toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. url  doi
openurl 
  Title Comment on “Misinterpretation of the Shuttleworth equation” Type A1 Journal Article
  Year 2024 Publication Scripta Materialia Abbreviated Journal Scripta Materialia  
  Volume 250 Issue Pages 116186  
  Keywords A1 Journal Article; CMT  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1359-6462 ISBN Additional Links  
  Impact Factor 6 Times cited Open Access  
  Notes Research Foundation Flanders; Approved Most recent IF: 6; 2024 IF: 3.747  
  Call Number UA @ lucian @ CMT Serial 9116  
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
  Year 2024 Publication Nano Letters Abbreviated Journal Nano Lett.  
  Volume 24 Issue 18 Pages 5625-5630  
  Keywords A1 Journal Article; CMT  
  Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2024-05-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1530-6984 ISBN Additional Links  
  Impact Factor 10.8 Times cited Open Access  
  Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712  
  Call Number UA @ lucian @ Serial 9123  
Permanent link to this record
 

 
Author Gogoi, A.; Neyts, E.C.; Peeters, F.M. doi  openurl
  Title Reduction-enhanced water flux through layered graphene oxide (GO) membranes stabilized with H3O+ and OH- ions Type A1 Journal article
  Year 2024 Publication Physical chemistry, chemical physics Abbreviated Journal  
  Volume 26 Issue 13 Pages 10265-10272  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Modelling and Simulation in Chemistry (MOSAIC)  
  Abstract Graphene oxide (GO) is one of the most promising candidates for next generation of atomically thin membranes. Nevertheless, one of the major issues for real world application of GO membranes is their undesirable swelling in an aqueous environment. Recently, we demonstrated that generation of H3O+ and OH- ions (e.g., with an external electric field) in the interlayer gallery could impart aqueous stability to the layered GO membranes (A. Gogoi, ACS Appl. Mater. Interfaces, 2022, 14, 34946). This, however, compromises the water flux through the membrane. In this study, we report on reducing the GO nanosheets as a solution to this issue. With the reduction of the GO nanosheets, the water flux through the layered GO membrane initially increases and then decreases again beyond a certain degree of reduction. Here, two key factors are at play. Firstly, the instability of the H-bond network between water molecules and the GO nanosheets, which increases the water flux. Secondly, the pore size reduction in the interlayer gallery of the membranes, which decreases the water flux. We also observe a significant improvement in the salt rejection of the membranes, due to the dissociation of water molecules in the interlayer gallery. In particular, for the case of 10% water dissociation, the water flux through the membranes can be enhanced without altering its selectivity. This is an encouraging observation as it breaks the traditional tradeoff between water flux and salt rejection of a membrane.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001186465400001 Publication Date 2024-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 3.3 Times cited Open Access  
  Notes Approved Most recent IF: 3.3; 2024 IF: 4.123  
  Call Number UA @ admin @ c:irua:204792 Serial 9168  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: