|   | 
Details
   web
Records
Author Berdiyorov, G.R.; Savel'ev, S.E.; Milošević, M.V.; Kusmartsev, F.V.; Peeters, F.M.
Title Synchronized dynamics of Josephson vortices in artificial stacks of SNS Josephson junctions under both dc and ac bias currents Type A1 Journal article
Year 2013 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 87 Issue 18 Pages 184510-184519
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nonlinear dynamics of Josephson vortices (fluxons) in artificial stacks of superconducting-normal-superconducting Josephson junctions under simultaneously applied time-periodic ac and constant biasing dc currents is studied using the time dependent Ginzburg-Landau formalism with a Lawrence-Doniach extension. At zero external magnetic field and dc biasing current the resistive state of the system is characterized by periodic nucleation and annihilation of fluxon-antifluxon pairs, relative positions of which are determined by the state of neighboring junctions. Due to the mutual repulsive interaction, fluxons in different junctions move out of phase. Their collective motion can be synchronized by adding a small ac component to the biasing dc current. Coherent motion of fluxons is observed for a broad frequency range of the applied drive. In the coherent state the maximal output voltage, which is proportional to the number of junctions in the stack, is observed near the characteristic frequency of the system determined by the crossing of the fluxons across the sample. However, in this frequency range the dynamically synchronized state has an alternative-a less ordered state with smaller amplitude of the output voltage. Collective behavior of the junctions is strongly affected by the sloped sidewalls of the stack. Synchronization is observed only for weakly trapezoidal cross sections, whereas irregular motion of fluxons is observed for larger slopes of the sample edge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000319653400007 Publication Date 2013-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 10 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and by EU Marie Curie (Project No. 253057). ; Approved Most recent IF: 3.836; 2013 IF: 3.664
Call Number UA @ lucian @ c:irua:109643 Serial 3406
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Kusmartsev, F.; Peeters, F.M.; Savel'ev, S.
Title Josephson vortex loops in nanostructured Josephson junctions Type A1 Journal article
Year 2018 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 8 Issue 8 Pages 2733
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Linked and knotted vortex loops have recently received a revival of interest. Such three-dimensional topological entities have been observed in both classical-and super-fluids, as well as in optical systems. In superconductors, they remained obscure due to their instability against collapse – unless supported by inhomogeneous magnetic field. Here we reveal a new kind of vortex matter in superconductors -the Josephson vortex loops – formed and stabilized in planar junctions or layered superconductors as a result of nontrivial cutting and recombination of Josephson vortices around the barriers for their motion. Engineering latter barriers opens broad perspectives on loop manipulation and control of other possible knotted/linked/entangled vortex topologies in nanostructured superconductors. In the context of Josephson devices proposed to date, the high-frequency excitations of the Josephson loops can be utilized in future design of powerful emitters, tunable filters and waveguides of high-frequency electromagnetic radiation, thereby pushing forward the much needed Terahertz technology.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000424630400046 Publication Date 2018-02-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited (down) 10 Open Access
Notes ; This work was supported by EU Marie-Curie program (project No: 253057), Special Research Funds of the University of Antwerp (BOF-UA), and by the Research Foundation – Flanders (FWO). ; Approved Most recent IF: 4.259
Call Number UA @ lucian @ c:irua:149262UA @ admin @ c:irua:149262 Serial 4940
Permanent link to this record
 

 
Author Leliaert, J.; Gypens, P.; Milošević, M.V.; Van Waeyenberge, B.; Mulkers, J.
Title Coupling of the skyrmion velocity to its breathing mode in periodically notched nanotracks Type A1 Journal article
Year 2019 Publication Journal of physics: D: applied physics Abbreviated Journal J Phys D Appl Phys
Volume 52 Issue 2 Pages 024003
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract A thorough understanding of the skyrmion motion through nanotracks is a prerequisite to realize the full potential of spintronic applications like the skyrmion racetrack memory. One of the challenges is to place the data, i.e. skyrmions, on discrete fixed positions, e.g. below a read or write head. In the domain-wall racetrack memory, one proposed solution to this problem was patterning the nanotrack with notches. Following this approach, this paper reports on the skyrmion mobility through a nanotrack with periodic notches (constrictions) made using variations in the chiral Dzyaloshinskii-Moriya interaction. We observe that such notches induce a coupling between the mobility and the skyrmion breathing mode, which manifests itself as velocity-dependent oscillations of the skyrmion diameter and plateaus in which the velocity is independent of the driving force. Despite the fact that domain walls are far more rigid objects than skyrmions, we were able to perform an analogous study and, surprisingly, found even larger plateaus of constant velocity. For both systems it is straightforward to tune the velocity at these plateaus by changing the design of the notched nanotrack geometry, e.g. by varying the distance between the notches. Therefore, the notch-induced coupling between the excited modes and the mobility could offer a strategy to stabilize the velocity against unwanted perturbations in racetrack-like applications. In the last part of the paper we focus on the low-current mobility regimes, whose very rich dynamics at nonzero temperatures are very similar to the operating principle of recently developed probabilistic logic devices. This proves that the mobility of nanomagnetic structures through a periodically modulated track is not only interesting from a fundamental point of view, but has a future in many spintronic applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000449169100001 Publication Date 2018-10-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3727 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.588 Times cited (down) 10 Open Access
Notes ; This work is supported by Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N. JL acknowledges his postdoctoral fellowships by the Ghent University special research fund (BOF) and FWO-Vlaanderen. The authors gratefully acknowledge the support of NVIDIA Corporation through donation of Titan Xp and Titan V GPU cards used for this research. ; Approved Most recent IF: 2.588
Call Number UA @ admin @ c:irua:155359 Serial 5202
Permanent link to this record
 

 
Author Yasui, Y.; Lahabi, K.; Fernández Becerra, V.; Fermin, R.; Anwar, M.S.; Yonezawa, S.; Terashima, T.; Milošević, M.V.; Aarts, J.; Maeno, Y.
Title Spontaneous emergence of Josephson junctions in homogeneous rings of single-crystal Sr₂RuO₄ Type A1 Journal article
Year 2020 Publication npj Quantum Materials Abbreviated Journal
Volume 5 Issue 1 Pages 21-28
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The chiral p-wave order parameter in Sr2RuO4 would make it a special case amongst the unconventional superconductors. A consequence of this symmetry is the possible existence of superconducting domains of opposite chirality. At the boundary of such domains, the locally suppressed condensate can produce an intrinsic Josephson junction. Here, we provide evidence of such junctions using mesoscopic rings, structured from Sr2RuO4 single crystals. Our order parameter simulations predict such rings to host stable domain walls across their arms. This is verified with transport experiments on loops, with a sharp transition at 1.5 K, which show distinct critical current oscillations with periodicity corresponding to the flux quantum. In contrast, loops with broadened transitions at around 3 K are void of such junctions and show standard Little-Parks oscillations. Our analysis demonstrates the junctions are of intrinsic origin and makes a compelling case for the existence of superconducting domains.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000525721000001 Publication Date 2020-04-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-4648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited (down) 10 Open Access
Notes ; The authors would like to thank S. Goswami, A. Singh, M. Kupryianov, S. Bakurskiy, J. Jobst, T. Nakamura, K. Adachi, Y. Liu, and Y. Asano for valuable discussions and comments, and F. Hubler, Y. Nakamura, and Y. Yamaoka for their technical contribution. This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Topological Materials Science” (KAKENHI Grant Nos. JP15H05852, JP15K21717, JP15H05851), JSPS-EPSRC Core-to-Core program (A. Advanced Research Network), JSPS research fellow (KAKENHI Grant No. JP16J10404), Grant-in-Aid JSPS KAKENHI JP26287078 and JP17H04848, and the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program. V.F.B. acknowledges support from the Foundation for Polish Science through the IRA Programme co-financed by EU within SG OP. ; Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:168553 Serial 6613
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Dynamics of kinematic vortices in a mesoscopic superconducting loop Type A1 Journal article
Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 470 Issue 19 Pages 946-948
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using the time-dependent GinzburgLandau formalism, we study the dynamic properties of a submicron superconducting loop in applied current and in presence of a perpendicular magnetic field. The resistive state of the sample is caused by the motion of kinematic vortexantivortex pairs. Vortices and antivortices move in opposite directions to each other, perpendicularly to the applied drive, and the periodic creation and annihilation of such pairs results in periodic oscillations of the voltage across the sample. The dynamics of these kinematic pairs is strongly influenced by the applied magnetic field, which for high fields leads to the flow of just vortices. Kinematic vortices can be temporarily pinned inside the loop with observable trace in the voltage vs. time characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000282454400061 Publication Date 2010-03-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited (down) 9 Open Access
Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415
Call Number UA @ lucian @ c:irua:85039 Serial 777
Permanent link to this record
 

 
Author Yang, W.; Kong, M.; Milošević, M.V.; Zeng, Z.; Peeters, F.M.
Title Two-dimensional binary clusters in a hard-wall trap: structural and spectral properties Type A1 Journal article
Year 2007 Publication Physical review E Abbreviated Journal Phys Rev E
Volume 76 Issue 4 Pages art.041404:part 1
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000250621900066 Publication Date 2007-10-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.366 Times cited (down) 9 Open Access
Notes Approved Most recent IF: 2.366; 2007 IF: 2.483
Call Number UA @ lucian @ c:irua:67325 Serial 3772
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Phonon limited superconducting correlations in metallic nanograins Type A1 Journal article
Year 2015 Publication Scientific reports Abbreviated Journal Sci Rep-Uk
Volume 5 Issue 5 Pages 16515
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electronphonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest T-c achievable by quantum confinement.
Address
Corporate Author Thesis
Publisher Nature Publishing Group Place of Publication London Editor
Language Wos 000364647700001 Publication Date 2015-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.259 Times cited (down) 9 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Research Foundation Flanders (FWO), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO. M.D.C. acknowledges fruitful discussions with V. Z. Kresin, S. N. Klimin and V. N. Gladilin. ; Approved Most recent IF: 4.259; 2015 IF: 5.578
Call Number UA @ lucian @ c:irua:129543 Serial 4224
Permanent link to this record
 

 
Author Mulkers, J.; Hals, K.M.D.; Leliaert, J.; Milošević, M.V.; Van Waeyenberge, B.; Everschor-Sitte, K.
Title Effect of boundary-induced chirality on magnetic textures in thin films Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 98 Issue 6 Pages 064429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract In the quest for miniaturizing magnetic devices, the effects of boundaries and surfaces become increasingly important. Here we show how the recently predicted boundary-induced Dzyaloshinskii-Moriya interaction (DMI) affects the magnetization of ferromagnetic films with a C-infinity v symmetry and a perpendicular magnetic anisotropy. For an otherwise uniformly magnetized film, we find a surface twist when the magnetization in the bulk is canted by an in-plane external field. This twist at the surfaces caused by the boundary-induced DMI differs from the common canting caused by internal DMI observed at the edges of a chiral magnet. Furthermore, we find that the surface twist due to the boundary-induced DMI strongly affects the width of the domain wall at the surfaces. We also find that the skyrmion radius increases in the depth of the film, with the average size of the skyrmion increasing with boundary-induced DMI. This increase suggests that the boundary-induced DMI contributes to the stability of the skyrmion.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000443394600004 Publication Date 2018-08-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 9 Open Access
Notes ; The authors thank Matthias Sitte and Andre Thiaville for fruitful discussions. This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vlaanderen) through Project No. G098917N and the German Research Foundation (DFG) under the Project No. EV 196/2-1. J.L. is supported by the Ghent University Special Research Fund with a BOF postdoctoral fellowship. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:153706UA @ admin @ c:irua:153706 Serial 5093
Permanent link to this record
 

 
Author Connolly, M.R.; Milošević, M.V.; Bending, S.J.; Tamegai, T.
Title Magneto-optical imaging of flux penetration into arrays of Bi2Sr2CaCu2O8 microdisks Type A1 Journal article
Year 2008 Publication Physical review : B : solid state Abbreviated Journal Phys Rev B
Volume 78 Issue 13 Pages 132501,1-132501,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We have used differential magneto-optical (MO) imaging to investigate the mixed state of superconducting Bi2Sr2CaCu2O8+ (BSCCO) microdisks fabricated on a single-crystal sample. MO difference images of the stray field distribution over a range of out-of-plane fields allow us to distinguish between flux that is penetrating the disks and that entering the underlying BSCCO platelet. We find that flux preferentially flows along linear defects into the interstitial platelet regions up to a characteristic field Hp, above which flux enters the disks. We identify this as the field of first penetration of pancake vortices over the Bean-Livingston barrier around the disks, where Hp(T) at intermediate temperatures is well described by an exponentially decaying function with a characteristic temperature T0=19 K. At a given temperature, a minority of the disks exhibit a lower penetration field and we correlate the location of these disks with the linear defects in the BSCCO crystal.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000260574200018 Publication Date 2008-10-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 8 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:75658 Serial 1901
Permanent link to this record
 

 
Author Shanenko, A.A.; Orlova, N.V.; Vagov, A.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Nanofilms as quantum-engineered multiband superconductors : the Ginzburg-Landau theory Type A1 Journal article
Year 2013 Publication Europhysics letters Abbreviated Journal Epl-Europhys Lett
Volume 102 Issue 2 Pages 27003-27006
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently fabricated single-crystalline atomically flat metallic nanofilms are in fact quantum-engineered multiband superconductors. Here the multiband structure is dictated by the nanofilm thickness through the size quantization of the electron motion perpendicular to the nanofilm. This opens the unique possibility to explore superconductivity in well-controlled multi-band systems. However, a serious obstacle is the absence of a convenient and manageable theoretical tool to access new physical phenomena in such quasi-two-dimensional systems, including interplay of quantum confinement and fluctuations. Here we cover this gap and construct the appropriate multiband Ginzburg-Landau functional for nano-thin superconductors. Copyright (C) EPLA, 2013
Address
Corporate Author Thesis
Publisher Place of Publication Paris Editor
Language Wos 000319617700019 Publication Date 2013-05-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0295-5075;1286-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.957 Times cited (down) 8 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 1.957; 2013 IF: 2.269
Call Number UA @ lucian @ c:irua:109859 Serial 2257
Permanent link to this record
 

 
Author Nasirpouri, F.; Engbarth, M.A.; Bending, S.J.; Peter, L.M.; Knittel, A.; Fangohr, H.; Milošević, M.V.
Title Three-dimensional ferromagnetic architectures with multiple metastable states Type A1 Journal article
Year 2011 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 98 Issue 22 Pages 222506,1-222506,3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We demonstrate controllable dual-bath electrodeposition of nickel on architecture-tunable three-dimensional (3D) silver microcrystals. Magnetic hysteresis loops of individual highly faceted Ag-Ni core-shell elements reveal magnetization reversal that comprises multiple sharp steps corresponding to different stable magnetic states. Finite-element micromagnetic simulations on smaller systems show several jumps during magnetization reversal which correspond to transitions between different magnetic vortex states. Structures of this type could be realizations of an advanced magnetic data storage architecture whereby each element represents one multibit, storing a combination of several conventional bits depending on the overall number of possible magnetic states associated with the 3D core-shell shape.
Address
Corporate Author Thesis
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000291405700044 Publication Date 2011-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited (down) 8 Open Access
Notes ; This work was supported by EPSRC in the U.K. under Grant Nos. EP/E039944/1 and EP/E040063/1, DYNAMAG project (EU FP7/2007-2013 Grant No. 233552), and FWO-Vlaanderen. ; Approved Most recent IF: 3.411; 2011 IF: 3.844
Call Number UA @ lucian @ c:irua:90008 Serial 3652
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Milošević, M.V.; Peeters, F.M.
Title Vortex lattice in effective type-I superconducting films with periodic arrays of submicron holes Type A1 Journal article
Year 2006 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 437/438 Issue Pages 25-28
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000238395700008 Publication Date 2006-01-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited (down) 8 Open Access
Notes Approved Most recent IF: 1.404; 2006 IF: 0.792
Call Number UA @ lucian @ c:irua:58358 Serial 3867
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.; Jankó, B.
Title Vortex manipulation in superconducting films with tunable magnetic topology Type A1 Journal article
Year 2011 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 24 Issue 2 Pages 024001-024001,6
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using a combination of the phenomenological GinzburgLandau theory and micromagnetic simulations, we study properties of a superconducting film with an array of soft magnetic dots on top. An external in-plane magnetic field gradually drives the magnets from an out-of-plane or magnetic vortex state to an in-plane single-domain state, which changes spatially the distribution of the superconducting condensate. If induced by the magnets, the vortexantivortex molecules exhibit rich transitions as a function of the applied in-plane field. At the same time, we show how the magnetic dots act as very effective dynamic pinning centers for vortices in an applied perpendicular magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000286379900002 Publication Date 2011-01-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited (down) 8 Open Access
Notes ; This research was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP), the JSPS/ESF-NES program, the bilateral project between Flanders and the USA, NSF NIRT, ECS-0609249, and the Institute for Theoretical Sciences. ; Approved Most recent IF: 2.878; 2011 IF: 2.662
Call Number UA @ lucian @ c:irua:88731 Serial 3870
Permanent link to this record
 

 
Author Xu, B.; Milošević, M.V.; Peeters, F.M.
Title Vortex matter in oblate mesoscopic superconductors with a hole: broken symmetry vortex states and multi-vortex entry Type A1 Journal article
Year 2009 Publication New journal of physics Abbreviated Journal New J Phys
Volume 11 Issue Pages 013020,1-013020,21
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using three-dimensional (3D) numerical discretization of the GinzburgLandau (GL) equations, we investigate the superconducting state of a sphere with a piercing hole in the presence of a magnetic field. In the case of samples with central perforation, in axially applied homogeneous magnetic field, we realized unconventional vortex states of broken symmetry due to complex, 3D competing interactions, which depend on the GL parameter ê. For certain sizes of the sample, non-hysteretic multi-vortex entry and exit is predicted with the non-existence of some vorticities as stable states. In a tilted magnetic field, we studied the gradual transformation of 3D flux patterns into 1D vortex chains, where vortices align along the perforation, and the evolvement of the multi-vortex entry as well. We analyze the flux-guiding ability of the hole in a tilted field, which leads to fractional flux response in magnetization M(H) curves.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000262932500003 Publication Date 2009-01-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited (down) 8 Open Access
Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
Call Number UA @ lucian @ c:irua:75986 Serial 3873
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 99 Issue 6 Pages 064512
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459322400005 Publication Date 2019-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 8 Open Access
Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:158621 Serial 5212
Permanent link to this record
 

 
Author Houben, K.; Jochum, J.K.; Lozano, D.P.; Bisht, M.; Menendez, E.; Merkel, D.G.; Ruffer, R.; Chumakov, A., I; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Couet, S.; Vantomme, A.; Temst, K.; Van Bael, M.J.
Title In situ study of the \alpha-Sn to \beta-Sn phase transition in low-dimensional systems : phonon behavior and thermodynamic properties Type A1 Journal article
Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 100 Issue 7 Pages 075408
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The densities of phonon states of thin Sn films on InSb substrates are determined during different stages of the alpha-Sn to beta-Sn phase transition using nuclear inelastic x-ray scattering. The vibrational entropy and internal energy per atom as a function of temperature are obtained by numerical integration of the phonon density of states. The free energy as a function of temperature for the nanoscale samples is compared to the free energy obtained from ab initio calculations of bulk tin in the alpha-Sn and beta-Sn phase. In thin films this phase transition is governed by the interplay between the vibrational behavior of the film (the phase transition is driven by the vibrational entropy) and the stabilizing influence of the substrate (which depends on the film thickness). This brings a deeper understanding of the role of lattice vibrations in the phase transition of nanoscale Sn.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000478992800005 Publication Date 2019-08-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 8 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO) and the Concerted Research Action (Grant No. GOA14/007). K.H., S.C., D.P.L., and E.M. wish to thank the FWO for financial support. The authors gratefully acknowledge the European Synchrotron Radiation Facility (ESRF) for the granted beam time and the use of the in situ UHV preparation chamber. The authors thank B. Opperdoes for technical support and T. Peissker and R. Lieten for fruitful discussions. ; Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:161836 Serial 5416
Permanent link to this record
 

 
Author Vanherck, J.; Bacaksiz, C.; Sorée, B.; Milošević, M.V.; Magnus, W.
Title 2D ferromagnetism at finite temperatures under quantum scrutiny Type A1 Journal article
Year 2020 Publication Applied Physics Letters Abbreviated Journal Appl Phys Lett
Volume 117 Issue 5 Pages 052401
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent years have seen a tremendous rise of two-dimensional (2D) magnetic materials, several of which were verified experimentally. However, most of the theoretical predictions to date rely on ab initio methods, at zero temperature and fluctuation-free, while one certainly expects detrimental quantum fluctuations at finite temperatures. Here, we present the solution of the quantum Heisenberg model for honeycomb/hexagonal lattices with anisotropic exchange interaction up to third nearest neighbors and in an applied field in arbitrary direction, which answers the question whether long-range magnetization can indeed survive in the ultrathin limit of materials, up to which temperature, and what the characteristic excitation (magnon) frequencies are, all essential to envisaged applications of magnetic 2D materials. We find that long-range magnetic order persists at finite temperature for materials with overall easy-axis anisotropy. We validate the calculations on the examples of monolayers CrI3, CrBr3, and MnSe2. Moreover, we provide an easy-to-use tool to calculate Curie temperatures of new 2D computational materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000559330100001 Publication Date 2020-08-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; 1077-3118 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4 Times cited (down) 8 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO) and the special research funds of the University of Antwerp (BOF-UA). ; Approved Most recent IF: 4; 2020 IF: 3.411
Call Number UA @ admin @ c:irua:171176 Serial 6445
Permanent link to this record
 

 
Author Pandey, T.; Covaci, L.; Milošević, M.V.; Peeters, F.M.
Title Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending Type A1 Journal article
Year 2021 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 103 Issue 23 Pages 235406
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine from first principles the flexoelectric properties of phosphorene nanoribbons under mechanical bending along armchair and zigzag directions. In both cases we find that the radial polarization depends linearly on the strain gradient. The flexoelectricity along the armchair direction is over 40% larger than along the zigzag direction. The obtained flexoelectric coefficients of phosphorene are four orders of magnitude larger than those of graphene and comparable to transition metal dichalcogenides. Analysis of charge density shows that the flexoelectricity mainly arises from the pz orbitals of phosphorus atoms. The electron mobilities in bent phosphorene can be enhanced by over 60% along the armchair direction, which is significantly higher than previous reports of mobility tuned by uniaxial strain. Our results indicate phosphorene is a candidate for a two-dimensional material applicable in flexible-electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000657129800006 Publication Date 2021-06-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 8 Open Access Not_Open_Access
Notes Approved Most recent IF: 3.836
Call Number UA @ admin @ c:irua:179109 Serial 6996
Permanent link to this record
 

 
Author Petrov, M.; Bekaert, J.; Milošević, M.V.
Title Superconductivity in gallenene Type A1 Journal article
Year 2021 Publication 2d Materials Abbreviated Journal 2D Mater
Volume 8 Issue 3 Pages 035056
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Among the large variety of two-dimensional (2D) materials discovered to date, elemental monolayers that host superconductivity are very rare. Using ab initio calculations we show that recently synthesized gallium monolayers, coined gallenene, are intrinsically superconducting through electron-phonon coupling. We reveal that Ga-100 gallenene, a planar monolayer isostructural with graphene, is the structurally simplest 2D superconductor to date, furthermore hosting topological edge states due to its honeycomb structure. Our anisotropic Eliashberg calculations show distinctly three-gap superconductivity in Ga-100, in contrast to the alternative buckled Ga-010 gallenene which presents a single anisotropic superconducting gap. Strikingly, the critical temperature (T ( c )) of gallenene is in the range of 7-10 K, exceeding the T ( c ) of bulk gallium from which it is exfoliated. Finally we explore chemical functionalization of gallenene with hydrogen, and report induced multigap superconductivity with an enhanced T ( c ) in the resulting gallenane compound.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000667458500001 Publication Date 2021-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2053-1583 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.937 Times cited (down) 8 Open Access OpenAccess
Notes Approved Most recent IF: 6.937
Call Number UA @ admin @ c:irua:179623 Serial 7025
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R.
Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
Year 2022 Publication Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 15 Pages 6268-6275
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831832100001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited (down) 8 Open Access OpenAccess
Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:189495 Serial 7077
Permanent link to this record
 

 
Author Berger, J.; Milošević, M.V.
Title Fluctuations in superconducting rings with two order parameters Type A1 Journal article
Year 2011 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 84 Issue 21 Pages 214515-214515,9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by two-band superconductivity in, e.g., borides and pnictides, starting from the two-band Ginzburg-Landau energy functional, we discuss how the presence of two order parameters and the coupling between them influence a superconducting ring in the fluctuative regime. Our method is an extension of the von OppenRiedel formalism for rings; it is exact, but requires numerical implementation. We also study approximations for which analytic expressions can be obtained, and check their ranges of validity. We provide estimates for the temperature ranges where fluctuations are important, calculate the persistent current in MgB2 rings as a function of temperature and enclosed flux, and point out its additional dependence on the cross-section area of the wire from which the ring is made. We find temperature regions in which fluctuations enhance the persistent currents and regions where they inhibit the persistent current. The presence of two order parameters that can fluctuate independently always leads to larger averages of the order parameters at Tc, but yields larger persistent current only for appropriate parameters. In cases of very different material parameters for the two coupled condensates, the persistent current is inhibited.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000297932500004 Publication Date 2011-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 7 Open Access
Notes ; This research was supported by the Israel Science Foundation, Grant No. 249/10, the Flemish Science Foundation (FWO-Vl), and the ESF network INSTANS. We are grateful to Andrei Varlamov and Felix von Oppen for their answers to our enquiries. ; Approved Most recent IF: 3.836; 2011 IF: 3.691
Call Number UA @ lucian @ c:irua:93957 Serial 1226
Permanent link to this record
 

 
Author Gomez, A.; Gonzalez, E.M.; Gilbert, D.A.; Milošević, M.V.; Liu, K.; Vicent, J.L.
Title Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 8 Pages 085018-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex-vortex motion.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000321709400024 Publication Date 2013-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited (down) 7 Open Access
Notes ; This work was supported by Spanish MINECO, grants FIS2008-06249 (Grupo Consolidado), Consolider CSD2007-00010 and CAM grant S2009/MAT-1726. MVM acknowledges support from FWO-Vlaanderen. Work at UCD was supported by the US NSF (DMR-1008791 and ECCS-0925626). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:109785 Serial 2716
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Vagov, A.; Vasenko, A.S.; Milošević, M.V.; Axt, V.M.; Peeters, F.M.
Title Influence of disorder on superconducting correlations in nanoparticles Type A1 Journal article
Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn
Volume 29 Issue 29 Pages 605-609
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate how the interplay of quantum confinement and level broadening caused by disorder affects superconducting correlations in ultra-small metallic grains. We use the electron-phonon interaction-induced electron mass renormalization and the reduced static-path approximation of the BCS formalism to calculate the critical temperature as a function of the grain size. We show how the strong electron-impurity scattering additionally smears the peak structure in the electronic density of states of a metallic grain and imposes additional limits on the critical temperature under strong quantum confinement.
Address
Corporate Author Thesis
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000371089500013 Publication Date 2016-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.18 Times cited (down) 7 Open Access
Notes ; This work was supported by the Belgian Science Policy (BELSPO Back to Belgium Grant), the Flemish Science Foundation (FWO-Vl), the Methusalem Foundation of the Flemish Government, TOPBOF-UA, and the bilateral project CNPq-FWO-Vl. ; Approved Most recent IF: 1.18
Call Number UA @ lucian @ c:irua:132286 Serial 4195
Permanent link to this record
 

 
Author Cabral, L.R.E.; de Aquino, B.R.C.H.T.; de Souza Silva, C.C.; Milošević, M.V.; Peeters, F.M.
Title Two-shell vortex and antivortex dynamics in a Corbino superconducting disk Type A1 Journal article
Year 2016 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 014515
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We examine theoretically the dynamics of two vortex shells in pinning-free superconducting thin disks in the Corbino geometry. In the first considered case, the inner shell is composed of vortices and the outer one of antivortices, corresponding to a state induced by the stray field of an off-plane magnetic dipole placed on top of the superconductor. In the second considered case, both shells comprise vortices induced by a homogeneous external field. We derive the equation of motion for each shell within the Bardeen-Stephen model and study the dynamics analytically by assuming both shells are rigid and commensurate. In both cases, two distinct regimes for vortex shell motion are identified: For low applied currents the entire configuration rotates rigidly, while above a threshold current the shells decouple from each other and rotate at different angular velocities. Analytical expressions for the decoupling current, the recombination time in the decoupled phases, as well as the voltage-current characteristics are presented. Our analytical results are in excellent agreement with numerical molecular dynamics simulations of the full many-vortex problem.
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000368481600003 Publication Date 2016-01-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 7 Open Access
Notes ; This work was supported by the Brazilian Science Agencies CAPES, CNPq, and FACEPE under Grants No. APQ-1381-1.05/12, No. APQ 2017-1.05/12, and No. APQ-0598/1.05-08 and by EU-COST Action No. MP1201 and the Research Foundation-Flanders (FWO). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:131541 Serial 4270
Permanent link to this record
 

 
Author Fernández Becerra, V.; Milošević, M.V.
Title Multichiral ground states in mesoscopic p-wave superconductors Type A1 Journal article
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 94 Issue 94 Pages 184517
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using Ginzburg-Landau formalism, we investigate the effect of confinement on the ground state of mesoscopic chiral p-wave superconductors in the absence of magnetic field. We reveal stable multichiral states with domain walls separating the regions with different chiralities, as well as monochiral states with spontaneous currents flowing along the edges. We show that multichiral states can exhibit identifying signatures in the spatial profile of the magnetic field if those are not screened by edge currents in the case of strong confinement. Such magnetic detection of domain walls in topological superconductors can serve as long-sought evidence of broken time-reversal symmetry. Furthermore, when applying electric current to mesoscopic p-wave samples, we found a hysteretic behavior in the current-voltage characteristic that distinguishes states with and without domain walls, thereby providing another useful hallmark for indirect confirmation of chiral p-wave superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000388816700001 Publication Date 2016-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 7 Open Access
Notes ; This work was supported by the Research Foundation-Flanders (FWO-Vlaanderen), the COST-EU action MP1201, and the MultiSuper network. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:139241 Serial 4456
Permanent link to this record
 

 
Author Zhang, L.-F.; Flammia, L.; Covaci, L.; Perali, A.; Milošević, M.V.
Title Multifaceted impact of a surface step on superconductivity in atomically thin films Type A1 Journal article
Year 2017 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 96 Issue 10 Pages 104509
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent experiments show that an atomic step on the surface of atomically thin metallic films can strongly affect electronic transport. Here we reveal multiple and versatile effects that such a surface step can have on superconductivity in ultrathin films. By solving the Bogoliubov-de Gennes equations self-consistently in this regime, where quantum confinement dominates the emergent physics, we show that the electronic structure is profoundly modified on the two sides of the step, as is the spatial distribution of the superconducting order parameter and its dependence on temperature and electronic gating. Furthermore, the surface step changes nontrivially the transport properties both in the proximity-induced superconducting pair correlations and the Josephson effect, depending on the step height. These results offer a new route to tailor superconducting circuits and design atomically thin heterojunctions made of one same material.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000411076000012 Publication Date 2017-09-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 7 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF project) and the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001). ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:146750 Serial 4790
Permanent link to this record
 

 
Author Flammia, L.; Zhang, L.-F.; Covaci, L.; Perali, A.; Milošević, M.V.
Title Superconducting nanoribbon with a constriction : a quantum-confined Josephson junction Type A1 Journal article
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 13 Pages 134514
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Extended defects are known to strongly affect nanoscale superconductors. Here, we report the properties of superconducting nanoribbons with a constriction formed between two adjacent step edges by solving the Bogoliubov-de Gennes equations self-consistently in the regime where quantum confinement is important. Since the quantum resonances of the superconducting gap in the constricted area are different from the rest of the nanoribbon, such constriction forms a quantum-confined S-S'-S Josephson junction, with a broadly tunable performance depending on the length and width of the constriction with respect to the nanoribbon, and possible gating. These findings provide an intriguing approach to further tailor superconducting quantum devices where Josephson effect is of use.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication New York, N.Y Editor
Language Wos 000430161500004 Publication Date 2018-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited (down) 7 Open Access
Notes ; This work was supported by the Research Foundation Flanders (FWO-Vlaanderen), the Special Research Funds of the University of Antwerp (TOPBOF), the Italian MIUR through the PRIN 2015 program (Contract No. 2015C5SEJJ001), the MultiSuper network, and the EU-COST NANOCOHYBRI action CA16218. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:150754UA @ admin @ c:irua:150754 Serial 4980
Permanent link to this record
 

 
Author Zhang, L.; Zhang, Y.-Y.; Zha, G.-Q.; Milošević, M.V.; Zhou, S.-P.
Title Skyrmionic chains and lattices in s plus id superconductors Type A1 Journal article
Year 2020 Publication Physical Review B Abbreviated Journal Phys Rev B
Volume 101 Issue 6 Pages 064501
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We report characteristic vortex configurations in s + id superconductors with time-reversal symmetry breaking, exposed to magnetic field. A vortex in the s + id state tends to have an opposite phase winding between s- and d-wave condensates. We find that this peculiar feature together with the competition between s- and d-wave symmetry results in three distinct classes of vortical configurations. When either s or d condensate absolutely dominates, vortices form a conventional lattice. However, when one condensate is relatively dominant, vortices organize in chains that exhibit skyrmionic character, separating the chiral components of the s +/- id order parameter into domains within and outside the chain. Such skyrmionic chains are found stable even at high magnetic field. When s and d condensates have comparable strength, vortices split cores in two chiral components to form full-fledged skyrmions, i.e., coreless topological structures with an integer topological charge, organized in a lattice. We provide characteristic magnetic field distributions of all states, enabling their identification in, e.g., scanning Hall probe and scanning SQUID experiments. These unique vortex states are relevant for high-T-c cuprate and iron-based superconductors, where the relative strength of competing pairing symmetries is expected to be tuned by temperature and/or doping level, and can help distinguish s + is and s + id superconducting phases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000510745600005 Publication Date 2020-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.7 Times cited (down) 7 Open Access
Notes ; The authors acknowledge useful discussions with Yong-Ping Zhang. This research was supported by the National Natural Science Foundation of China under Grants No. 61571277 and No. 61771298. L.-F.Z. and M.V.M. acknowledge support from Research Foundation-Flanders (FWO-Vlaanderen). ; Approved Most recent IF: 3.7; 2020 IF: 3.836
Call Number UA @ admin @ c:irua:166507 Serial 6605
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots Type A1 Journal article
Year 2004 Publication Physica: C : superconductivity Abbreviated Journal Physica C
Volume 404 Issue Pages 246-250
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000221211500045 Publication Date 2004-02-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.404 Times cited (down) 6 Open Access
Notes Approved Most recent IF: 1.404; 2004 IF: 1.072
Call Number UA @ lucian @ c:irua:44979 Serial 407
Permanent link to this record
 

 
Author Duarte-Neto, P.; Stosic, B.; Stosic, T.; Lessa, R.; Milošević, M.V.; Stanley, H.E.
Title Multifractal properties of a closed contour : a peek beyond the shape analysis Type A1 Journal article
Year 2014 Publication PLoS ONE Abbreviated Journal Plos One
Volume 9 Issue 12 Pages e115262
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract In recent decades multifractal analysis has been successfully applied to characterize the complex temporal and spatial organization of such diverse natural phenomena as heartbeat dynamics, the dendritic shape of neurons, retinal vessels, rock fractures, and intricately shaped volcanic ash particles. The characterization of multifractal properties of closed contours has remained elusive because applying traditional methods to their quasi-one-dimensional nature yields ambiguous answers. Here we show that multifractal analysis can reveal meaningful and sometimes unexpected information about natural structures with a perimeter well-defined by a closed contour. To this end, we demonstrate how to apply multifractal detrended fluctuation analysis, originally developed for the analysis of time series, to an arbitrary shape of a given study object. In particular, we show the application of the method to fish otoliths, calcareous concretions located in fish's inner ear. Frequently referred to as the fish's “black box”, they contain a wealth of information about the fish's life history and thus have recently attracted increasing attention. As an illustrative example, we show that a multifractal approach can uncover unexpected relationships between otolith contours and size and age of fish at maturity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000347239900030 Publication Date 2014-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.806 Times cited (down) 6 Open Access
Notes ; Funding: This work was supported by CNPq, Brazil (Projects No. 201506/2011-4, No. 303251/2010-7, and No. 306719/2012-6). MVM acknowledges support from Flemish Science Foundation (FWO-Vlaanderen) and CAPES PVE action No. BEX1392/ 11-5. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ; Approved Most recent IF: 2.806; 2014 IF: 3.234
Call Number UA @ lucian @ c:irua:123770 Serial 2218
Permanent link to this record