|   | 
Details
   web
Records
Author Tarasov, A.; Hu, Z.-Y.; Meledina, M.; Trusov, G.; Goodilin, E.; Van Tendeloo, G.; Dobrovolsky, Y.
Title One-Step Microheterogeneous Formation of Rutile@Anatase Core–Shell Nanostructured Microspheres Discovered by Precise Phase Mapping Type A1 Journal article
Year 2017 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
Volume 121 Issue 121 Pages 4443-4450
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Nanostructured core−shell microspheres with a rough rutile core and a thin anatase shell are synthesized via a one-step heterogeneous templated hydrolysis process of TiCl4 vapor on the aerosol water−air interface. The rutile-in-anatase core−shell structure has been evidenced by different electron microscopy techniques, including electron energy-loss spectroscopy and 3D electron tomography. A new mechanism for the formation of a crystalline rutile core inside the anatase shell is proposed based on a statistical evaluation of a large number of electron microscopy data. We found that the control over the TiCl4 vapor pressure, the ratio between TiCl4 and H2O aerosol, and the reaction conditions plays a crucial role in the formation of the core−shell morphology and increases the yield of nanostructured microspheres.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000395616200038 Publication Date 2017-03-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-7447 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.536 Times cited 4 Open Access OpenAccess
Notes Z.-Y.H., M. M., and G.V.T. acknowledge support from the the EC Framework 7 program ESTEEM2 (Reference 312483). Approved Most recent IF: 4.536
Call Number EMAT @ emat @ c:irua:141720 Serial 4472
Permanent link to this record
 

 
Author Clem, J.R.; Mawatari, Y.; Berdiyorov, G.R.; Peeters, F.M.
Title Predicted field-dependent increase of critical currents in asymmetric superconducting nanocircuits Type A1 Journal article
Year 2012 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 85 Issue 14 Pages 144511-144511,16
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The critical current of a thin superconducting strip of width W much larger than the Ginzburg-Landau coherence length xi but much smaller than the Pearl length Lambda = 2 lambda(2)/d is maximized when the strip is straight with defect-free edges. When a perpendicular magnetic field is applied to a long straight strip, the critical current initially decreases linearly with H but then decreases more slowly with H when vortices or antivortices are forced into the strip. However, in a superconducting strip containing sharp 90 degrees or 180 degrees turns, the zero-field critical current at H = 0 is reduced because vortices or antivortices are preferentially nucleated at the inner corners of the turns, where current crowding occurs. Using both analytic London-model calculations and time-dependent Ginzburg-Landau simulations, we predict that in such asymmetric strips the resulting critical current can be increased by applying a perpendicular magnetic field that induces a current-density contribution opposing the applied current density at the inner corners. This effect should apply to all turns that bend in the same direction.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000302611100004 Publication Date 2012-04-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 40 Open Access
Notes ; This research, supported in part by the US Department of Energy, Office of Basic Energy Science, Division of Materials Sciences and Engineering, was performed in part at the Ames Laboratory, which is operated for the US Department of Energy by Iowa State University under Contract No. DE-AC02-07CH11358. This work also was supported in part by the Flemish Science Foundation (FWO-Vlaanderen) and the Belgian Science Policy (IAP). G.R.B. acknowledges individual support from FWO-Vlaanderen. ; Approved Most recent IF: 3.836; 2012 IF: 3.767
Call Number UA @ lucian @ c:irua:98263 Serial 2695
Permanent link to this record
 

 
Author Afanasov, I.M.; Morozov, V.A.; Kepman, A.V.; Ionov, S.G.; Seleznev, A.N.; Van Tendeloo, G.; Audeev, V.V.
Title Preparation, electrical and thermal properties of new exfoliated graphite-based composites Type A1 Journal article
Year 2009 Publication Carbon Abbreviated Journal Carbon
Volume 47 Issue 1 Pages 263-270
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Exfoliated graphite samples (EG) with different bulk densities were prepared by the exfoliation of expandable graphite under a thermal shock regime. As a conductive filler, EG has been incorporated successfully into the coal tar pitch matrix by mechanical mixing. The conducting behavior of the composite was interpreted based on the percolation theory. The percolation threshold of the EG/pitch conducting composites at room temperature was as low as 1.5 wt% and did not depend on the bulk density of the EG used. By means of thermogravimetry the improvement of thermal stability of the composites in comparison with pure pitches was detected. The phenomenon was ascribed to heat shielding effect of the EG particles evidenced by matrix-assisted laser desorption/ionization mass spectrometry.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Oxford Editor
Language Wos 000262143500032 Publication Date 2008-10-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-6223; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.337 Times cited 42 Open Access
Notes Iap-Vi Approved Most recent IF: 6.337; 2009 IF: 4.504
Call Number UA @ lucian @ c:irua:75767 Serial 2701
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue 22 Pages 8170-8178
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Cambridge Editor
Language Wos 000304102200033 Publication Date 2012-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 16 Open Access
Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:98377 Serial 2702
Permanent link to this record
 

 
Author Kuznetsov, A.S.; Lu, Y.-G.; Turner, S.; Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Verbeeck, J.; Baranov, A.N.; Moshchalkov, V.V.
Title Preparation, structural and optical characterization of nanocrystalline ZnO doped with luminescent Ag-nanoclusters Type A1 Journal article
Year 2012 Publication Optical materials express Abbreviated Journal Opt Mater Express
Volume 2 Issue 6 Pages 723-734
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Nanocrystalline ZnO doped with Ag-nanoclusters has been synthesized by a salt solid state reaction. Three overlapping broad emission bands due to the Ag nanoclusters have been detected at about 570, 750 and 900 nm. These emission bands are excited by an energy transfer from the exciton state of the ZnO host when pumped in the wavelength range from 250 to 400 nm. The 900 nm emission band shows characteristic orbital splitting into three components pointing out that the anisotropic crystalline wurtzite host of ZnO is responsible for this feature. Heat-treatment and temperature dependence studies confirm the origin of these emission bands. An energy level diagram for the emission process and a model for Ag nanoclusters sites are suggested. The emission of nanocrystalline ZnO doped with Ag nanoclusters may be applied for white light generation, displays driven by UV light, down-convertors for solar cells and luminescent lamps.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000304953700004 Publication Date 2012-04-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-3930; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.591 Times cited Open Access
Notes We are grateful to the Methusalem Funding of Flemish Government for the support of this work. Y.-G. L. and S. T. acknowledge funding from the Fund for Scientific Research Flanders (FWO) for a postdoctoral grant and under grant number G056810N. The microscope used in this study was partially financed by the Hercules Foundation. J.V. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC grant No246791 – COUNTATOMS and ERC Starting Grant 278510 VORTEX. The authors acknowledge the guidance of Prof. G. Van Tendeloo, EMAT Antwerpen University, in transmission electron microscopy study in this work. ECASJO_; Approved Most recent IF: 2.591; 2012 IF: 2.616
Call Number UA @ lucian @ c:irua:97709UA @ admin @ c:irua:97709 Serial 2707
Permanent link to this record
 

 
Author Subban, C.V.; Ati, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Janot, R.; Tarascon, J.-M.
Title Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates : LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-Ion batteries Type A1 Journal article
Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
Volume 135 Issue 9 Pages 3653-3661
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li+ at an average potential of 3.6 V vs Li+/Li-0, slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li+/Li-0. Besides, these compounds can be easily made at temperatures near 200 degrees C via a synthesis process that enlists a new intermediate phase of composition M-3(SO4)(2)(OH)(2) (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Washington, D.C. Editor
Language Wos 000315936700056 Publication Date 2013-02-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 13.858 Times cited 53 Open Access
Notes Approved Most recent IF: 13.858; 2013 IF: 11.444
Call Number UA @ lucian @ c:irua:108283 Serial 2708
Permanent link to this record
 

 
Author Boschker, H.; Verbeeck, J.; Egoavil, R.; Bals, S.; Van Tendeloo, G.; Huijben, M.; Houwman, E.P.; Koster, G.; Blank, D.H.A.; Rijnders, G.
Title Preventing the reconstruction of the polar discontinuity at oxide heterointerfaces Type A1 Journal article
Year 2012 Publication Advanced functional materials Abbreviated Journal Adv Funct Mater
Volume 22 Issue 11 Pages 2235-2240
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Perovskite oxide heteroepitaxy receives much attention because of the possibility to combine the diverse functionalities of perovskite oxide building blocks. A general boundary condition for the epitaxy is the presence of polar discontinuities at heterointerfaces. These polar discontinuities result in reconstructions, often creating new functionalities at the interface. However, for a significant number of materials these reconstructions are unwanted as they alter the intrinsic materials properties at the interface. Therefore, a strategy to eliminate this reconstruction of the polar discontinuity at the interfaces is required. We show that the use of compositional interface engineering can prevent the reconstruction at the La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) interface. The polar discontinuity at this interface can be removed by the insertion of a single La0.33Sr0.67O layer, resulting in improved interface magnetization and electrical conductivity.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Weinheim Editor
Language Wos 000304749600002 Publication Date 2012-03-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-301X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.124 Times cited 72 Open Access
Notes We wish to acknowledge the financial support of the Dutch Science Foundation (NWO) and the Dutch Nanotechnology program NanoNed. S. B. acknowledges the financial support from the European Union under the Framework 6 program under a contract for an Integrated Infrastructure Initiative. Reference 026019 ESTEEM. J. V. and G. V. T. acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC grant N246791 – COUNTATOMS. R. E. acknowledges funding by the European Union Council under the 7th Framework Program (FP7) grant NNMP3-LA-2010-246102 IFOX. We thank Sandra Van Aert for stimulating discussions. Approved Most recent IF: 12.124; 2012 IF: 9.765
Call Number UA @ lucian @ c:irua:98907UA @ admin @ c:irua:98907 Serial 2712
Permanent link to this record
 

 
Author Peeters, F.M.
Title Probing of the electron-phonon interaction using high magnetic fields Type A1 Journal article
Year 1997 Publication Physicalia magazine Abbreviated Journal
Volume 19 Issue Pages 187-194
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis (up)
Publisher Place of Publication Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19251 Serial 2715
Permanent link to this record
 

 
Author Gomez, A.; Gonzalez, E.M.; Gilbert, D.A.; Milošević, M.V.; Liu, K.; Vicent, J.L.
Title Probing the dynamic response of antivortex, interstitial and trapped vortex lattices on magnetic periodic pinning potentials Type A1 Journal article
Year 2013 Publication Superconductor science and technology Abbreviated Journal Supercond Sci Tech
Volume 26 Issue 8 Pages 085018-8
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The dynamics of the pinned vortex, antivortex and interstitial vortex have been studied in superconducting/magnetic hybrids consisting of arrays of Co/Pd multilayer nanodots embedded in Nb films. The magnetic nanodots show out-of-plane magnetization at the remanent state. This magnetic state allows for superconducting vortex lattices of different types in an applied homogeneous magnetic field. We experimentally and theoretically show three such lattices: (i) a lattice containing only antivortices; (ii) a vortex lattice entirely pinned on the dots; and (iii) a vortex lattice with pinned and interstitial vortices. Between the flux creep (low vortex velocity) and the free flux flow (high vortex velocity) regimes the interaction between the magnetic array and the vortex lattice governs the vortex dynamics, which in turn enables distinguishing experimentally the type of vortex lattice which governs the dissipation. We show that the vortex lattice with interstitial vortices has the highest onset velocity where the lattice becomes ordered, whereas the pinned vortex lattice has the smallest onset velocity. Further, for this system, we directly estimate that the external force needed to depin vortices is 60% larger than the one needed to depin antivortices; therefore we are able to decouple the antivortex-vortex motion.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Bristol Editor
Language Wos 000321709400024 Publication Date 2013-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048;1361-6668; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.878 Times cited 7 Open Access
Notes ; This work was supported by Spanish MINECO, grants FIS2008-06249 (Grupo Consolidado), Consolider CSD2007-00010 and CAM grant S2009/MAT-1726. MVM acknowledges support from FWO-Vlaanderen. Work at UCD was supported by the US NSF (DMR-1008791 and ECCS-0925626). ; Approved Most recent IF: 2.878; 2013 IF: 2.796
Call Number UA @ lucian @ c:irua:109785 Serial 2716
Permanent link to this record
 

 
Author Afanasov, I.M.; Van Tendeloo, G.; Mateev, A.T.
Title Production and structure of exfoliated graphite/coke composites modified by ZrO2 nanoparticles Type A1 Journal article
Year 2010 Publication New carbon materials Abbreviated Journal
Volume 25 Issue 4 Pages 255-260
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Exfoliated graphite/coke composites modified by ZrO2 nanoparticles were produced using two different techniques and characterized by means of X-ray diffraction, scanning and transmission electron microscopy. In the first, low-density exfoliated graphite/coke blocks were dipped repeatedly and alternately in ZrO(NO3)2 and NH4OH solutions and subsequently heat treated at 1200°C in nitrogen to deposit thin layers of ZrO2 nanoparticles on the free surfaces of the carbon matrix. In the second, a mixture of expandable graphite, phenol-formaldehyde resin powder, and ZrOC2O4-modified fibrous cellulose in a sealed container was submitted to thermal shock at 900 °C followed by heat treatment at 1 200 °C in nitrogen to obtain the modified composites. The ZrO2 nanoparticles formed in the second technique were incorporated into the composites in three length scales: 6-30 nm-isolated nanoparticles and small blobs, 200-1000 nm-lengthy dendrite-like structures, and thin layer adhering to the surface of the 1-40 μm long cellulose carbon fibers.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000281534800003 Publication Date 2010-09-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1872-5805; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Iap-Vi Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:84438 Serial 2721
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M.
Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
Year 2012 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 48 Issue 100 Pages 12159-12161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.
Address
Corporate Author Thesis (up)
Publisher Place of Publication London Editor
Language Wos 000311411100003 Publication Date 2012-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 39 Open Access
Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378
Call Number UA @ lucian @ c:irua:105230 Serial 2724
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K.
Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
Year 2012 Publication Materials research bulletin Abbreviated Journal Mater Res Bull
Volume 47 Issue 3 Pages 511-517
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis (up)
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000301994100001 Publication Date 2012-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.446 Times cited Open Access
Notes Approved Most recent IF: 2.446; 2012 IF: 1.913
Call Number UA @ lucian @ c:irua:97797 Serial 2727
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Properties of B and P doped Ge nanowires Type A1 Journal article
Year 2007 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 90 Issue Pages 263103,1-3
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis (up)
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000247625500068 Publication Date 2007-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 35 Open Access
Notes Approved Most recent IF: 3.411; 2007 IF: 3.596
Call Number UA @ lucian @ c:irua:69642 Serial 2728
Permanent link to this record
 

 
Author Schweigert, I.V.; Schweigert, V.A.; Peeters, F.M.
Title Properties of two-dimensional Coulomb clusters confined in a ring Type A1 Journal article
Year 1996 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 54 Issue Pages 10827-10834
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis (up)
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996VT67400087 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 27 Open Access
Notes Approved CHEMISTRY, PHYSICAL 77/144 Q3 # MATHEMATICS, INTERDISCIPLINARY 19/101 Q1 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 17/35 Q2 #
Call Number UA @ lucian @ c:irua:15791 Serial 2730
Permanent link to this record
 

 
Author Guzzinati, G.; Clark, L.; Béché, A.; Juchtmans, R.; Van Boxem, R.; Mazilu, M.; Verbeeck, J.
Title Prospects for versatile phase manipulation in the TEM : beyond aberration correction Type A1 Journal article
Year 2015 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 151 Issue 151 Pages 85-93
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this paper we explore the desirability of a transmission electron microscope in which the phase of the electron wave can be freely controlled. We discuss different existing methods to manipulate the phase of the electron wave and their limitations. We show how with the help of current techniques the electron wave can already be crafted into specific classes of waves each having their own peculiar properties. Assuming a versatile phase modulation device is feasible, we explore possible benefits and methods that could come into existence borrowing from light optics where the so-called spatial light modulators provide programmable phase plates for quite some time now. We demonstrate that a fully controllable phase plate building on Harald Rose׳s legacy in aberration correction and electron optics in general would open an exciting field of research and applications.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Amsterdam Editor
Language Wos 000351237800012 Publication Date 2014-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 19 Open Access
Notes 278510 Vortex; Fwo; 312483 Esteem2; esteem2jra2; esteem2jra3 ECASJO_; Approved Most recent IF: 2.843; 2015 IF: 2.436
Call Number c:irua:121405 c:irua:121405UA @ admin @ c:irua:121405 Serial 2731
Permanent link to this record
 

 
Author Rodríguez-Fernández, D.; Altantzis, T.; Heidari, H.; Bals, S.; Liz-Marzan, L.M.
Title A protecting group approach toward synthesis of Au-silica Janus nanostars Type A1 Journal article
Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 1 Pages 79-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.
Address
Corporate Author Thesis (up)
Publisher Place of Publication London Editor
Language Wos 000327606000017 Publication Date 2013-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 26 Open Access OpenAccess
Notes 262348 Esmi; 335078 Colouratom; 267867 Plasmaquo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:112774 Serial 2732
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Zhou, S.-P.; Peeters, F.M.
Title Proximity-induced pseudogap in mesoscopic superconductor/normal-metal bilayers Type A1 Journal article
Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 82 Issue 14 Pages 140502-140502,4
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recent scanning tunneling microscopy (STM) measurements of the proximity effect in Au/La2−xSrxCuO4 and La1.55Sr0.45CuO4/La2−xSrxCuO4 bilayers showed a proximity-induced pseudogap [O. Yuli, I. Asulin, Y. Kalcheim, G. Koren, and O. Millo, Phys. Rev. Lett. 103, 197003 (2009)]. We describe the proximity effect in mesoscopic superconductor/normal-metal bilayers by using the Bogoliubov-de Gennes equations for a tight-binding Hamiltonian with competing antiferromagnetic and d-wave superconductivity orders. The temperature-dependent local density of states is calculated as a function of the distance from the interface. Bound state due to both d-wave and spin-density wave gaps are formed in the normal metal for energies less than the respective gaps. If there is a mismatch between the Fermi velocities in the two layers we observe that these states will shift in energy when spin-density wave order is present, thus inducing a minigap at finite energy. We conclude that the STM measurement in the proximity structures is able to distinguish between the two scenarios proposed for the pseudogap (competing or precursor to superconductivity).
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000282507200002 Publication Date 2010-10-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), by Belgian Science Policy (IAP), by National Natural Science Foundation of China under Grants No. 10904089 and No. 60971053, by the Research Fund of Higher Education of China under Grant No. 20093108120005, by Shanghai Leading Academic Discipline project under Grant No. S30105, by Science and Technology Committee of Shanghai Municipal under Grant No. 09JC1406000, by Shanghai Municipal Education Committee under Grants No. shu-08053 and No. 10zz63, and by Innovation Funds of Shanghai University. ; Approved Most recent IF: 3.836; 2010 IF: 3.774
Call Number UA @ lucian @ c:irua:85028 Serial 2735
Permanent link to this record
 

 
Author Gengler, R.Y.N.; Toma, L.M.; Pardo, E.; Lloret, F.; Ke, X.; Van Tendeloo, G.; Gournis, D.; Rudolf, P.
Title Prussian blue analogues of reduced dimensionality Type A1 Journal article
Year 2012 Publication Small Abbreviated Journal Small
Volume 8 Issue 16 Pages 2532-2540
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Mixed-valence polycyanides (Prussian Blue analogues) possess a rich palette of properties spanning from room-temperature ferromagnetism to zero thermal expansion, which can be tuned by chemical modifications or the application of external stimuli (temperature, pressure, light irradiation). While molecule-based materials can combine physical and chemical properties associated with molecular-scale building blocks, their successful integration into real devices depends primarily on higher-order properties such as crystal size, shape, morphology, and organization. Herein a study of a new reduced-dimensionality system based on Prussian Blue analogues (PBAs) is presented. The system is built up by means of a modified Langmuir-Blodgett technique, where the PBA is synthesized from precursors in a self-limited reaction on a clay mineral surface. The focus of this work is understanding the magnetic properties of the PBAs in different periodic, low-dimensional arrangements, and the influence of the “on surface” synthesis on the final properties and dimensionality of the system.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Weinheim Editor
Language Wos 000307390300012 Publication Date 2012-07-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1613-6810; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.643 Times cited 17 Open Access
Notes Approved Most recent IF: 8.643; 2012 IF: 7.823
Call Number UA @ lucian @ c:irua:101104 Serial 2736
Permanent link to this record
 

 
Author Masir, M.R.; Moldovan, D.; Peeters, F.M.
Title Pseudo magnetic field in strained graphene : revisited Type A1 Journal article
Year 2013 Publication Solid state communications Abbreviated Journal Solid State Commun
Volume 175 Issue Pages 76-82
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We revisit the theory of the pseudo magnetic field as induced by strain in graphene using the tight- binding approach. A systematic expansion of the hopping parameter and the deformation of the lattice vectors is presented from which we obtain an expression for the pseudo magnetic field for low energy electrons. We generalize and discuss previous results and propose a novel effective Hamiltonian. The contributions of the different terms to the pseudo field expression are investigated for a model triaxial strain profile and are compared with the full solution. Our work suggests that the previous proposed pseudo magnetic field expression is valid up to reasonably high strain (15%) and there is no K-dependent pseudo-magnetic field.
Address
Corporate Author Thesis (up)
Publisher Place of Publication New York, N.Y. Editor
Language Wos 000329538200010 Publication Date 2013-04-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0038-1098; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.554 Times cited 57 Open Access
Notes This work was supported by the Flemish Science Foundation (FWO-Vl), the European Science Foundation (ESF) under the EURO- CORES Program EuroGRAPHENE within the project CONGRAN and the Methusalem programme of the Flemish government. Approved Most recent IF: 1.554; 2013 IF: 1.698
Call Number UA @ lucian @ c:irua:114805 Serial 2737
Permanent link to this record
 

 
Author Spreitzer, M.; Egoavil, R.; Verbeeck, J.; Blank, D.H.A.; Rijnders, G.
Title Pulsed laser deposition of SrTiO3 on a H-terminated Si substrate Type A1 Journal article
Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
Volume 1 Issue 34 Pages 5216-5222
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Interfacing oxides with silicon is a long-standing problem related to the integration of multifunctional oxides with semiconductor devices and the replacement of SiO2 with high-k gate oxides. In our study, pulsed laser deposition was used to prepare a SrTiO3 (STO) thin film on a H-terminated Si substrate. The main purpose of our work was to verify the ability of H-termination against the oxidation of Si during the PLD process and to analyze the resulting interfaces. In the first part of the study, the STO was deposited directly on the Si, leading to the formation of a preferentially textured STO film with a (100) orientation. In the second part, SrO was used as a buffer layer, which enabled the partial epitaxial growth of STO with STO(110)parallel to Si(100) and STO[001]parallel to Si[001]. The change in the growth direction induced by the application of a SrO buffer was governed by the formation of a SrO(111) intermediate layer and subsequently by the minimization of the lattice misfit between the STO and the SrO. Under the investigated conditions, approximately 10 nm thick interfacial layers formed between the STO and the Si due to reactions between the deposited material and the underlying H-terminated Si. In the case of direct STO deposition, SiOx formed at the interface with the silicon, while in the case when SrO was used as a buffer, strontium silicate grew directly on the silicon, which improves the growth quality of the uppermost STO.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000322911900005 Publication Date 2013-07-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.256 Times cited 23 Open Access
Notes Ifox; Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 5.256; 2013 IF: NA
Call Number UA @ lucian @ c:irua:110798UA @ admin @ c:irua:110798 Serial 2739
Permanent link to this record
 

 
Author Bertoni, G.; Beyers, E.; Verbeeck, J.; Mertens, M.; Cool, P.; Vansant, E.F.; Van Tendeloo, G.
Title Quantification of crystalline and amorphous content in porous TiO2 samples from electron energy loss spectroscopy Type A1 Journal article
Year 2006 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 106 Issue 7 Pages 630-635
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract We present an efficient method for the quantification of crystalline versus amorphous phase content in mesoporous materials, making use of electron energy loss spectroscopy. The method is based on fitting a superposition of core-loss edges using the maximum likelihood method with measured reference spectra. We apply the method to mesoporous TiO2 samples. We show that the absolute amount of the crystalline phase can be determined with an accuracy below 5%. This method takes also the amorphous phase into account, where standard X-ray diffraction is only quantitative for crystalline phases and not for amorphous phase. (c) 2006 Elsevier B.V.. All rights reserved.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Amsterdam Editor
Language Wos 000238479300011 Publication Date 2006-04-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 83 Open Access
Notes Iap-V; Goa-2005; Fwo Approved Most recent IF: 2.843; 2006 IF: 1.706
Call Number UA @ lucian @ c:irua:58823UA @ admin @ c:irua:58823 Serial 2741
Permanent link to this record
 

 
Author Van Aert, S.; Verbeeck, J.; Erni, R.; Bals, S.; Luysberg, M.; van Dyck, D.; Van Tendeloo, G.
Title Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy Type A1 Journal article
Year 2009 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 109 Issue 10 Pages 1236-1244
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
Abstract A model-based method is proposed to relatively quantify the chemical composition of atomic columns using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM) images. The method is based on a quantification of the total intensity of the scattered electrons for the individual atomic columns using statistical parameter estimation theory. In order to apply this theory, a model is required describing the image contrast of the HAADF STEM images. Therefore, a simple, effective incoherent model has been assumed which takes the probe intensity profile into account. The scattered intensities can then be estimated by fitting this model to an experimental HAADF STEM image. These estimates are used as a performance measure to distinguish between different atomic column types and to identify the nature of unknown columns with good accuracy and precision using statistical hypothesis testing. The reliability of the method is supported by means of simulated HAADF STEM images as well as a combination of experimental images and electron energy-loss spectra. It is experimentally shown that statistically meaningful information on the composition of individual columns can be obtained even if the difference in averaged atomic number Z is only 3. Using this method, quantitative mapping at atomic resolution using HAADF STEM images only has become possible without the need of simultaneously recorded electron energy loss spectra.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Amsterdam Editor
Language Wos 000270015200004 Publication Date 2009-05-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.843 Times cited 166 Open Access
Notes Fwo; Esteem 026019 Approved Most recent IF: 2.843; 2009 IF: 2.067
Call Number UA @ lucian @ c:irua:78585UA @ admin @ c:irua:78585 Serial 2748
Permanent link to this record
 

 
Author van Cleempoel, A.; Gijbels, R.; Zhu, D.; Claeys, M.; Richter, H.; Fonseca, A.
Title Quantitative determination of C60 and C70 in soot extracts by high performance liquid chromatography and mass spectrometric characterization Type A1 Journal article
Year 1996 Publication Fullerene science and technology Abbreviated Journal Fuller Nanotub Car N
Volume 4 Issue Pages 1001-1017
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A quantitative HPLC method was applied to determine the amounts of C-60 and C-70 present in extracts of soot produced in the electric arc reactor and in flames. The combustion method was found to yield a higher C-70/C-60 ratio (0.67) compared with the evaporation experiment where the C-70/C-60 ratio amounts to 0.27.
Address
Corporate Author Thesis (up)
Publisher Place of Publication New York Editor
Language Wos A1996VK45000015 Publication Date 2007-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1536-383X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 0.836 Times cited 6 Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:15612 Serial 2751
Permanent link to this record
 

 
Author Altantzis, T.; Goris, B.; Sánchez-Iglesias, A.; Grzelczak, M.; Liz-Marzán, L.M.; Bals, S.
Title Quantitative structure determination of large three-dimensional nanoparticle assemblies Type A1 Journal article
Year 2013 Publication Particle and particle systems characterization Abbreviated Journal Part Part Syst Char
Volume 30 Issue 1 Pages 84-88
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Thumbnail image of graphical abstract To investigate nanoassemblies in three dimensions, electron tomography is an important tool. For large nanoassemblies, it is not straightforward to obtain quantitative results in three dimensions. An optimized acquisition technique, incoherent bright field scanning transmission electron microscopy, is combined with an advanced 3D reconstruction algorithm. The approach is applied to quantitatively analyze large nanoassemblies in three dimensions.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Weinheim Editor
Language Wos 000310806000008 Publication Date 2012-11-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0934-0866; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.474 Times cited 23 Open Access
Notes Goa; Fwo; 267867 Plasmaquo; 262348 Esmi Approved Most recent IF: 4.474; 2013 IF: 0.537
Call Number UA @ lucian @ c:irua:101776 Serial 2763
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Schryvers, D.
Title Quantitative three-dimensional analysis of Ni4Ti3 precipitate morphology and distribution in polycrystalline Ni-Ti Type A1 Journal article
Year 2011 Publication Acta materialia Abbreviated Journal Acta Mater
Volume 59 Issue 4 Pages 1780-1789
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates in a Ni50.8Ti49.2 polycrystalline shape memory alloy with a heterogeneous microstructure have been investigated using a focused ion beam/scanning electron microscopy slice-and-view procedure. The mean volume, central plane diameter, thickness, aspect ratio and sphericity of the precipitates in the grain interior as well as near to the grain boundary were measured and/or calculated. The morphology of the precipitates was quantified by determining the equivalent ellipsoids with the same moments of inertia and classified according to the Zingg scheme. Also, the pair distribution functions describing the three-dimensional distributions were obtained from the coordinates of the precipitate mass centres. Based on this new data it is suggested that the existence of the heterogeneous microstructure could be due to a very small concentration gradient in the grains of the homogenized material and that the resulting multistage martensitic transformation originates in strain effects related to the size of the precipitates and scale differences of the available B2 matrix in between the precipitates.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Oxford Editor
Language Wos 000287265100045 Publication Date 2010-12-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-6454; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 5.301 Times cited 34 Open Access
Notes Fwo Approved Most recent IF: 5.301; 2011 IF: 3.755
Call Number UA @ lucian @ c:irua:85533 Serial 2766
Permanent link to this record
 

 
Author van der Burgt, M.; Thoen, P.; Herlach, F.; Peeters, F.M.; Harris, J.J.; Foxon, C.T.
Title The quantized Hall effect in pulsed magnetic fields Type A1 Journal article
Year 1992 Publication Physica: B Abbreviated Journal Physica B
Volume 177 Issue Pages 409-413
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos A1992HP25000086 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 14 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:3026 Serial 2770
Permanent link to this record
 

 
Author Dong, H.M.; Xu, W.; Zeng, Z.; Lu, T.C.; Peeters, F.M.
Title Quantum and transport conductivities in monolayer graphene Type A1 Journal article
Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 77 Issue 23 Pages 235402,1-9
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis (up)
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000257289500092 Publication Date 2008-06-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 31 Open Access
Notes Approved Most recent IF: 3.836; 2008 IF: 3.322
Call Number UA @ lucian @ c:irua:69637 Serial 2771
Permanent link to this record
 

 
Author Chen, Y.; Shanenko, A.A.; Croitoru, M.D.; Peeters, F.M.
Title Quantum cascades in nano-engineered superconductors : geometrical, thermal and paramagnetic effects Type A1 Journal article
Year 2012 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat
Volume 24 Issue 26 Pages 265702
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of a parallel magnetic field on the orbital motion of electrons in high-quality superconducting nanowires resulting in a superconductor-to-normal transition which occurs through a cascade of jumps in the order parameter as a function of the magnetic field. Such cascades originate from the transverse size quantization that splits the conduction band into a series of subbands. Here, based on a numerical solution of the Bogoliubov-de Gennes equations for a hollow nanocylinder, we investigate how the quantum-size cascades depend on the confining geometry, i.e., by changing the cylinder radius R and its thickness d we cover the range from the nanowire-like to the nanofilm-like regime. The cascades are shown to become much less pronounced when increasing R/d, i.e., when the nanofilm-like regime is approached. When the temperature is non-zero they are thermally smoothed. This includes the spin-magnetic-field interaction which reduces the critical (depairing) parallel magnetic field H-c,H-parallel to but does not have any qualitative effect on the quantum cascades. From our calculations it is seen that the paramagnetic limiting field H-par significantly exceeds H-c,H-parallel to even in extremely narrow nanocylinders, i.e., when R, d are down to a few nanometers, and H-c,H-parallel to is only about 10% larger when switching-off the spin-magnetic-field interaction in this case. Both characteristic fields, H-c,H-parallel to and H-par, exhibit pronounced quantum-size oscillations. We demonstrate that the quantum cascades and the quantum-size oscillations survive in the presence of surface roughness.
Address
Corporate Author Thesis (up)
Publisher Place of Publication London Editor
Language Wos 000305640800014 Publication Date 2012-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-8984;1361-648X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.649 Times cited 6 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the ESF-AQDJJ network. MDC acknowledges the support of the EU Marie Curie IEF Action (Grant Agreement No. PIEF-GA-2009-235486-ScQSR). ; Approved Most recent IF: 2.649; 2012 IF: 2.355
Call Number UA @ lucian @ c:irua:100281 Serial 2773
Permanent link to this record
 

 
Author Chang, K.; Xia, J.B.; Wu, H.B.; Feng, S.L.; Peeters, F.M.
Title Quantum-confined magneto-Stark effect in diluted magnetic semiconductor coupled quantum wells Type A1 Journal article
Year 2002 Publication Applied physics letters Abbreviated Journal Appl Phys Lett
Volume 80 Issue 10 Pages 1788-1790
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The magneto-Stark effect in a diluted magnetic semiconductor (DMS) coupled quantum well (CQW) induced by an in-plane magnetic field is investigate theoretically. Unlike the usual electro-Stark effects, in a DMS CQW the Lorenz force leads to a spatially separated exciton. The in-plane magnetic field can shift the ground state of the magnetoexciton from a zero in-plane center of mass (CM)/momentum to a finite CM momentum, and render the ground state of magnetoexciton stable against radiative recombination due to momentum conservation. (C) 2002 American Institute of Physics.
Address
Corporate Author Thesis (up)
Publisher American Institute of Physics Place of Publication New York, N.Y. Editor
Language Wos 000174181800036 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.411 Times cited 8 Open Access
Notes Approved Most recent IF: 3.411; 2002 IF: 4.207
Call Number UA @ lucian @ c:irua:94932 Serial 2775
Permanent link to this record
 

 
Author Shestakov, M.V.; Tikhomirov, V.K.; Kirilenko, D.; Kuznetsov, A.S.; Chibotaru, L.F.; Baranov, A.N.; Van Tendeloo, G.; Moshchalkov, V.V.
Title Quantum cutting in Li (770 nm) and Yb (1000 nm) co-dopant emission bands by energy transfer from the ZnO nano-crystalline host Type A1 Journal article
Year 2011 Publication Optics express Abbreviated Journal Opt Express
Volume 19 Issue 17 Pages 15955-15964
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Li-Yb co-doped nano-crystalline ZnO has been synthesized by a method of thermal growth from the salt mixtures. X-ray diffraction, transmission electron microscopy, atomic absorption spectroscopy and optical spectroscopy confirm the doping and indicate that the dopants may form Li-Li and Yb3+-Li based nanoclusters. When pumped into the conduction and exciton absorption bands of ZnO between 250 to 425 nm, broad emission bands of about 100 nm half-height-width are excited around 770 and 1000 nm, due to Li and Yb dopants, respectively. These emission bands are activated by energy transfer from the ZnO host mostly by quantum cutting processes, which generate pairs of quanta in Li (770 nm) and Yb (1000 nm) emission bands, respectively, out of one quantum absorbed by the ZnO host. These quantum cutting phenomena have great potential for application in the down-conversion layers coupled to the Si solar cells.
Address
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language Wos 000293894900033 Publication Date 2011-08-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.307 Times cited 19 Open Access
Notes FWO; Methusalem Approved Most recent IF: 3.307; 2011 IF: 3.587
Call Number UA @ lucian @ c:irua:92428 Serial 2776
Permanent link to this record