toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Tytgat, T.; Hauchecorne, B.; Abakumov, A.M.; Smits, M.; Verbruggen, S.W.; Lenaerts, S.
  Title Photocatalytic process optimisation for ethylene oxidation Type A1 Journal article
  Year 2012 Publication Chemical engineering journal Abbreviated Journal Chem Eng J
  Volume 209 Issue Pages 494-500
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Sustainable Energy, Air and Water Technology (DuEL)
  Abstract When studying photocatalysis it is important to consider, beside the chemical approach, the engineering part related to process optimisation. To achieve this a fixed bed photocatalytic set-up consisting of different catalyst placings, in order to vary catalyst distribution, is studied. The use of a fixed quantity of catalyst placed packed or randomly distributed in the reactor, results in an almost double degradation for the distributed catalyst. Applying this knowledge leads to an improved performance with limited use of catalyst. A reactor only half filled with catalyst leads to higher degradation performance compared to a completely filled reactor. Taking into account this simple process optimisation by better distributing the catalyst a more sustainable photocatalytic air purification process is achieved. (C) 2012 Elsevier B.V. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000311190500058 Publication Date 2012-08-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.216 Times cited 12 Open Access
  Notes ; We are grateful for the delivered photocatalyst by Evonik as well as for the PhD grant (T. Tytgat) given by the Institute of Innovation by Science and Technology in Flanders (IWT). ; Approved Most recent IF: 6.216; 2012 IF: 3.473
  Call Number UA @ lucian @ c:irua:105185 Serial (up) 2609
Permanent link to this record
 

 
Author Vasiliev, R.B.; Babynina, A.V.; Maslova, O.A.; Rumyantseva, M.N.; Ryabova, L.I.; Dobrovolsky, A.A.; Drozdov, K.A.; Khokhlov, D.R.; Abakumov, A.M.; Gaskov, A.M.
  Title Photoconductivity of nanocrystalline SnO2 sensitized with colloidal CdSe quantum dots Type A1 Journal article
  Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 1 Issue 5 Pages 1005-1010
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A highly reproducible photoresponse is observed in nanocrystalline SnO2 thick films sensitized with CdSe quantum dots. The effect of the SnO2 matrix microstructure on the photoconductivity kinetics and photoresponse amplitude is demonstrated. The photoresponse of the sensitized SnO2 thick films reaches more than two orders of magnitude under illumination with the wavelength of the excitonic transition of the quantum dots. Long-term photoconductivity kinetics and photoresponse dependence on illumination intensity reveal power-law behavior inherent to the disordered nature of SnO2. The photoconductivity of the samples rises with the coarsening of the granular structure of the SnO2 matrix. At the saturation region, the photoresponse amplitude remains stable under 10(4) pulses of illumination switching, demonstrating a remarkably high stability.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000314803600016 Publication Date 2012-11-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 13 Open Access
  Notes Approved Most recent IF: 5.256; 2013 IF: NA
  Call Number UA @ lucian @ c:irua:107705 Serial (up) 2610
Permanent link to this record
 

 
Author Linssen, T.; Cassiers, K.; Cool, P.; Lebedev, O.; Whittaker, A.; Vansant, E.F.
  Title Physicochemical and structural characterization of mesoporous aluminosilicates synthesized from leached saponite with additional aluminum incorporation Type A1 Journal article
  Year 2003 Publication Chemistry of materials Abbreviated Journal Chem Mater
  Volume 15 Issue 25 Pages 4863-4873
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000187250800026 Publication Date 2003-12-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 11 Open Access
  Notes Approved Most recent IF: 9.466; 2003 IF: 4.374
  Call Number UA @ lucian @ c:irua:103265 Serial (up) 2618
Permanent link to this record
 

 
Author Snoeckx, R.; Aerts, R.; Tu, X.; Bogaerts, A.
  Title Plasma-based dry reforming : a computational study ranging from the nanoseconds to seconds time scale Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 10 Pages 4957-4970
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract We present a computational study for the conversion of CH4 and CO2 into value-added chemicals, i.e., the so-called dry reforming of methane, in a dielectric barrier discharge reactor. A zero-dimensional chemical kinetics model is applied to study the plasma chemistry in a 1:1 CH4/CO2 mixture. The calculations are first performed for one microdischarge pulse and its afterglow, to study in detail the chemical pathways of the conversion. Subsequently, long time-scale simulations are carried out, corresponding to real residence times in the plasma, assuming a large number of consecutive microdischarge pulses, to mimic the conditions of the filamentary discharge regime in a dielectric barrier discharge (DBD) reactor. The conversion of CH4 and CO2 as well as the selectivity of the formed products and the energy cost and energy efficiency of the process are calculated and compared to experiments for a range of different powers and gas flows, and reasonable agreement is reached.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000316308400010 Publication Date 2013-02-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 118 Open Access
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number UA @ lucian @ c:irua:106516 Serial (up) 2628
Permanent link to this record
 

 
Author Yusupov, M.; Bogaerts, A.; Huygh, S.; Snoeckx, R.; van Duin, A.C.T.; Neyts, E.C.
  Title Plasma-induced destruction of bacterial cell wall components : a reactive molecular dynamics simulation Type A1 Journal article
  Year 2013 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 117 Issue 11 Pages 5993-5998
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Nonthermal atmospheric pressure plasmas are gaining increasing attention for biomedical applications. However, very little fundamental information on the interaction mechanisms between the plasma species and biological cells is currently available. We investigate the interaction of important plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, with bacterial peptidoglycan by means of reactive molecular dynamics simulations, aiming for a better understanding of plasma disinfection. Our results show that OH, O, O3, and H2O2 can break structurally important bonds of peptidoglycan (i.e., CO, CN, or CC bonds), which consequently leads to the destruction of the bacterial cell wall. The mechanisms behind these breakups are, however, dependent on the impinging plasma species, and this also determines the effectiveness of the cell wall destruction.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000316773000056 Publication Date 2013-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 59 Open Access
  Notes Approved Most recent IF: 4.536; 2013 IF: 4.835
  Call Number UA @ lucian @ c:irua:107154 Serial (up) 2636
Permanent link to this record
 

 
Author Somers, W.; Bogaerts, A.; van Duin, A.C.T.; Neyts, E.C.
  Title Plasma species interacting with nickel surfaces : toward an atomic scale understanding of plasma-catalysis Type A1 Journal article
  Year 2012 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 116 Issue 39 Pages 20958-20965
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The adsorption probability and reaction behavior of CHx plasma species on various nickel catalyst surfaces is investigated by means of reactive molecular dynamics (MD) simulations using the ReaxFF potential. Such catalysts are used in the reforming of hydrocarbons and in the growth of carbon nanotubes, and further insight in the underlying mechanisms of these processes is needed to increase their applicability. Single and consecutive impacts of CHx radicals (x={1,2,3}) were performed on four different Ni surfaces, at a temperature of 400 K. The adsorption probability is shown to be related to the number of free electrons, i.e. a higher number leads to more adsorptions, and the steric hindrance caused by the hydrogen atoms bonded to the impacting CHx species. Furthermore, some of the CH bonds break after adsorption, which generally leads to diffusion of the hydrogen atom over the surface. Additionally, these adsorbed H-atoms can be used in reactions to form new molecules, such as CH4 and C2Hx, although this is dependent on the precise morphology of the surface. New molecules are also formed by subtraction of H-atoms from adsorbed radicals, leading to occasional formation of H2 and C2Hx molecules.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000309375700040 Publication Date 2012-09-10
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 37 Open Access
  Notes Approved Most recent IF: 4.536; 2012 IF: 4.814
  Call Number UA @ lucian @ c:irua:101522 Serial (up) 2640
Permanent link to this record
 

 
Author Goris, B.; Guzzinati, G.; Fernández-López, C.; Pérez-Juste, J.; Liz-Marzán, L.M.; Trügler, A.; Hohenester, U.; Verbeeck, J.; Bals, S.; Van Tendeloo, G.
  Title Plasmon mapping in Au@Ag nanocube assemblies Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 28 Pages 15356-15362
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Surface plasmon modes in metallic nanostructures largely determine their optoelectronic properties. Such plasmon modes can be manipulated by changing the morphology of the nanoparticles or by bringing plasmonic nanoparticle building blocks close to each other within organized assemblies. We report the EELS mapping of such plasmon modes in pure Ag nanocubes, Au@Ag coreshell nanocubes, and arrays of Au@Ag nanocubes. We show that these arrays enable the creation of interesting plasmonic structures starting from elementary building blocks. Special attention will be dedicated to the plasmon modes in a triangular array formed by three nanocubes. Because of hybridization, a combination of such nanotriangles is shown to provide an antenna effect, resulting in strong electrical field enhancement at the narrow gap between the nanotriangles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000339368700031 Publication Date 2014-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 41 Open Access OpenAccess
  Notes Fwo; 246791 Countatoms; 278510 Vortex; 335078 Colouratom; 262348 Esmi ECASJO;; ECASSara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:118099UA @ admin @ c:irua:118099 Serial (up) 2644
Permanent link to this record
 

 
Author Adjizian, J.J.; De Marco, P.; Suarez-Martinez, I.; El Mel, A.A.; Snyders, R.; Gengler, R.Y.N.; Rudolf, P.; Ke, X.; Van Tendeloo, G.; Bittencourt, C.; Ewels, C.P.;
  Title Platinum and palladium on carbon nanotubes : experimental and theoretical studies Type A1 Journal article
  Year 2013 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 571 Issue Pages 44-48
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Pristine and oxygen plasma functionalised carbon nanotubes (CNTs) were studied after the evaporation of Pt and Pd atoms. High resolution transmission electron microscopy shows the formation of metal nanoparticles at the CNT surface. Oxygen functional groups grafted by the plasma functionalization act as nucleation sites for metal nanoparticles. Analysis of the C1s core level spectra reveals that there is no covalent bonding between the Pt or Pd atoms and the CNT surface. Unlike other transition metals such as titanium and copper, neither Pd nor Pt show strong oxygen interaction or surface oxygen scavenging behaviour.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000319109900007 Publication Date 2013-04-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 23 Open Access
  Notes Countatoms; Cost Approved Most recent IF: 1.815; 2013 IF: 1.991
  Call Number UA @ lucian @ c:irua:108706 Serial (up) 2650
Permanent link to this record
 

 
Author Bittencourt, C.; Hecq, M.; Felten, A.; Pireaux, J.J.; Ghijsen, J.; Felicissimo, M.P.; Rudolf, P.; Drube, W.; Ke, X.; Van Tendeloo, G.
  Title Platinumcarbon nanotube interaction Type A1 Journal article
  Year 2008 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 462 Issue 4/6 Pages 260-264
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The interaction between evaporated Pt and pristine or oxygen-plasma-treated multiwall carbon nanotubes (CNTs) is investigated. Pt is found to nucleate at defect sites, whether initially present or introduced by oxygen plasma treatment. The plasma treatment induces a uniform dispersion of Pt nanoparticles at the CNT surface. The absence of additional features in the C 1s core level spectrum indicates that no mixed PtC phase is formed. The formation of COPt bonds at the cluster-CNT interface is suggested to reduce the electronic interaction between Pt nanoparticles and the CNT surface.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000258830900025 Publication Date 2008-07-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 62 Open Access
  Notes Pai Approved Most recent IF: 1.815; 2008 IF: 2.169
  Call Number UA @ lucian @ c:irua:76489 Serial (up) 2652
Permanent link to this record
 

 
Author Retuerto, M.; Li, M.R.; Ignatov, A.; Croft, M.; Ramanujachary, K.V.; Chi, S.; Hodges, J.P.; Dachraoui, W.; Hadermann, J.; Tran, T.T.; Halasyamani, P.S.; Grams, C.P.; Hemberger, J.; Greenblatt, M.;
  Title Polar and magnetic layered A-site and rock salt B-site-ordered NaLnFeWO6 (Ln = La, Nd) perovskites Type A1 Journal article
  Year 2013 Publication Inorganic chemistry Abbreviated Journal Inorg Chem
  Volume 52 Issue 21 Pages 12482-12491
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We have expanded the double perovskite family of materials with the unusual combination of layered order in the A sublattice and rock salt order over the B sublattice to compounds NaLaFeWO6 and NaNdFeWO6. The materials have been synthesized and studied by powder X-ray diffraction, neutron diffraction, electron diffraction, magnetic measurements, X-ray absorption spectroscopy, dielectric measurements, and second harmonic generation. At room temperature, the crystal structures of both compounds can be defined in the noncentrosymmetric monoclinic P2(1) space group resulting from the combination of ordering both in the A and B sublattices, the distortion of the cell due to tilting of the octahedra, and the displacement of certain cations. The magnetic studies show that both compounds are ordered antiferromagnetically below T-N approximate to 25 K for NaLaFeWO6 and at similar to 21 K for NaNdFeWO6. The magnetic structure of NaNdFeWO6 has been solved with a propagation vector k = (1/2 0 1/2) as an antiferromagnetic arrangement of Fe and Nd moments. Although the samples are potential multiferroics, the dielectric measurements do not show a ferroelectric response.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Easton, Pa Editor
  Language Wos 000326669200035 Publication Date 2013-10-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.857 Times cited 17 Open Access
  Notes Approved Most recent IF: 4.857; 2013 IF: 4.794
  Call Number UA @ lucian @ c:irua:112714 Serial (up) 2656
Permanent link to this record
 

 
Author Li, M.R.; Walker, D.; Retuerto, M.; Sarkar, T.; Hadermann, J.; Stephens, P.W.; Croft, M.; Ignatov, A.; Grams, C.P.; Hemberger, J.; Nowik, I.; Halasyamani, P.S.; Tran, T.T.; Mukherjee, S.; Dasgupta, T.S.; Greenblatt, M.;
  Title Polar and magnetic Mn2FeMO6 (M=Nb, Ta) with LiNbO3-type structure : high-pressure synthesis Type A1 Journal article
  Year 2013 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit
  Volume 52 Issue 32 Pages 8406-8410
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000322631600044 Publication Date 2013-06-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1433-7851; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 11.994 Times cited 53 Open Access
  Notes Approved Most recent IF: 11.994; 2013 IF: 11.336
  Call Number UA @ lucian @ c:irua:110749 Serial (up) 2657
Permanent link to this record
 

 
Author Li, M.R.; Adem, U.; McMitchell, S.R.C.; Xu, Z.; Thomas, C.I.; Warren, J.E.; Giap, D.V.; Niu, H.; Wan, X.; Palgrave, R.G.; Schiffmann, F.; Cora, F.; Slater, B.; Burnett, T.L.; Cain, M.G.; Abakumov, A.M.; Van Tendeloo, G.; Thomas, M.F.; Rosseinsky, M.J.; Claridge, J.B.;
  Title A polar corundum oxide displaying weak ferromagnetism at room temperature Type A1 Journal article
  Year 2012 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 134 Issue 8 Pages 3737-3747
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Combining long-range magnetic order with polarity in the same structure is a prerequisite for the design of (magnetoelectric) multiferroic materials. There are now several demonstrated strategies to achieve this goal, but retaining magnetic order above room temperature remains a difficult target. Iron oxides in the +3 oxidation state have high magnetic ordering temperatures due to the size of the coupled moments. Here we prepare and characterize ScFeO3 (SFO), which under pressure and in strain-stabilized thin films adopts a polar variant of the corundum structure, one of the archetypal binary oxide structures. Polar corundum ScFeO3 has a weak ferromagnetic ground state below 356 K-this is in contrast to the purely antiferromagnetic ground state adopted by the well-studied ferroelectric BiFeO3.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000301161600027 Publication Date 2012-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 48 Open Access
  Notes Approved Most recent IF: 13.858; 2012 IF: 10.677
  Call Number UA @ lucian @ c:irua:97200 Serial (up) 2658
Permanent link to this record
 

 
Author Bussmann-Holder, A.; Dalal, N.; Michel, K.H.
  Title Polarizability induced cooperative proton ordering, coexistence of order/disorder and displacive dynamics and isotope effects in hydrogen-bonded systems Type A1 Journal article
  Year 2000 Publication The journal of physics and chemistry of solids T2 – Williamsburg Workshop on Ferroelectrics 99, JAN 31-FEB 03, 1999, WILLIAMSBURG, VIRGINIA Abbreviated Journal J Phys Chem Solids
  Volume 61 Issue 2 Pages 271-274
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Despite the general belief that hydrogen-bonded ferro- and antiferroelectrics undergo a pure order/disorder transition at the structural instability, new NMR data and a new theoretical concept yield convincing evidence that a pronounced displacive component is present in these systems, which modifies substantially the temperature dependencies of the tunnel and lattice mode frequencies. The experiments and their interpretation are presented. (C) 1999 Elsevier Science Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Pergamon-elsevier science ltd Place of Publication Oxford Editor
  Language Wos 000084147000020 Publication Date 2002-07-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0022-3697; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.059 Times cited 8 Open Access
  Notes Approved Most recent IF: 2.059; 2000 IF: 1.003
  Call Number UA @ lucian @ c:irua:103469 Serial (up) 2660
Permanent link to this record
 

 
Author Deng, S.; Kurttepeli, M.; Cott, D.J.; Bals, S.; Detavernier, C.
  Title Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination Type A1 Journal article
  Year 2015 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
  Volume 3 Issue 3 Pages 2642-2649
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Porous metal oxides with nano-sized features attracted intensive interest in recent decades due to their high surface area which is essential for many applications, e.g. Li ion batteries, photocatalysts, fuel cells and dye-sensitized solar cells. Various approaches have so far been investigated to synthesize porous nanostructured metal oxides, including self-assembly and template-assisted synthesis. For the latter approach, forests of carbon nanotubes are considered as particularly promising templates, with respect to their one-dimensional nature and the resulting high surface area. In this work, we systematically investigate the formation of porous metal oxides (Al2O3, TiO2, V2O5 and ZnO) with different morphologies using atomic layer deposition on multi-walled carbon nanotubes followed by post-deposition calcination. X-ray diffraction, scanning electron microscopy accompanied by X-ray energy dispersive spectroscopy and transmission electron microscopy were used for the investigation of morphological and structural transitions at the micro- and nano-scale during the calcination process. The crystallization temperature and the surface coverage of the metal oxides and the oxidation temperature of the carbon nanotubes were found to produce significant influence on the final morphology.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000348990500019 Publication Date 2014-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7488;2050-7496; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.867 Times cited 23 Open Access OpenAccess
  Notes Fwo; 239865 Cocoon; 335078 Colouratoms; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 8.867; 2015 IF: 7.443
  Call Number c:irua:125298 Serial (up) 2673
Permanent link to this record
 

 
Author Belik, A.; Izumi, F.; Ikeda, T.; Morozov, V.A.; Dilanian, R.; Torii, S.; Kopnin, E.; Lebedev, O.I.; Van Tendeloo, G.; Lazoryak, B.I.
  Title Positional and orientational disorder in a solid solution of Sr9-xNi1.5-x(PO4)7 (x=0.3) Type A1 Journal article
  Year 2002 Publication Chemistry and materials Abbreviated Journal Chem Mater
  Volume 14 Issue Pages 4464-4472
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000178782900069 Publication Date 2002-10-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 9.466 Times cited 28 Open Access
  Notes Approved Most recent IF: 9.466; 2002 IF: 3.967
  Call Number UA @ lucian @ c:irua:54768 Serial (up) 2676
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M.
  Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 50 Issue 7 Pages 885-887
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000328884500036 Publication Date 2013-11-08
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 19 Open Access
  Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
  Call Number UA @ lucian @ c:irua:113733 Serial (up) 2678
Permanent link to this record
 

 
Author Meynen, V.; Beyers, E.; Cool, P.; Vansant, E.F.; Mertens, M.; Weyten, H.; Lebedev, O.I.; Van Tendeloo, G.
  Title Post-synthesis deposition of V-Zeolitic nanoparticles in SBA-15 Type A1 Journal article
  Year 2004 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume Issue Pages 898-890
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000221124300084 Publication Date 2004-03-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 22 Open Access
  Notes Approved Most recent IF: 6.319; 2004 IF: 3.997
  Call Number UA @ lucian @ c:irua:44934 Serial (up) 2684
Permanent link to this record
 

 
Author Martin, J.M.L.; François, J.P.; Gijbels, R.
  Title Potential energy surface of B4 and the total atomization energies of B2, B3 and B4 Type A1 Journal article
  Year 1992 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 189 Issue 6 Pages 529-536
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos A1992HF18100008 Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.897 Times cited 50 Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:4193 Serial (up) 2685
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Penner, S.
  Title Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM Type A1 Journal article
  Year 2010 Publication Materials chemistry and physics Abbreviated Journal Mater Chem Phys
  Volume 122 Issue 2/3 Pages 623-629
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO2 and GeO2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10−1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10−3 to 10−2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 105 Pa O2. Preparation of GeOx films inevitably results in amorphous films with a composition close to GeO2, which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO2. Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In2O3 and Ga2O3) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Lausanne Editor
  Language Wos 000278637900054 Publication Date 2010-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.084 Times cited 15 Open Access
  Notes Esteem 026019 Approved Most recent IF: 2.084; 2010 IF: 2.356
  Call Number UA @ lucian @ c:irua:83099 Serial (up) 2699
Permanent link to this record
 

 
Author Sliem, M.A.; Turner, S.; Heeskens, D.; Kalidindi, S.B.; Van Tendeloo, G.; Muhler, M.; Fischer, R.A.
  Title Preparation, microstructure characterization and catalytic performance of Cu/ZnO and ZnO/Cu composite nanoparticles for liquid phase methanol synthesis Type A1 Journal article
  Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 14 Issue 22 Pages 8170-8178
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Stearate@Cu/ZnO nanocomposite particles with molar ratios of ZnO ∶ Cu = 2 and 5 are synthesized by reduction of the metalorganic Cu precursor [Cu{(OCH(CH3)CH2N(CH3)2)}2] in the presence of stearate@ZnO nanoparticles. In the case of ZnO ∶ Cu = 5, high-angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) combined with electron-energy-loss-spectroscopy (EELS) as well as attenuated total reflection Fourier transform infrared (ATR-IR) spectroscopy are used to localize the small amount of Cu deposited on the surface of 35 nm sized stearate@ZnO particles. For ZnO ∶ Cu = 2, the microstructure of the nanocomposites after catalytic activity testing is characterized by HAADF-STEM techniques. This reveals the construction of large Cu nanoparticles (2050 nm) decorated by small ZnO nanoparticles (35 nm). The catalytic activity of both composites for the synthesis of methanol from syn gas is evaluated.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000304102200033 Publication Date 2012-04-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 16 Open Access
  Notes Fwo Approved Most recent IF: 4.123; 2012 IF: 3.829
  Call Number UA @ lucian @ c:irua:98377 Serial (up) 2702
Permanent link to this record
 

 
Author Subban, C.V.; Ati, M.; Rousse, G.; Abakumov, A.M.; Van Tendeloo, G.; Janot, R.; Tarascon, J.-M.
  Title Preparation, structure, and electrochemistry of layered polyanionic hydroxysulfates : LiMSO4OH (M = Fe, Co, Mn) electrodes for Li-Ion batteries Type A1 Journal article
  Year 2013 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 135 Issue 9 Pages 3653-3661
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The Li-ion rechargeable battery, due to its high energy density, has driven remarkable advances in portable electronics. Moving toward more sustainable electrodes could make this technology even more attractive to large-volume applications. We present here a new family of 3d-metal hydroxysulfates of general formula LiMSO4OH (M = Fe, Co, and Mn) among which (i) LiFeSO4OH reversibly releases 0.7 Li+ at an average potential of 3.6 V vs Li+/Li-0, slightly higher than the potential of currently lauded LiFePO4 (3.45 V) electrode material, and (ii) LiCoSO4OH shows a redox activity at 4.7 V vs Li+/Li-0. Besides, these compounds can be easily made at temperatures near 200 degrees C via a synthesis process that enlists a new intermediate phase of composition M-3(SO4)(2)(OH)(2) (M = Fe, Co, Mn, and Ni), related to the mineral caminite. Structurally, we found that LiFeSO4OH is a layered phase unlike the previously reported 3.2 V tavorite LiFeSO4OH. This work should provide an impetus to experimentalists for designing better electrolytes to fully tap the capacity of high-voltage Co-based hydroxysulfates, and to theorists for providing a means to predict the electrochemical redox activity of two polymorphs.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000315936700056 Publication Date 2013-02-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 53 Open Access
  Notes Approved Most recent IF: 13.858; 2013 IF: 11.444
  Call Number UA @ lucian @ c:irua:108283 Serial (up) 2708
Permanent link to this record
 

 
Author Ban, V.; Soloninin, A.V.; Skripov, A.V.; Hadermann, J.; Abakumov, A.; Filinchuk, Y.
  Title Pressure-Collapsed Amorphous Mg(BH4)(2): An Ultradense Complex Hydride Showing a Reversible Transition to the Porous Framework Type A1 Journal article
  Year 2014 Publication The journal of physical chemistry: C : nanomaterials and interfaces Abbreviated Journal J Phys Chem C
  Volume 118 Issue 40 Pages 23402-23408
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Hydrogen-storage properties of complex hydrides depend of their form, such as a polymorphic form or an eutectic mixture. This Paper reports on an easy and reproducible way to synthesize a new stable form of magnesium borohydride by pressure-induced collapse of the porous gamma-Mg(BH4)(2). This amorphous complex hydride was investigated by temperature-programmed synchrotron X-ray diffraction (SXRD), transmission electron microscopy (TEM), thermogravimetric analysis, differential scanning calorimetry analysis, and Raman spectroscopy, and the dynamics of the BH4 reorientation was studied by spinlattice relaxation NMR spectroscopy. No long-range order is observed in the lattice region by Raman spectroscopy, while the internal vibration modes of the BH4 groups are the same as in the crystalline state. A hump at 4.9 angstrom in the SXRD pattern suggests the presence of nearly linear MgBH4 Mg fragments constituting all the known crystalline polymorphs of Mg(BH4)(2), which are essentially frameworks built of tetrahedral Mg nodes and linear BH4 linkers. TEM shows that the pressure-collapsed phase is amorphous down to the nanoscale, but surprisingly, SXRD reveals a transition at similar to 90 degrees C from the dense amorphous state (density of 0.98 g/cm(3)) back to the porous ? phase having only 0.55 g/cm(3) crystal density. The crystallization is slightly exothermic, with the enthalpy of -4.3 kJ/mol. The volumetric hydrogen density of the amorphous form is 145 g/L, one of the highest among hydrides. Remarkably, this form of Mg(BH4)2 has different reactivity compared to the crystalline forms. The parameters of the reorientational motion of BH4 groups in the amorphous Mg(BH4)(2) found from NMR measurements differ significantly from those in the known crystalline forms. The behavior of the nuclear spinlattice relaxation rates can be described in terms of a Gaussian distribution of the activation energies centered on 234 +/- 9 meV with the dispersion of 100 +/- 10 meV.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000343016800067 Publication Date 2014-09-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1932-7447;1932-7455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.536 Times cited 23 Open Access
  Notes Approved Most recent IF: 4.536; 2014 IF: 4.772
  Call Number UA @ lucian @ c:irua:121113 Serial (up) 2711
Permanent link to this record
 

 
Author Piedigrosso, P.; Konya, Z.; Colomer, J.-F.; Fonseca, A.; Van Tendeloo, G.; Nagy, J.B.
  Title Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts Type A1 Journal article
  Year 2000 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 2 Issue 1 Pages 163-170
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Catalytic synthesis and transmission electron microscopy (TEM) of multi-wall carbon nanotubes are presented. Silica, zeolite and alumina supported cobalt catalysts were prepared by different methods (impregnation and ion-adsorption precipitation) and were used to produce nanotubes. The synthesis was carried out in a fixed bed flow reactor and the process was optimized in order to produce carbon nanotubes on a gram scale. The influence of various parameters such as the method of catalyst preparation, the nature of the support, cobalt concentration and reaction conditions on the formation of nanotubes was investigated. The carbon deposits were measured and the quality of nanotubes was determined by low and high resolution TEM. Multi-wall straight and coiled nanotubes were found to be fairly regular with an average inner (outer) diameter of 4-7 nm (8-23 nm) and with lengths up to 0.1 mm.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000084333800025 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 53 Open Access
  Notes Approved Most recent IF: 4.123; 2000 IF: 1.653
  Call Number UA @ lucian @ c:irua:102889 Serial (up) 2723
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M.
  Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
  Year 2012 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 48 Issue 100 Pages 12159-12161
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000311411100003 Publication Date 2012-10-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 39 Open Access
  Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378
  Call Number UA @ lucian @ c:irua:105230 Serial (up) 2724
Permanent link to this record
 

 
Author Pierard, N.; Fonseca, A.; Konya, Z.; Willems, I.; Van Tendeloo, G.; Nagy, J.B.
  Title Production of short carbon nanotubes with open tips by ball milling Type A1 Journal article
  Year 2001 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett
  Volume 335 Issue Pages 1-8
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Amsterdam Editor
  Language Wos 000167018700001 Publication Date 2002-10-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0009-2614; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.815 Times cited 203 Open Access
  Notes Approved Most recent IF: 1.815; 2001 IF: 2.364
  Call Number UA @ lucian @ c:irua:54774 Serial (up) 2725
Permanent link to this record
 

 
Author Rodríguez-Fernández, D.; Altantzis, T.; Heidari, H.; Bals, S.; Liz-Marzan, L.M.
  Title A protecting group approach toward synthesis of Au-silica Janus nanostars Type A1 Journal article
  Year 2014 Publication Chemical communications Abbreviated Journal Chem Commun
  Volume 50 Issue 1 Pages 79-81
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000327606000017 Publication Date 2013-10-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 6.319 Times cited 26 Open Access OpenAccess
  Notes 262348 Esmi; 335078 Colouratom; 267867 Plasmaquo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2014 IF: 6.834
  Call Number UA @ lucian @ c:irua:112774 Serial (up) 2732
Permanent link to this record
 

 
Author Spreitzer, M.; Egoavil, R.; Verbeeck, J.; Blank, D.H.A.; Rijnders, G.
  Title Pulsed laser deposition of SrTiO3 on a H-terminated Si substrate Type A1 Journal article
  Year 2013 Publication Journal of materials chemistry C : materials for optical and electronic devices Abbreviated Journal J Mater Chem C
  Volume 1 Issue 34 Pages 5216-5222
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Interfacing oxides with silicon is a long-standing problem related to the integration of multifunctional oxides with semiconductor devices and the replacement of SiO2 with high-k gate oxides. In our study, pulsed laser deposition was used to prepare a SrTiO3 (STO) thin film on a H-terminated Si substrate. The main purpose of our work was to verify the ability of H-termination against the oxidation of Si during the PLD process and to analyze the resulting interfaces. In the first part of the study, the STO was deposited directly on the Si, leading to the formation of a preferentially textured STO film with a (100) orientation. In the second part, SrO was used as a buffer layer, which enabled the partial epitaxial growth of STO with STO(110)parallel to Si(100) and STO[001]parallel to Si[001]. The change in the growth direction induced by the application of a SrO buffer was governed by the formation of a SrO(111) intermediate layer and subsequently by the minimization of the lattice misfit between the STO and the SrO. Under the investigated conditions, approximately 10 nm thick interfacial layers formed between the STO and the Si due to reactions between the deposited material and the underlying H-terminated Si. In the case of direct STO deposition, SiOx formed at the interface with the silicon, while in the case when SrO was used as a buffer, strontium silicate grew directly on the silicon, which improves the growth quality of the uppermost STO.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000322911900005 Publication Date 2013-07-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2050-7526;2050-7534; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.256 Times cited 23 Open Access
  Notes Ifox; Esteem2; Vortex; Countatoms; esteem2jra3 ECASJO; Approved Most recent IF: 5.256; 2013 IF: NA
  Call Number UA @ lucian @ c:irua:110798UA @ admin @ c:irua:110798 Serial (up) 2739
Permanent link to this record
 

 
Author Colomer, J.-F.; Piedigrosso, P.; Willems, I.; Journet, C.; Bernier, P.; Van Tendeloo, G.; Fonseca, A.; Nagy, J.B.
  Title Purification of catalytically produced multi-wall nanotubes Type A1 Journal article
  Year 1998 Publication Journal of the Chemical Society : Faraday transactions: physical chemistry and chemical physics Abbreviated Journal J Chem Soc Faraday T
  Volume 94 Issue Pages 3753-3758
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication London Editor
  Language Wos 000077634100034 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0956-5000;1364-5455; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 92 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:25685 Serial (up) 2740
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E.
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc
  Volume 131 Issue 13 Pages 4769-4773
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000264806300050 Publication Date 2009-03-16
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 13.858 Times cited 58 Open Access
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580
  Call Number UA @ lucian @ c:irua:76393 Serial (up) 2767
Permanent link to this record
 

 
Author Brito, B.G.A.; Hai, G.-Q.; Teixeira Rabelo, J.N.; Cândido, L.
  Title A quantum Monte Carlo study on electron correlation in all-metal aromatic clusters MAl4 – (M = Li, Na, K, Rb, Cu, Ag and Au) Type A1 Journal article
  Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 16 Issue 18 Pages 8639-8645
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Using fixed-node diffusion quantum Monte Carlo (FN-DMC) simulation we investigate the electron correlation in all-metal aromatic clusters MAl4- (with M = Li, Na, K, Rb, Cu, Ag and Au). The electron detachment energies and electron affinities of the clusters are obtained. The vertical electron detachment energies obtained from the FN-DMC calculations are in very good agreement with the available experimental results. Calculations are also performed within the Hartree-Fock approximation, density-functional theory (DFT), and the couple-cluster (CCSD(T)) method. From the obtained results, we analyse the impact of the electron correlation effects in these bimetallic clusters and find that the correlation of the valence electrons contributes significantly to the detachment energies and electron affinities, varying between 20% and 50% of their total values. Furthermore, we discuss the electron correlation effects on the stability of the clusters as well as the accuracy of the DFT and CCSD(T) calculations in the present systems.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Cambridge Editor
  Language Wos 000334602900052 Publication Date 2014-03-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 10 Open Access
  Notes ; This research was supported by CNPq, FAPESP and FAPEG (Brazil). ; Approved Most recent IF: 4.123; 2014 IF: 4.493
  Call Number UA @ lucian @ c:irua:117247 Serial (up) 2781
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: