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) 1 Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO [Grant No. S000121N]. JV acknowledges funding from the HORIZON-INFRA-2022-TECH-01-01 project IMPRESS [Grant No. 101094299]. Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:195886 Serial 7252
Permanent link to this record
 

 
Author Vlasov, E.; Skorikov, A.; Sánchez-Iglesias, A.; Liz-Marzán, L.M.; Verbeeck, J.; Bals, S.
Title Secondary electron induced current in scanning transmission electron microscopy: an alternative way to visualize the morphology of nanoparticles Type A1 Journal article
Year 2023 Publication ACS materials letters Abbreviated Journal ACS Materials Lett.
Volume Issue Pages 1916-1921
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Electron tomography (ET) is a powerful tool to determine the three-dimensional (3D) structure of nanomaterials in a transmission electron microscope. However, the acquisition of a conventional tilt series for ET is a time-consuming process and can therefore not provide 3D structural information in a time-efficient manner. Here, we propose surface-sensitive secondary electron (SE) imaging as an alternative to ET for the investigation of the morphology of nanomaterials. We use the SE electron beam induced current (SEEBIC) technique that maps the electrical current arising from holes generated by the emission of SEs from the sample. SEEBIC imaging can provide valuable information on the sample morphology with high spatial resolution and significantly shorter throughput times compared with ET. In addition, we discuss the contrast formation mechanisms that aid in the interpretation of SEEBIC data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001006191600001 Publication Date 2023-06-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2639-4979 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) 1 Open Access OpenAccess
Notes The funding for this project was provided by European Research Council (ERC Consolidator Grant 815128, REALNANO). J.V. acknowledges the eBEAM project, which is supported by the European Union’s Horizon 2020 research and innovation program under grant agreement no. 101017720 (FET-Proactive EBEAM). L.M.L.-M. acknowledges funding from MCIN/AEI/10.13039/501100011033 (grant # PID2020-117779RB-I00). Approved Most recent IF: NA
Call Number EMAT @ emat @c:irua:197004 Serial 8795
Permanent link to this record
 

 
Author Vijayakumar, J.; Savchenko, T.M.; Bracher, D.M.; Lumbeeck, G.; Béché, A.; Verbeeck, J.; Vajda, Š.; Nolting, F.; Vaz, Ca.f.; Kleibert, A.
Title Absence of a pressure gap and atomistic mechanism of the oxidation of pure Co nanoparticles Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal Nat Commun
Volume 14 Issue 1 Pages 174
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Understanding chemical reactivity and magnetism of 3<italic>d</italic>transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co<sub>3</sub>O<sub>4</sub>and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000955726400021 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited (down) 1 Open Access OpenAccess
Notes Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, 200021160186 2002153540 ; EC | Horizon 2020 Framework Programme, 810310 823717 ; University of Basel | Swiss Nanoscience Institute, P1502 ; This work is funded by Swiss National Foundation (SNF) (Grants. No 200021160186 and 2002153540) and the Swiss Nanoscience Institut (SNI) (Grant No. SNI P1502). S.V. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 810310, which corresponds to the J. Heyrovsky Chair project (“ERA Chair at J. Heyrovský Institute of Physical Chemistry AS CR – The institutional approach towards ERA”). The funders had no role in the preparation of the article. Part of this work was performed at the Surface/Interface: Microscopy (SIM) beamline of the Swiss Light Source (SLS), Paul Scherrer Institut, Villigen, Switzerland. We kindly acknowledge Anja Weber and Elisabeth Müller from PSI for their help in fabricating the sample markers. A.B. and J. Verbeeck received funding from the European Union’s Horizon 2020 Research Infrastructure – Integrating Activities for Advanced Communities under grant agreement No. 823717 – ESTEEM3 reported Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number EMAT @ emat @c:irua:196738 Serial 8804
Permanent link to this record
 

 
Author Friedrich, T.; Yu, C.-P.; Verbeeck, J.; Van Aert, S.
Title Phase object reconstruction for 4D-STEM using deep learning Type A1 Journal article
Year 2023 Publication Microscopy and microanalysis Abbreviated Journal
Volume 29 Issue 1 Pages 395-407
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this study, we explore the possibility to use deep learning for the reconstruction of phase images from 4D scanning transmission electron microscopy (4D-STEM) data. The process can be divided into two main steps. First, the complex electron wave function is recovered for a convergent beam electron diffraction pattern (CBED) using a convolutional neural network (CNN). Subsequently, a corresponding patch of the phase object is recovered using the phase object approximation. Repeating this for each scan position in a 4D-STEM dataset and combining the patches by complex summation yields the full-phase object. Each patch is recovered from a kernel of 3x3 adjacent CBEDs only, which eliminates common, large memory requirements and enables live processing during an experiment. The machine learning pipeline, data generation, and the reconstruction algorithm are presented. We demonstrate that the CNN can retrieve phase information beyond the aperture angle, enabling super-resolution imaging. The image contrast formation is evaluated showing a dependence on the thickness and atomic column type. Columns containing light and heavy elements can be imaged simultaneously and are distinguishable. The combination of super-resolution, good noise robustness, and intuitive image contrast characteristics makes the approach unique among live imaging methods in 4D-STEM.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001033590800038 Publication Date 2023-01-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.8 Times cited (down) 1 Open Access OpenAccess
Notes We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 770887 PICOMETRICS) and funding from the European Union's Horizon 2020 research and innovation program under grant agreement No. 823717 ESTEEM3. J.V. and S.V.A acknowledge funding from the University of Antwerp through a TOP BOF project. The direct electron detector (Merlin, Medipix3, Quantum Detectors) was funded by the Hercules fund from the Flemish Government. This work was supported by the FWO and FNRS within the 2Dto3D project of the EOS program (grant number 30489208). Approved Most recent IF: 2.8; 2023 IF: 1.891
Call Number UA @ admin @ c:irua:198221 Serial 8912
Permanent link to this record
 

 
Author Yu, CP.; Vega Ibañez, F.; Béché, A.; Verbeeck, J.
Title Quantum wavefront shaping with a 48-element programmable phase plate for electrons Type A1 Journal Article
Year 2023 Publication SciPost Physics Abbreviated Journal SciPost Phys.
Volume 15 Issue Pages 223
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT)
Abstract We present a 48-element programmable phase plate for coherent electron waves produced by a combination of photolithography and focused ion beam. This brings the highly successful concept of wavefront shaping from light optics into the realm of electron optics and provides an important new degree of freedom to prepare electron quantum states. The phase plate chip is mounted on an aperture rod placed in the C2 plane of a transmission electron microscope operating in the 100-300 kV range. The phase plate's behavior is characterized by a Gerchberg-Saxton algorithm, showing a phase sensitivity of 0.075 rad/mV at 300 kV, with a phase resolution of approximately 3x10e−3π. In addition, we provide a brief overview of possible use cases and support it with both simulated and experimental results.
Address
Corporate Author Thesis
Publisher SciPost Place of Publication Editor
Language English Wos 001116838500002 Publication Date 2023-12-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2542-4653 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.5 Times cited (down) 1 Open Access
Notes This project is the result of a long-term effort involving many differ- ent sources of funding: JV acknowledges funding from an ERC proof of concept project DLV- 789598 ADAPTEM, as well as a University IOF proof of concept project towards launching the AdaptEM spin-off and the eBEAM project, supported by the European Union’s Horizon 2020 research and innovation program FETPROACT-EIC-07-2020: emerging paradigms and com- munities. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823717 – ESTEEM3 and via The IMPRESS project from the HORIZON EUROPE framework program for research and innovation under grant agreement n. 101094299. FV, JV, and AB acknowledge funding from G042820N ‘Explor- ing adaptive optics in transmission electron microscopy.’ CPY acknowledges funding from a TOP-BOF project from the University of Antwerp. Approved Most recent IF: 5.5; 2023 IF: NA
Call Number EMAT @ emat @c:irua:202037 Serial 8984
Permanent link to this record
 

 
Author Tan, H.; Turner, S.; Yucelen, E.; Verbeeck, J.; Van Tendeloo, G.
Title 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy : reply Type Editorial
Year 2012 Publication Physical review letters Abbreviated Journal Phys Rev Lett
Volume 108 Issue 25 Pages 259702
Keywords Editorial; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000305568700038 Publication Date 2012-06-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.462 Times cited (down) Open Access
Notes Approved Most recent IF: 8.462; 2012 IF: 7.943
Call Number UA @ admin @ c:irua:100293 Serial 5370
Permanent link to this record
 

 
Author Verbeeck, J.; Van Aert, S.; Zhang, L.; Haiyan, T.; Schattschneider, P.; Rosenauer, A.
Title Computational aspects in quantitative EELS Type A1 Journal article
Year 2010 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 16 Issue S:2 Pages 240-241
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2010-08-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited (down) Open Access
Notes Approved Most recent IF: 1.891; 2010 IF: 3.259
Call Number UA @ lucian @ c:irua:96556UA @ admin @ c:irua:96556 Serial 454
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K.
Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
Year 2005 Publication Nature materials Abbreviated Journal Nat Mater
Volume 4 Issue Pages 104
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 39.737 Times cited (down) Open Access
Notes Approved Most recent IF: 39.737; 2005 IF: 15.941
Call Number UA @ lucian @ c:irua:54856 Serial 530
Permanent link to this record
 

 
Author Geuens, I.; Gijbels, R.; Dekeyzer, R.; Verbeeck, A.
Title Micro and surface analysis of individual silver halide microcrystals using a scanning ion microprobe Type P1 Proceeding
Year 1994 Publication Papers Abbreviated Journal
Volume Issue Pages 27-30
Keywords P1 Proceeding; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Soc imaging science technology Place of Publication Springfield Editor
Language Wos A1994BC23W00013 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0-89208-177-5 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited (down) Open Access
Notes Approved PHYSICS, CONDENSED MATTER 16/67 Q1 #
Call Number UA @ lucian @ c:irua:95946 Serial 2021
Permanent link to this record
 

 
Author Frederickx, P.; Verbeeck, J.; Schryvers, D.; Helary, D.; Darque-Ceretti, E.
Title Nanoparticles in lustre reconstructions Type P1 Proceeding
Year 2005 Publication Abbreviated Journal
Volume Issue Pages 169-175
Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication s.l. Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:55689 Serial 2262
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V.
Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express
Volume 2 Issue 6 Pages 723-734
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000304953700004 Publication Date 2012-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.591 Times cited (down) Open Access
Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616
Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707
Permanent link to this record
 

 
Author Bals, S.; Van Aert, S.; Verbeeck, J.; Van Tendeloo, G.
Title Structural, chemical and electronic characterization of ceramic materials using quantitative (scanning) transmission electron microscopy Type A1 Journal article
Year 2007 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
Volume 13 Issue S:3 Pages 332-333
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, Mass. Editor
Language Wos Publication Date 2008-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record
Impact Factor 1.891 Times cited (down) Open Access
Notes Approved Most recent IF: 1.891; 2007 IF: 1.941
Call Number UA @ lucian @ c:irua:96553 Serial 3224
Permanent link to this record
 

 
Author Lubk, A.; Vogel, K.; Wolf, D.; Krehl, J.; Röder, F.; Clark, L.; Guzzinati, G.; Verbeeck, J.
Title Fundamentals of Focal Series Inline Electron Holography Type H1 Book chapter
Year 2016 Publication Advances in imaging and electron physics T2 – Advances in imaging and electron physics / Hawkes, P.W. [edit.] Abbreviated Journal
Volume Issue Pages 105-147
Keywords H1 Book chapter; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Elsevier BV Place of Publication Editor
Language Wos Publication Date 2016-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1076-5670; http://id.crossref.org/isbn/9780128048115 ISBN 9780128048115 Additional Links UA library record
Impact Factor Times cited (down) Open Access
Notes L.C., G.G., and J.V. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant no. 278510 VORTEX. A.L., K.V., J. K., D.W., and F.R. acknowledge funding from the DIP of the Deutsche Forschungsgesellschaft.; ECASJO_; Approved Most recent IF: NA
Call Number EMAT @ emat @ c:irua:140097UA @ admin @ c:irua:140097 Serial 4419
Permanent link to this record
 

 
Author Hoang, D.-Q.; Korneychuk, S.; Sankaran, K.J.; Pobedinskas, P.; Drijkoningen, S.; Turner, S.; Van Bael, M.K.; Verbeeck, J.; Nicley, S.S.; Haenen, K.
Title Direct nucleation of hexagonal boron nitride on diamond : crystalline properties of hBN nanowalls Type A1 Journal article
Year 2017 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 127 Issue Pages 17-24
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Hexagonal boron nitride (hBN) nanowalls were deposited by unbalanced radio frequency sputtering on (100)-oriented silicon, nanocrystalline diamond films, and amorphous silicon nitride (Si3N4) membranes. The hBN nanowall structures were found to grow vertically with respect to the surface of all of the substrates. To provide further insight into the nucleation phase and possible lattice distortion of the deposited films, the structural properties of the different interfaces were characterized by transmission electron microscopy. For Si and Si3N4 substrates, turbostratic and amorphous BN phases form a clear transition zone between the substrate and the actual hBN phase of the bulk nanowalls. However, surprisingly, the presence of these phases was suppressed at the interface with a nanocrystalline diamond film, leading to a direct coupling of hBN with the diamond surface, independent of the vertical orientation of the diamond grain. To explain these observations, a growth mechanism is proposed in which the hydrogen terminated surface of the nanocrystalline diamond film leads to a rapid formation of the hBN phase during the initial stages of growth, contrary to the case of Si and Si3N4 substrates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Oxford Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited (down) Open Access OpenAccess
Notes Approved Most recent IF: 5.301
Call Number UA @ lucian @ c:irua:142398 Serial 4645
Permanent link to this record
 

 
Author Schattschneider, P.; Schachinger, T.; Verbeeck, J.
Title Ein Whirlpool aus Elektronen: Transmissions-Elektronenmikroskopie mit Elektronenwirbeln Type A1 Journal article
Year 2018 Publication Physik in unserer Zeit Abbreviated Journal Phys. Unserer Zeit
Volume 49 Issue 1 Pages 22-28
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Elektronen bewegen sich im feldfreien Raum immer gleichförmig geradlinig, so steht es in den Lehrbüchern. Falsch, sagen wir. Elektronen lassen sich zu Tornados formen, die theoretisch Nanopartikel zerreißen können. In der Elektronenmikroskopie eingesetzt, versprechen sie neue Erkenntnisse in der Festkörperphysik.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2018-01-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9252 ISBN Additional Links UA library record
Impact Factor Times cited (down) Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @c:irua:148159 Serial 4806
Permanent link to this record
 

 
Author Hasanli, N.; Gauquelin, N.; Verbeeck, J.; Hadermann, J.; Hayward, M.A.
Title Small-moment paramagnetism and extensive twinning in the topochemically reduced phase Sr2ReLiO5.5 Type A1 Journal article
Year 2018 Publication Journal of the Chemical Society : Dalton transactions Abbreviated Journal Dalton T
Volume 47 Issue 44 Pages 15783-15790
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Reaction of the cation-ordered double perovskite Sr2ReLiO6 with dilute hydrogen at 475 degrees C leads to the topochemical deintercalation of oxide ions from the host lattice and the formation of a phase of composition Sr2ReLiO5.5, as confirmed by thermogravimetric and EELS data. A combination of neutron and electron diffraction data reveals the reduction process converts the -Sr2O2-ReLiO4-Sr2O2-ReLiO4- stacking sequence of the parent phase into a -Sr2O2-ReLiO3-Sr2O2-ReLiO4-, partially anion-vacant ordered sequence. Furthermore a combination of electron diffraction and imaging reveals Sr2ReLiO5.5 exhibits extensive twinning – a feature which can be attributed to the large, anisotropic volume expansion of the material on reduction. Magnetisation data reveal a strongly reduced moment of (eff) = 0.505(B) for the d(1) Re6+ centres in the phase, suggesting there remains a large orbital component to the magnetism of the rhenium centres, despite their location in low symmetry coordination environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000450208000019 Publication Date 2018-10-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-9226 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.029 Times cited (down) Open Access Not_Open_Access
Notes Experiments at the Diamond Light Source were performed as part of the Block Allocation Group award “Oxford Solid State Chemistry BAG to probe composition-structure-property relationships in solids” (EE13284). Experiments at the ISIS pulsed neutron facility were supported by a beam time allocation from the STFC. NH acknowledges funding from the “State Programme on Education of Azerbaijani Youth Abroad in 2007-2015” by the Ministry of Education of Azerbaijan. J. V. and N. G. acknowledge funding through the GOA project “Solarpaint” of the University of Antwerp. The microscope used in this work was partly funded by the Hercules Fund from the Flemish Government. Approved Most recent IF: 4.029
Call Number EMAT @ emat @c:irua:155771 Serial 5137
Permanent link to this record
 

 
Author O'Donnell, D.; Hassan, S.; Du, Y.; Gauquelin, N.; Krishnan, D.; Verbeeck, J.; Fan, R.; Steadman, P.; Bencok, P.; Dobrynin, A.N.
Title Etching induced formation of interfacial FeMn in IrMn/CoFe bilayers Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 16 Pages 165002
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The effect of ion etching on exchange bias in IrMn3/Co70Fe30 bilayers is investigated. In spite of the reduction of saturation magnetization caused by the embedding of Tr from the capping layer into the Co70Fe30 layer during the etching process, the exchange bias in samples with the same thickness of the Co70Fe30 layer is reducing in proportion to the etching power. X-ray magnetic circular dichroism measurements revealed the emergence of an uncompensated Mn magnetization after etching, which is antiferromagnetically coupled to the ferromagnetic layer. This suggests etching induced formation of small interfacial FeMn regions which leads to the decrease of effective exchange coupling between ferromagnetic and antiferromagnetic layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000458524800001 Publication Date 2019-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.588 Times cited (down) Open Access OpenAccess
Notes ; This work was supported by Seagate Technology (Ireland). Beamline I10, Diamond Light Source, is acknowledged for provided beamtime. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:157458 Serial 5247
Permanent link to this record
 

 
Author Bouwmeester, R.L.; de Hond, K.; Gauquelin, N.; Verbeeck, J.; Koster, G.; Brinkman, A.
Title Stabilization of the Perovskite Phase in the Y-Bi-O System By Using a BaBiO3 Buffer Layer Type A1 Journal Article
Year 2019 Publication Physica Status Solidi-Rapid Research Letters Abbreviated Journal Phys Status Solidi-R
Volume 13 Issue 7 Pages 1970028
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract A topological insulating phase has theoretically been predicted for the thermodynamically unstable perovskite phase of YBiO3. Here, it is shown that the crystal structure of the Y-Bi-O system can be controlled by using a BaBiO3 buffer layer. The BaBiO3 film overcomes the large lattice mismatch with the SrTiO3 substrate by forming a rocksalt structure in between the two perovskite structures. Depositing an YBiO3 film directly on a SrTiO3 substrate gives a fluorite structure. However, when the Y–Bi–O system is deposited on top of the buffer layer with the correct crystal phase and comparable lattice constant, a single oriented perovskite structure with the expected lattice constants is observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6254 ISBN Additional Links
Impact Factor 3.032 Times cited (down) Open Access
Notes The work at the University of Twente is financially supported by NWO through a VICI grant. N.G. and J.V. acknowledge financial support from the GOA project Solarpaint of the University of Antwerp. The microscope used for this experiment has been partially financed by the Hercules Fund from the Flemish Government. L. Ding is acknowledge for his help with the GPA analysis. Approved Most recent IF: 3.032
Call Number EMAT @ emat @ Serial 5358
Permanent link to this record
 

 
Author Conings, B.; Babayigit, A.; Klug, M.; Bai, S.; Gauquelin, N.; Sakai, N.; Wang, J.T.-W.; Verbeeck, J.; Boyen, H.-G.; Snaith, H.
Title Getting rid of anti-solvents: gas quenching for high performance perovskite solar cells Type P1 Proceeding
Year 2018 Publication 2018 Ieee 7th World Conference On Photovoltaic Energy Conversion (wcpec)(a Joint Conference Of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec) Abbreviated Journal
Volume Issue Pages
Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract As the field of perovskite optoelectronics developed, a plethora of strategies has arisen to control their electronic and morphological characteristics for the purpose of producing high efficiency devices. Unfortunately, despite this wealth of deposition approaches, the community experiences a great deal of irreproducibility between different laboratories, batches and preparation methods. Aiming to address this issue, we developed a simple deposition method based on gas quenching that yields smooth films for a wide range of perovskite compositions, in single, double, triple and quadruple cation varieties, and produces planar heterojunction devices with competitive efficiencies, so far up to 20%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000469200401163 Publication Date 2018-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-1-5386-8529-7 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:160468 Serial 5365
Permanent link to this record