|   | 
Details
   web
Records
Author Matnazarova, S.; Khalilov, U.; Yusupov, M.
Title Effect of endohedral nickel atoms on the hydrophilicity of carbon nanotubes Type A1 Journal article
Year 2023 Publication Molecular simulation Abbreviated Journal
Volume 49 Issue 17 Pages 1575-1581
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Carbon nanotubes (CNTs) have been successfully used in biomedicine, including cancer therapy, due to their unique physico-chemical properties. Because pristine CNTs exhibit hydrophobic behaviour, they can have a cytotoxic effect on cells, which limits their practical use in biomedicine. The toxicity of CNTs can be reduced by adding water-soluble functional radicals to their surface, i.e. by increasing their hydrophilicity. Another possibility for increasing the hydrophilicity of CNTs is probably filling them with endohedral metal atoms, which has not yet been studied. Thus, in this study, we use computer simulations to investigate the combined effect of endohedral nickel atoms and functional groups on the hydrophilicity of CNTs. Our simulation results show that the introduction of endohedral nickel atoms into CNTs increases their binding energy with functional groups. We also find that the addition of functional groups to the surface of CNT, along with filling it with endohedral nickel atoms, leads to an increase in the dipole moment of the CNT as well as its interaction energy with water, thereby increasing the hydrophilicity of the CNT and, consequently, its solubility in water. This, in turn, can lead to a decrease in CNT toxicity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001059544800001 Publication Date 2023-09-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-7022 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.1 Times cited Open Access
Notes Approved Most recent IF: 2.1; 2023 IF: 1.254
Call Number UA @ admin @ c:irua:199261 Serial (down) 9027
Permanent link to this record
 

 
Author Rakesh Roshan, S.C.; Yedukondalu, N.; Pandey, T.; Kunduru, L.; Muthaiah, R.; Rajaboina, R.K.; Ehm, L.; Parise, J.B.
Title Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides Type A1 Journal article
Year 2023 Publication ACS applied electronic materials Abbreviated Journal
Volume 5 Issue 11 Pages 5852-5863
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Lattice thermal conductivity (kappa(L)) is of great scientific interest for the development of efficient energy conversion technologies. Therefore, microscopic understanding of phonon transport is critically important for designing functional materials. In our previous study (Roshan et al., ACS Applied Energy Mater. 2021, 5, 882-896), anomalous kappa(L) trends were predicted for rocksalt alkaline-earth chalcogenides (AECs). In the present work, we extended it to alkali halides (AHs) and conducted a thorough investigation to explore the role of atomic mass contrast on lattice dynamics and phonon transport properties of 36 binary compounds (20 AHs + 16 AECs). The calculated spectral and cumulative kappa(L) reveal that low-lying optical phonon modes significantly boost kappa(L) alongside acoustic phonons in materials where the atomic mass ratio approaches unity and cophonocity nears zero. Phonon scattering rates are relatively low for materials with a mass ratio close to one, and the corresponding phonon lifetimes are higher, which enhances kappa(L). Phonon lifetimes play a critical role, outweighing phonon group velocities, in determining the anomalous trends in kappa(L) for both AHs and AECs. To further explore the role of atomic mass contrast in kappa(L), the effect of tensile lattice strain on phonon transport has also been investigated. Under tensile strain, both group velocities and phonon lifetimes decrease in the low frequency range, leading to a decrease in kappa(L). This work provides insights on how atomic mass contrast can tune the contribution of optical phonons to kappa(L) and its implications on scattering rates by either enhancing or suppressing kappa(L). These insights would aid in the selection of elements for designing new functional materials with and without atomic mass contrast to achieve relatively high and low kappa(L) values, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001096792500001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2637-6113 ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201198 Serial (down) 9026
Permanent link to this record
 

 
Author McLachlan, G.; Majdak, P.; Reijniers, J.; Mihocic, M.; Peremans, H.
Title Dynamic spectral cues do not affect human sound localization during small head movements Type A1 Journal article
Year 2023 Publication Frontiers in neuroscience Abbreviated Journal
Volume 17 Issue Pages 1027827-10
Keywords A1 Journal article; Psychology; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract Natural listening involves a constant deployment of small head movement. Spatial listening is facilitated by head movements, especially when resolving front-back confusions, an otherwise common issue during sound localization under head-still conditions. The present study investigated which acoustic cues are utilized by human listeners to localize sounds using small head movements (below ±10° around the center). Seven normal-hearing subjects participated in a sound localization experiment in a virtual reality environment. Four acoustic cue stimulus conditions were presented (full spectrum, flattened spectrum, frozen spectrum, free-field) under three movement conditions (no movement, head rotations over the yaw axis and over the pitch axis). Localization performance was assessed using three metrics: lateral and polar precision error and front-back confusion rate. Analysis through mixed-effects models showed that even small yaw rotations provide a remarkable decrease in front-back confusion rate, whereas pitch rotations did not show much of an effect. Furthermore, MSS cues improved localization performance even in the presence of dITD cues. However, performance was similar between stimuli with and without dMSS cues. This indicates that human listeners utilize the MSS cues before the head moves, but do not rely on dMSS cues to localize sounds when utilizing small head movements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000938567400001 Publication Date 2023-02-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-4548; 1662-453x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:194507 Serial (down) 9025
Permanent link to this record
 

 
Author Steijlen, A.S.M.; Parrilla, M.; Van Echelpoel, R.; De Wael, K.
Title Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site Type A1 Journal article
Year 2024 Publication Analytical chemistry Abbreviated Journal
Volume 96 Issue 1 Pages 590-598
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Electrochemical sensors have emerged as a new analytical tool for illicit drug detection to facilitate ultrafast and accurate identification of suspicious compounds on-site. Drugs of abuse can be identified using their unique voltammetric fingerprint at a given pH. Today, the right buffer solution is manually selected based on drug appearance, and in some cases, a consecutive analysis in two different pH solutions is required. In this work, we present a disposable microfluidic multichannel sensor system that automatically records fingerprints in two pH solutions (e.g., pH 5 and pH 12). This system has two advantages. It will overcome the manual selection of a buffer solution at the right pH, decrease analysis time, and minimize the risk of human errors. Second, the combination of two fingerprints, the superfingerprint, contains more detailed information about the samples, which enhances the selectivity of the analytical technique. First, real-time pH measurements proved that the sample can be brought to the desired pH within a minute. Subsequently, an electrochemical study on the microfluidic platform with 1 mM illicit drug standards of MDMA, cocaine, heroin, and methamphetamine showed that the characteristic voltammetric fingerprints and peak potentials are reproducible, also in the presence of common cutting agents. Finally, the microfluidic concept was validated with real confiscated samples, showing promising results for the user-friendly identification of drugs of abuse. In short, this paper presents a successful proof-of-concept study of a multichannel microfluidic sensor system to enrich the fingerprints of illicit drugs at pH 5 and pH 12, thus providing a low-cost, portable, and rapid identification system of illicit drugs with minimal user intervention.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001139443500001 Publication Date 2023-12-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 7.4; 2024 IF: 6.32
Call Number UA @ admin @ c:irua:201877 Serial (down) 9024
Permanent link to this record
 

 
Author Liang, Z.; Batuk, M.; Orlandi, F.; Manuel, P.; Hadermann, J.; Hayward, M.A.
Title Disproportionation of Co2+ in the topochemically reduced oxide LaSrCoRuO₅ Type A1 Journal article
Year 2024 Publication Angewandte Chemie: international edition in English Abbreviated Journal
Volume 63 Issue 6 Pages e202313067-5
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Complex transition-metal oxides exhibit a wide variety of chemical and physical properties which are a strong function the local electronic states of the transition-metal centres, as determined by a combination of metal oxidation state and local coordination environment. Topochemical reduction of the double perovskite oxide, LaSrCoRuO6, using Zr, yields LaSrCoRuO5. This reduced phase contains an ordered array of apex-linked square-based pyramidal Ru3+O5, square-planar Co1+O4 and octahedral Co3+O6 units, consistent with the coordination-geometry driven disproportionation of Co2+. Coordination-geometry driven disproportionation of d(7) transition-metal cations (e.g. Rh2+, Pd3+, Pt3+) is common in complex oxides containing 4d and 5d metals. However, the weak ligand field experienced by a 3d transition-metal such as cobalt leads to the expectation that d(7+) Co2+ should be stable to disproportionation in oxide environments, so the presence of Co1+O4 and Co3+O6 units in LaSrCoRuO5 is surprising. Low-temperature measurements indicate LaSrCoRuO5 adopts a ferromagnetically ordered state below 120 K due to couplings between S=(1)/(2) Ru3+ and S=1 Co1+.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001136579700001 Publication Date 2023-12-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record
Impact Factor 16.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 16.6; 2024 IF: 11.994
Call Number UA @ admin @ c:irua:202801 Serial (down) 9023
Permanent link to this record
 

 
Author Jenkinson, K.; Spadaro, M.C.; Golovanova, V.; Andreu, T.; Morante, J.R.; Arbiol, J.; Bals, S.
Title Direct operando visualization of metal support interactions induced by hydrogen spillover during CO₂ hydrogenation Type A1 Journal article
Year 2023 Publication Advanced materials Abbreviated Journal
Volume 35 Issue 51 Pages 2306447-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The understanding of catalyst active sites is a fundamental challenge for the future rational design of optimized and bespoke catalysts. For instance, the partial reduction of Ce4+ surface sites to Ce3+ and the formation of oxygen vacancies are critical for CO2 hydrogenation, CO oxidation, and the water gas shift reaction. Furthermore, metal nanoparticles, the reducible support, and metal support interactions are prone to evolve under reaction conditions; therefore a catalyst structure must be characterized under operando conditions to identify active states and deduce structure-activity relationships. In the present work, temperature-induced morphological and chemical changes in Ni nanoparticle-decorated mesoporous CeO2 by means of in situ quantitative multimode electron tomography and in situ heating electron energy loss spectroscopy, respectively, are investigated. Moreover, operando electron energy loss spectroscopy is employed using a windowed gas cell and reveals the role of Ni-induced hydrogen spillover on active Ce3+ site formation and enhancement of the overall catalytic performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001106139400001 Publication Date 2023-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record
Impact Factor 29.4 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 29.4; 2023 IF: 19.791
Call Number UA @ admin @ c:irua:201143 Serial (down) 9022
Permanent link to this record
 

 
Author Cui, W.; Lin, W.; Lu, W.; Liu, C.; Gao, Z.; Ma, H.; Zhao, W.; Van Tendeloo, G.; Zhao, W.; Zhang, Q.; Sang, X.
Title Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps Type A1 Journal article
Year 2023 Publication Nature communications Abbreviated Journal
Volume 14 Issue 1 Pages 554-10
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract Weak interlayer van der Waals (vdW) bonding has significant impact on the surface/interface structure, electronic properties, and transport properties of vdW layered materials. Unraveling the complex atomistic dynamics and structural evolution at vdW surfaces is therefore critical for the design and synthesis of the next-generation vdW layered materials. Here, we show that Ge/Bi cation diffusion along the vdW gap in layered GeBi2Te4 (GBT) can be directly observed using in situ heating scanning transmission electron microscopy (STEM). The cation concentration variation during diffusion was correlated with the local Te-6 octahedron distortion based on a quantitative analysis of the atomic column intensity and position in time-elapsed STEM images. The in-plane cation diffusion leads to out-of-plane surface etching through complex structural evolutions involving the formation and propagation of a non-centrosymmetric GeTe2 triple layer surface reconstruction on fresh vdW surfaces, and GBT subsurface reconstruction from a septuple layer to a quintuple layer. Our results provide atomistic insight into the cation diffusion and surface reconstruction in vdW layered materials. Weak interlayer van der Waals (vdW) bonding has significant impact on the structure and properties of vdW layered materials. Here authors use in-situ aberration-corrected ADF-STEM for an atomistic insight into the cation diffusion in the vdW gaps and the etching of vdW surfaces at high temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001076227200001 Publication Date 2023-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 16.6 Times cited Open Access
Notes Approved Most recent IF: 16.6; 2023 IF: 12.124
Call Number UA @ admin @ c:irua:201342 Serial (down) 9021
Permanent link to this record
 

 
Author Truta, F.M.; Cruz, A.G.; Dragan, A.-M.; Tertis, M.; Cowen, T.; Stefan, M.-G.; Topala, T.; Slosse, A.; Piletska, E.; Van Durme, F.; Kiss, B.; De Wael, K.; Piletsky, S.A.; Cristea, C.
Title Design of smart nanoparticles for the electrochemical detection of 3,4-methylenedioxymethamphetamine to allow in field screening by law enforcement officers Type A1 Journal article
Year 2023 Publication Drug testing and analysis Abbreviated Journal
Volume Issue Pages 1-14
Keywords A1 Journal article; Pharmacology. Therapy; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract A portable and highly sensitive sensor was designed for the specific detection of 3,4-methyl-enedioxy-methamphetamine (MDMA), in a range of field-testing situations. The sensor can detect MDMA in street samples, even when other controlled substances drugs, or adulterants are present. In this work, we report for the first time a sensor using electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA and then produced using solid phase synthesis. A composite comprising chitosan, reduced graphene oxide, and molecularly imprinted polymer nanoparticles synthesized for MDMA for the first time was immobilized on screen-printed carbon electrodes. The sensors displayed a satisfactory sensitivity (106.8 nA x mu M-1), limit of detection (1.6 nM; 0.31 ng/mL), and recoveries (92-99%). The accuracy of the results was confirmed through validation using Ultra-High Performance Liquid Chromatography coupled with tandem Mass Spectrometry (UPLC-MS/MS). This technology could be used in forensic analysis and make it possible to selectively detect MDMA in street samples. A highly sensitive and portable sensor has been developed to detect MDMA in street samples. It uses electroactive molecularly imprinted polymer nanoparticles computationally designed to recognize MDMA, which were immobilized on screen-printed carbon electrodes with chitosan and graphene. The sensor showed good sensitivity and satisfactory recoveries (92-99%), confirmed with UPLC-MS/MS validation. This technology has the potential to be used in forensic analysis.image
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001107703400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-7603; 1942-7611 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.9 Times cited Open Access
Notes Approved Most recent IF: 2.9; 2023 IF: 3.469
Call Number UA @ admin @ c:irua:202058 Serial (down) 9020
Permanent link to this record
 

 
Author Calogiuri, T.; Hagens, M.; Van Groenigen, J.W.; Corbett, T.; Hartmann, J.; Hendriksen, R.; Janssens, I.; Janssens, I.A.; Ledesma Dominguez, G.; Loescher, G.; Mortier, S.; Neubeck, A.; Niron, H.; Poetra, R.P.; Rieder, L.; Struyf, E.; Van Tendeloo, M.; De Schepper, T.; Verdonck, T.; Vlaeminck, S.E.; Vicca, S.; Vidal, A.
Title Design and construction of an experimental setup to enhance mineral weathering through the activity of soil organisms Type A1 Journal article
Year 2023 Publication Journal of visualized experiments Abbreviated Journal
Volume Issue 201 Pages e65563-30
Keywords A1 Journal article; Engineering sciences. Technology; Internet Data Lab (IDLab); Applied mathematics; Sustainable Energy, Air and Water Technology (DuEL); Plant and Ecosystems (PLECO) – Ecology in a time of change
Abstract Enhanced weathering (EW) is an emerging carbon dioxide (CO2) removal technology that can contribute to climate change mitigation. This technology relies on accelerating the natural process of mineral weathering in soils by manipulating the abiotic variables that govern this process, in particular mineral grain size and exposure to acids dissolved in water. EW mainly aims at reducing atmospheric CO2 concentrations by enhancing inorganic carbon sequestration. Until now, knowledge of EW has been mainly gained through experiments that focused on the abiotic variables known for stimulating mineral weathering, thereby neglecting the potential influence of biotic components. While bacteria, fungi, and earthworms are known to increase mineral weathering rates, the use of soil organisms in the context of EW remains underexplored. This protocol describes the design and construction of an experimental setup developed to enhance mineral weathering rates through soil organisms while concurrently controlling abiotic conditions. The setup is designed to maximize weathering rates while maintaining soil organisms' activity. It consists of a large number of columns filled with rock powder and organic material, located in a climate chamber and with water applied via a downflow irrigation system. Columns are placed above a fridge containing jerrycans to collect the leachate. Representative results demonstrate that this setup is suitable to ensure the activity of soil organisms and quantify their effect on inorganic carbon sequestration. Challenges remain in minimizing leachate losses, ensuring homogeneous ventilation through the climate chamber, and avoiding flooding of the columns. With this setup, an innovative and promising approach is proposed to enhance mineral weathering rates through the activity of soil biota and disentangle the effect of biotic and abiotic factors as drivers of EW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001127854400015 Publication Date 2023-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1940-087x ISBN Additional Links UA library record; WoS full record
Impact Factor 1.2 Times cited Open Access
Notes Approved Most recent IF: 1.2; 2023 IF: 1.232
Call Number UA @ admin @ c:irua:200770 Serial (down) 9019
Permanent link to this record
 

 
Author Luo, Y.; He, Y.; Ding, Y.; Zuo, L.; Zhong, C.; Ma, Y.; Sun, M.
Title Defective biphenylene as high-efficiency hydrogen evolution catalysts Type A1 Journal article
Year 2023 Publication Inorganic chemistry Abbreviated Journal
Volume 63 Issue 2 Pages 1136-1141
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Electrocatalysts play a pivotal role in advancing the application of water splitting for hydrogen production. This research unveils the potential of defective biphenylenes as high-efficiency catalysts for the hydrogen evolution reaction. Using first-principles simulations, we systematically investigated the structure, stability, and catalytic performance of defective biphenylenes. Our findings unveil that defect engineering significantly enhances the electrocatalytic activity for hydrogen evolution. Specifically, biphenylene with a double-vacancy defect exhibits an outstanding Gibbs free energy of -0.08 eV, surpassing that of Pt, accompanied by a remarkable exchange current density of -3.08 A cm(-2), also surpassing that of Pt. Furthermore, we find the preference for the Volmer-Heyrovsky mechanism in the hydrogen evolution reaction, with a low energy barrier of 0.80 eV. This research provides a promising avenue for developing novel metal-free electrocatalysts for water splitting with earth-abundant carbon elements, making a significant step toward sustainable hydrogen production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001143581300001 Publication Date 2023-12-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0020-1669 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.6 Times cited Open Access
Notes Approved Most recent IF: 4.6; 2023 IF: 4.857
Call Number UA @ admin @ c:irua:202780 Serial (down) 9018
Permanent link to this record
 

 
Author Cassimon, J.; Kovács, A.; Neyts, E.; Cornet, I.; Billen, P.
Title Deacetylation of mannosylerythritol lipids in hydrophobic natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication European journal of organic chemistry Abbreviated Journal
Volume 27 Issue 5 Pages e202300934-10
Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Mannosylerythritol lipids (MELs) are a promising group of biosurfactants due to their high fermentation yield, selfassembly and biological activity. During fermentation by Pseudozyma aphidis, a mixture of MELs with different levels of acylation is formed, of which the fully deacetylated form is the most valuable. In order to reduce the environmental impact of deacetylation, an enzymatic process using natural deep eutectic solvents (NADES) has been developed. We tested the deacetylation of a purified MELs mixture with immobilized Candida antarctica lipase B enzyme and 2-ethylhexanol as co-substrate in 140 h reactions with different NADES. We identified hydrophobic NADES systems with similar yields and kinetics as in pure 2-ethylhexanol solvent. Our results indicate that deacetylation of MELs mixtures in NADES as a solvent is possible with yields comparable to pure co-substrate and that hydrophobic NADES without carboxylic acid compounds facilitate the reaction to the greatest extent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-12-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-193x; 1099-0690 ISBN Additional Links UA library record
Impact Factor 2.8 Times cited Open Access
Notes Approved Most recent IF: 2.8; 2023 IF: 2.834
Call Number UA @ admin @ c:irua:201382 Serial (down) 9017
Permanent link to this record
 

 
Author Broers, F.T.H.; Verslype, I.; Bossers, K.W.; Vanmeert, F.; Gonzalez, V.; Garrevoet, J.; van Loon, A.; va Duijn, E.; Krekeler, A.; De Keyser, N.; Steeman, I.; Noble, P.; Janssens, K.; Meirer, F.; Keune, K.
Title Correlated x-ray fluorescence and ptychographic nano-tomography on Rembrandt's The Night Watch reveals unknown lead “layer” Type A1 Journal article
Year 2023 Publication Science Advances Abbreviated Journal
Volume 9 Issue 50 Pages eadj9394-13
Keywords A1 Journal article; Engineering sciences. Technology; Art; Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract The Night Watch, one of the most famous masterpieces by Rembrandt, is the subject of a large research and conservation project. For the conservation treatment, it is of great importance to understand its current condition. Correlated nano-tomography using x-ray fluorescence and ptychography revealed a-so far unknown-lead-containing “layer”, which likely acts as a protective impregnation layer applied on the canvas before the quartz-clay ground was applied. This layer might explain the presence of lead soap protrusions in areas where no other lead components are present. In addition to the three-dimensional elemental mapping, ptychography visualizes and quantifies components not detectable by hard x-ray fluorescence such as the organic fraction and quartz. The first-time use of this combination of synchrotron-based techniques on a historic paint micro-sample shows it to be an important tool to better interpret the results of noninvasive imaging techniques operating on the macroscale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142514700010 Publication Date 2023-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Additional Links UA library record; WoS full record
Impact Factor 13.6 Times cited Open Access
Notes Approved Most recent IF: 13.6; 2023 IF: NA
Call Number UA @ admin @ c:irua:203849 Serial (down) 9016
Permanent link to this record
 

 
Author Annys, A.; Jannis, D.; Verbeeck, J.
Title Core-loss EELS dataset and neural networks for element identification Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract We present a large dataset containing simulated core-loss electron energy loss spectroscopy (EELS) spectra with the elemental content as ground-truth labels. Additionally we present some neural networks trained on this data for element identification.  The simulated dataset contains zero padded core-loss spectra from 0 to 3072 eV, which represents 107 core-loss edges through all 80 elements from Be up to Bi. The core-loss edges are calculated from the generalised oscillator strength (GOS) database presented by Zhang et al.[1] Generic fine structures using lifetime broadened peaks are used to imitate fine structure due to solid-state effects in experimental spectra. Generic low-loss regions are used to imitate the effect of multiple scattering. Each spectrum contains at least one edge of a given query element and possibly additional edges depending on samples drawn from The Materials Project [2]. The dataset contains for each of the 80 elements: 7000 training spectra, 1500 test spectra, 600 validation spectra and 100 spectra representing only the query element. This results in a total 736 000 labeled spectra. Code on how to  – read the simulated data – transform HDF5 format to TFRecord format – train and evaluate neural networks using the simulated data – use the trained networks for automated element identification is available on GitHub at arnoannys/EELS_ID A full report on the simulation of the dataset and the training and evaluation of the neural networks can be found at:                    Annys, A., Jannis, D. & Verbeeck, J. Deep learning for automated materials characterisation in core-loss electron energy loss spectroscopy. Sci Rep 13, 13724 (2023). https://doi.org/10.1038/s41598-023-40943-7 [1] Zezhong Zhang, Ivan Lobato, Daen Jannis, Johan Verbeeck, Sandra Van Aert, & Peter Nellist. (2023). Generalised oscillator strength for core-shell electron excitation by fast electrons based on Dirac solutions (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.7729585 [2] Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, Kristin A. Persson; Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater 1 July 2013; 1 (1): 011002. [https://doi.org/10.1063/1.4812323](https://doi.org/10.1063/1.4812323)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:203391 Serial (down) 9015
Permanent link to this record
 

 
Author Gielis, J.
Title Conquering Mount Improbable Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 153-173 T2 - Proceedings of the 1st International
Keywords P1 Proceeding; Economics; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Our scientific and technological worldviews are largely dominated by the concepts of entropy and complexity. Originating in 19th-century thermodynamics, the concept of entropy merged with information in the last century, leading to definitions of entropy and complexity by Kolmogorov, Shannon and others. In its simplest form, this worldview is an application of the normal rules of arithmetic. In this worldview, when tossing a coin, a million heads or tails in a row is theoretically possible, but impossible in practice and in real life. On this basis, the impossible (in the binary case, the outermost entries of Pascal's triangle xn and yn for large values of n) can be safely neglected, and one can concentrate fully on what is common and what conforms to the law of large numbers, in fields ranging from physics to sociology and everything in between. However, in recent decades it has been shown that what is most improbable tends to be the rule in nature. Indeed, if one combines the outermost entries xn and yn with the normal rules of arithmetic, either addition or multiplication, one obtains Lamé curves and power laws respectively. In this article, some of these correspondences are highlighted, leading to a double conclusion. First, Gabriel Lamé's geometric footprint in mathematics and the sciences is enormous. Second, conic sections are at the core once more. Whereas mathematics so far has been exclusively the language of patterns in the sciences, the door is opened for mathematics to also become the language of the individual. The probabilistic worldview and Lamé's footprint can be seen as dual methods. In this context, it is to be expected that the notions of information, complexity, simplicity and redundancy benefit from this different viewpoint.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201045 Serial (down) 9014
Permanent link to this record
 

 
Author Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; V. Sobolev, A.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; V. Antipov, E.
Title Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for Na-ion batteries Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 10 Pages 4015-4025
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Sodium-ion batteries are attracting great attention due to their low cost and abundance of sodium. The O3-type NaNi1/3Fe1/3Mn1/3O2 layered oxide material is a promising candidate for positive electrodes (cathodes) in Na-ion batteries. However, its stable electrochemical performance is restricted by the upper voltage limit of 4.0 V (vs Na/Na+), which allows for reversibly removing 0.5-0.55 Na+ per formula unit, corresponding to the capacity of 120-130 mAh.g(-1). Further reduction of sodium content inevitably accelerates capacity degradation, and this issue calls for a detailed study of the redox reactions that accompany the electrochemical (de)intercalation of a large amount of sodium. Here, we present operando and ex situ studies using powder X-ray diffraction and X-ray absorption spectroscopy combined with Fe-57 Mossbauer spectroscopy. Our approach reveals the sequence of the redox transitions that occur during the charge and discharge of O3-NaNi1/3Fe1/3Mn1/3O2. Our data show that in addition to nickel and iron cations oxidizing to M+4, a part of iron transforms into the “3 + delta” state owing to the fast electron exchange Fe3+ + Fe4+ <-> Fe4+ + Fe3+. This process freezes upon cooling the material to 35 K, producing Fe4+ cations, some of which occupy tetrahedral positions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000985970200001 Publication Date 2023-05-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.6 Times cited Open Access
Notes Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:197352 Serial (down) 9013
Permanent link to this record
 

 
Author Jorissen, B.; Covaci, L.; Partoens, B.
Title Comparative analysis of tight-binding models for transition metal dichalcogenides Type A1 Journal article
Year 2024 Publication SciPost physics core Abbreviated Journal
Volume 7 Issue 1 Pages 004-30
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract We provide a comprehensive analysis of the prominent tight-binding (TB) models for transition metal dichalcogenides (TMDs) available in the literature. We inspect the construction of these TB models, discuss their parameterization used and conduct a thorough comparison of their effectiveness in capturing important electronic properties. Based on these insights, we propose a novel TB model for TMDs designed for enhanced computational efficiency. Utilizing MoS2 as a representative case, we explain why specific models offer a more accurate description. Our primary aim is to assist researchers in choosing the most appropriate TB model for their calculations on TMDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001170769300001 Publication Date 2024-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202983 Serial (down) 9012
Permanent link to this record
 

 
Author Grubova, I.Y.; Surmenev, R.A.; Neyts, E.C.; Koptyug, A.V.; Volkova, A.P.; Surmeneva, M.A.
Title Combined first-principles and experimental study on the microstructure and mechanical characteristics of the multicomponent additive-manufactured Ti-35Nb-7Zr-5Ta alloy Type A1 Journal article
Year 2023 Publication ACS Omega Abbreviated Journal
Volume 8 Issue 30 Pages 27519-27533
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract New & beta;-stabilizedTi-based alloys are highly promising forbone implants, thanks in part to their low elasticity. The natureof this elasticity, however, is as yet unknown. We here present combinedfirst-principles DFT calculations and experiments on the microstructure,structural stability, mechanical characteristics, and electronic structureto elucidate this origin. Our results suggest that the studied & beta;Ti-35Nb-7Zr-5Ta wt % (TNZT) alloy manufacturedby the electron-beam powder bed fusion (E-PBF) method has homogeneousmechanical properties (H = 2.01 & PLUSMN; 0.22 GPa and E = 69.48 & PLUSMN; 0.03 GPa) along the building direction,which is dictated by the crystallographic texture and microstructuremorphologies. The analysis of the structural and electronic properties,as the main factors dominating the chemical bonding mechanism, indicatesthat TNZT has a mixture of strong metallic and weak covalent bonding.Our calculations demonstrate that the softening in the Cauchy pressure(C & PRIME; = 98.00 GPa) and elastic constant C ̅ ( 44 ) = 23.84 GPa is the originof the low elasticity of TNZT. Moreover, the nature of this softeningphenomenon can be related to the weakness of the second and thirdneighbor bonds in comparison with the first neighbor bonds in theTNZT. Thus, the obtained results indicate that a carefully designedTNZT alloy can be an excellent candidate for the manufacturing oforthopedic internal fixation devices. In addition, the current findingscan be used as guidance not only for predicting the mechanical propertiesbut also the nature of elastic characteristics of the newly developedalloys with yet unknown properties.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001031269000001 Publication Date 2023-07-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-1343 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.1 Times cited Open Access
Notes Approved Most recent IF: 4.1; 2023 IF: NA
Call Number UA @ admin @ c:irua:198313 Serial (down) 9011
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-Navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO2 Electrochemical Reduction with Zn-Al Layered Double Hydroxide-Loaded Gas-Diffusion Electrode (Supporting Information) Type Dataset
Year 2023 Publication Abbreviated Journal
Volume Issue Pages
Keywords Dataset; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001079191200001 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200933 Serial (down) 9010
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K.
Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
Year 2023 Publication Electrochemistry Abbreviated Journal
Volume 91 Issue 9 Pages 097003-97007
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001082818000001 Publication Date 2023-09-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:200340 Serial (down) 9009
Permanent link to this record
 

 
Author Hassani, N.; Yagmurcukardes, M.; Peeters, F.M.; Neek-Amal, M.
Title Chlorinated phosphorene for energy application Type A1 Journal article
Year 2024 Publication Computational materials science Abbreviated Journal
Volume 231 Issue Pages 112625-112628
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The influence of decoration with impurities and the composition dependent band gap in 2D materials has been the subject of debate for a long time. Here, by using Density Functional Theory (DFT) calculations, we systematically disclose physical properties of chlorinated phosphorene having the stoichiometry of PmCln. By analyzing the adsorption energy, charge density, migration energy barrier, structural, vibrational, and electronic properties of chlorinated phosphorene, we found that (I) the Cl-P bonds are strong with binding energy Eb =-1.61 eV, decreases with increasing n. (II) Cl atoms on phosphorene have anionic feature, (III) the migration path of Cl on phosphorene is anisotropic with an energy barrier of 0.38 eV, (IV) the phonon band dispersion reveal that chlorinated phosphorenes are stable when r <= 0.25 where r = m/n, (V) chlorinated phosphorenes is found to be a photonic crystal in the frequency range of 280 cm-1 to 325 cm-1, (VI) electronic band structure of chlorinated phosphorenes exhibits quasi-flat bands emerging around the Fermi level with widths in the range of 22 meV to 580 meV, and (VII) Cl adsorption causes a semiconducting to metallic/semi-metallic transition which makes it suitable for application as an electroactive material. To elucidate this application, we investigated the change in binding energy (Eb), specific capacity, and open-circuit voltage as a function of the density of adsorbed Cl. The theoretical storage capacity of the chlorinated phosphorene is found to be 168.19 mA h g-1with a large average voltage (similar to 2.08 V) which is ideal number as a cathode in chloride-ion batteries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001110003400001 Publication Date 2023-11-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-0256 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.3 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 3.3; 2024 IF: 2.292
Call Number UA @ admin @ c:irua:202125 Serial (down) 9008
Permanent link to this record
 

 
Author Alvarez-Martin, A.; Quanico, J.; Scovacricchi, T.; Avranovich Clerici, E.; Baggerman, G.; Janssens, K.
Title Chemical mapping of the degradation of geranium lake in paint cross sections by MALDI-MSI Type A1 Journal article
Year 2023 Publication Analytical chemistry Abbreviated Journal
Volume 95 Issue 49 Pages 18215-18223
Keywords A1 Journal article; Antwerp X-ray Imaging and Spectroscopy (AXIS); Ecosphere
Abstract Matrix assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) has become a powerful method to extract spatially resolved chemical information in complex materials. This study provides the first use of MALDI-MSI to define spatial–temporal changes in oil paints. Due to the highly heterogeneous nature of oil paints, the sample preparation had to be optimized to prevent molecules from delocalizing. Here, we present a new protocol for the layer-specific analysis of oil paint cross sections achieving a lateral resolution of 10 μm and without losing ionization efficiency due to topographic effects. The efficacy of this method was investigated in oil paint samples containing a mixture of two historic organic pigments, geranium lake and lead white, a mixture often employed in the work of painter Vincent Van Gogh. This methodology not only allows for spatial visualization of the molecules responsible for the pink hue of the paint but also helps to elucidate the chemical changes behind the discoloration of paintings with this composition. The results demonstrate that this approach provides valuable molecular compositional information about the degradation pathways of pigments in specific paint layers and their interaction with the binding medium and other paint components and with light over time. Since a spatial correlation between molecular species and the visual pattern of the discoloration pattern can be made, we expect that mass spectrometry imaging will become highly relevant in future degradation studies of many more historical pigments and paints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142876000001 Publication Date 2023-11-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-2700; 5206-882x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.4 Times cited Open Access
Notes Approved Most recent IF: 7.4; 2023 IF: 6.32
Call Number UA @ admin @ c:irua:201644 Serial (down) 9007
Permanent link to this record
 

 
Author Khalilov, U.; Uljayev, U.; Mehmonov, K.; Nematollahi, P.; Yusupov, M.; Neyts, E.C.; Neyts, E.C.
Title Can endohedral transition metals enhance hydrogen storage in carbon nanotubes? Type A1 Journal article
Year 2024 Publication International journal of hydrogen energy Abbreviated Journal
Volume 55 Issue Pages 640-610
Keywords A1 Journal article; Engineering sciences. Technology; Modelling and Simulation in Chemistry (MOSAIC); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The safe and efficient use of hydrogen energy, which is in high demand worldwide today, requires efficient hydrogen storage. Despite significant advances in hydrogen storage using carbon-based nanomaterials, including carbon nanotubes (CNTs), efforts to substantially increase the storage capacity remain less effective. In this work, we demonstrate the effect of endohedral transition metal atoms on the hydrogen storage capacity of CNTs using reactive molecular dynamics simulations. We find that an increase in the volume fraction of endohedral nickel atoms leads to an increase in the concentration of physisorbed hydrogen molecules around single-walled CNTs (SWNTs) by approximately 1.6 times compared to pure SWNTs. The obtained results provide insight into the underlying mechanisms of how endohedral transition metal atoms enhance the hydrogen storage ability of SWNTs under nearly ambient conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001142427400001 Publication Date 2023-11-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-3199 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 7.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 7.2; 2024 IF: 3.582
Call Number UA @ admin @ c:irua:202315 Serial (down) 9006
Permanent link to this record
 

 
Author Kovács, A.; Janssens, N.; Mielants, M.; Cornet, I.; Neyts, E.C.; Billen, P.
Title Biocatalyzed vinyl laurate transesterification in natural deep eutectic solvents Type A1 Journal article
Year 2023 Publication Waste and biomass valorization Abbreviated Journal
Volume Issue Pages 1-12
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Biochemical Wastewater Valorization & Engineering (BioWaVE); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract Purpose Natural deep eutectic solvents (NADES) represent a green alternative to conventional organic solvents as reaction medium, offering more benign properties. To efficiently design NADES for biocatalysis, a better understanding of their effect on these reactions is needed. We hypothesize that this effect can be described by separately considering (1) the solvent interactions with the substrates, (2) the solvent viscosities and (3) the enzyme stability in NADES. Methods We investigated the effect of substrate solvation and viscosity on the reaction rate; and the stability of the enzyme in NADES. To this end, we monitored the conversion over time of the transesterification of vinyl laurate with 1- butanol by the lipase enzyme Candida antarctica B in NADES of different compounds and molar ratios. Results The initial reaction rate is higher in most NADES ( varying between 1.14 and 15.07 mu mol min(-1) mg(-1)) than in the reference n-hexane (4.0 mu mol min(-1) mg(-1))), but no clear relationship between viscosity and initial reaction rate was found. The increased reaction rate is most likely related to the solvation of the substrate due to a change in the activation energy of the reaction or a change in the conformation of the substrate. The enzyme retained part of its activity after the first 2 h of reaction (on average 20 % of the substrate reacted in the 2-24 h period). Enzyme incubation in ethylene glycol-based NADES resulted in a reduced reaction rate ( 15.07 vs. 3.34 mu mol min(-1) mg(-1)), but this may also be due to slow dissolution of the substrate. Conclusions The effect of viscosity seems to be marginal next to the effect of solvation and possible enzyme-NADES interaction. The enzyme retains some of its activity during the 24-hour measurements, but the enzyme incubation experiments did not yield accurate, comparable values. [GRAPHICS] .
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001117290800003 Publication Date 2023-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1877-2641; 1877-265x ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 1.337
Call Number UA @ admin @ c:irua:202709 Serial (down) 9005
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A.
Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
Year 2023 Publication Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal
Volume 17 Issue 7 Pages 54-58
Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2030-2738 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202271 Serial (down) 9004
Permanent link to this record
 

 
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E.
Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
Year 2023 Publication Chemical engineering journal Abbreviated Journal
Volume 477 Issue Pages 146984-14
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001108935900001 Publication Date 2023-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:200649 Serial (down) 9003
Permanent link to this record
 

 
Author Mescia, L.; Bia, P.; Gielis, J.; Caratelli, D.
Title Advanced particle swarm optimization methods for electromagnetics Type P1 Proceeding
Year 2023 Publication Abbreviated Journal
Volume Issue Pages 109-122 T2 - Proceedings of the 1st International
Keywords P1 Proceeding; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Electromagnetic design problems involve optimizing multiple parameters that are nonlinearly related to objective functions. Traditional optimization techniques require significant computational resources that grow exponentially as the problem size increases. Therefore, a method that can produce good results with moderate memory and computational resources is desirable. Bioinspired optimization methods, such as particle swarm optimization (PSO), are known for their computational efficiency and are commonly used in various scientific and technological fields. In this article we explore the potential of advanced PSO-based algorithms to tackle challenging electromagnetic design and analysis problems faced in real-life applications. It provides a detailed comparison between conventional PSO and its quantum-inspired version regarding accuracy and computational costs. Additionally, theoretical insights on convergence issues and sensitivity analysis on parameters influencing the stochastic process are reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid modeling approach, based on the unified geometrical description enabled by the Gielis Transformation, is applied in combination with a suitable quantum PSO-based algorithm, along with a geometrical tube tracing and physical optics technique for solving the inverse problem aimed at identifying the geometrical parameters that yield optimal antenna performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-90-833839-0-3 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:201048 Serial (down) 9002
Permanent link to this record
 

 
Author Mychinko, M.
Title Advanced Electron Tomography to Investigate the Growth and Stability of Complex Metal Nanoparticles = Geavanceerde Elektronentomografie om de Groei en Stabiliteit van Complexe Metallische Nanodeeltjes te Onderzoeken Type Doctoral thesis
Year 2024 Publication Abbreviated Journal
Volume Issue Pages 227 p.
Keywords Doctoral thesis; Electron microscopy for materials research (EMAT)
Abstract During the past decades, metallic nanoparticles (NPs) have attracted great attention in materials science due to their specific optical properties based on surface plasmon resonances. Because of these phenomena, plasmonic NPs (or nanoplasmonics) are very promising for application in biosensing, photocatalysts, medicine, data storage, solar energy conversion, etc. Currently, colloidal synthesis techniques enable scientists to routinely produce mono and bimetallic NPs of various shapes, sizes, composition, and elemental distribution, with superior properties for plasmonic applications. Two primary directions for further advancing nanoplasmonic-based technologies include synthesizing novel morphologies, such as highly asymmetric chiral NPs, and gaining deeper insights into the factors affecting the stability of produced nanoplasmonics. With the increasing complexity of nanoplasmonics morphologies and higher stability requirements, there is a pressing need for thorough investigations into their 3D structures and their evolution under different conditions, with high resolution. Electron tomography (ET) emerges as an ideal tool to retrieve shape and element-sensitive information about individual nanoparticles in 3D, achieving resolutions down to the atomic level. Moreover, ET techniques can be combined with in situ holders, enabling detailed studies of processes mimicking real applications of nanoplasmonic-based devices. The first part of this thesis will focus on detailed studies of chiral Au NPs, promising for spectroscopy techniques based on the differential absorption of left- and right-handed circularly polarized light. Specifically, I will discuss the primary strategies for wet-colloidal growth of the various types of intrinsically chiral Au NPs. Advanced ET methods will be demonstrated as powerful tools for characterizing the final helical morphologies of the produced Au NPs and for studying the chiral growth mechanisms by examining intermediate structures obtained during chiral growth. The second part will focus on the heat-induced stability of various Au@Ag core-shell NPs. Operating in real conditions, such as elevated temperatures, may cause particle reshaping and redistribution of metals between the core and shell, gradually altering nanoplasmonics properties. Hence, a thorough understanding of the influence of size, shape, and defects on these processes is crucial for further developments. Recently developed techniques, combining fast ET with in-situ heating holders, have allowed me to evaluate the influence of various parameters (size, shape, defect structure) on heat-induced elemental redistribution in Au@Ag core-shell nanoparticles qualitatively and quantitatively. Additionally, I will discuss the prospects of high-resolution ET for visualizing the diffusion of individual atoms within complex nanostructures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202976 Serial (down) 9001
Permanent link to this record
 

 
Author Duran, T.A.; Yayak, Y.O.; Aydin, H.; Peeters, F.M.; Yagmurcukardes, M.
Title A perspective on the state-of-the-art functionalized 2D materials Type A1 Journal article
Year 2023 Publication Journal of applied physics Abbreviated Journal
Volume 134 Issue 12 Pages 120901-120929
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) ultra-thin materials are more crucial than their bulk counterparts for the covalent functionalization of their surface owing to atomic thinness, large surface-to-volume ratio, and high reactivity of surface atoms having unoccupied orbitals. Since the surface of a 2D material is composed of atoms having unoccupied orbitals, covalent functionalization enables one to improve or precisely modify the properties of the ultra-thin materials. Chemical functionalization of 2D materials not only modifies their intrinsic properties but also makes them adapted for nanotechnology applications. Such engineered materials have been used in many different applications with their improved properties. In the present Perspective, we begin with a brief history of functionalization followed by the introduction of functionalized 2D materials. Our Perspective is composed of the following sections: the applications areas of 2D graphene and graphene oxide crystals, transition metal dichalcogenides, and in-plane anisotropic black phosphorus, all of which have been widely used in different nanotechnology applications. Finally, our Perspectives on the future directions of applications of functionalized 2D materials are given. The present Perspective sheds light on the current progress in nanotechnological applications of engineered 2D materials through surface functionalization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001087770500008 Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record
Impact Factor 3.2 Times cited Open Access
Notes Approved Most recent IF: 3.2; 2023 IF: 2.068
Call Number UA @ admin @ c:irua:201281 Serial (down) 9000
Permanent link to this record
 

 
Author Mayda, S.; Monico, L.; Krishnan, D.; De Meyer, S.; Cotte, M.; Garrevoet, J.; Falkenberg, G.; Sandu, I.C.A.; Partoens, B.; Lamoen, D.; Romani, A.; Miliani, C.; Verbeeck, J.; Janssens, K.
Title A combined experimental and computational approach to understanding CdS pigment oxidation in a renowned early 20th century painting Type A1 Journal article
Year 2023 Publication Chemistry of materials Abbreviated Journal
Volume 35 Issue 24 Pages 10403-10415
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Antwerp X-ray Imaging and Spectroscopy (AXIS)
Abstract Cadmium sulfide (CdS)-based yellow pigments have been used in a number of early 20th century artworks, including The Scream series painted by Edvard Munch. Some of these unique paintings are threatened by the discoloration of these CdS-based yellow oil paints because of the oxidation of the original sulfides to sulfates. The experimental data obtained here prove that moisture and cadmium chloride compounds play a key role in promoting such oxidation. To clarify how these two factors effectively prompt the process, we studied the band alignment between CdS, CdCl2, and Cd-(OH)Cl as well as the radicals center dot OH and H3O center dot by density functional theory (DFT) methods. Our results show that a stack of several layers of Cd-(OH)Cl creates a pocket of positive holes at the Cl-terminated surface and a pocket of electrons at the OH-terminated surface by leading in a difference in ionization energy at both surfaces. The resulting band alignment indicates that Cd-(OH)Cl can indeed play the role of an oxidative catalyst for CdS in a moist environment, thus providing an explanation for the experimental evidence.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001133000900001 Publication Date 2023-12-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0897-4756; 1520-5002 ISBN Additional Links UA library record; WoS full record
Impact Factor 8.6 Times cited Open Access
Notes The experimental research on the cadmium yellow powders/paint mock-ups and The Scream (ca. 1910) was financially supported by the European Union, research projects IPERION-CH (H2020-INFRAIA-2014-2015, GA no. 654028) and IPERION-HS (H2020-INFRAIA-2019-1, GA no. 871034) and the project AMIS within the program Dipartimenti di Eccellenza 2018-2022 (funded by MUR and the University of Perugia). For the beamtime grants received, the authors thank the ESRF-ID21 beamline (experiments HG64 and HG95), the DESY-P06 beamline, a member of the Helmholtz Association HGF (experiments I-20130221 EC and I-20160126 EC), and the project CALIPSOplus under the GA no. 730872 from the E.U. Framework Programme for Research and Innovation Horizon 2020. All of the staff of the MUNCH Museum (Conservation Department) is acknowledged for their collaboration. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center) and the HPC infrastructure of the University of Antwerp (CalcUA), both funded by the FWO – Vlaanderen and the Flemish Government, Department EWI. Approved Most recent IF: 8.6; 2023 IF: 9.466
Call Number UA @ admin @ c:irua:202836 Serial (down) 8999
Permanent link to this record
 

 
Author Parrilla, M.; Sena-Torralba, A.; Steijlen, A.; Morais, S.; Maquieira, Á.; De Wael, K.
Title A 3D-printed hollow microneedle-based electrochemical sensing device for in situ plant health monitoring Type A1 Journal article
Year 2024 Publication Biosensors and bioelectronics Abbreviated Journal
Volume 251 Issue Pages 116131-116139
Keywords A1 Journal article; Engineering sciences. Technology; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)
Abstract Plant health monitoring is devised as a new concept to elucidate in situ physiological processes. The need for increased food production to nourish the growing global population is inconsistent with the dramatic impact of climate change, which hinders crop health and exacerbates plant stress. In this context, wearable sensors play a crucial role in assessing plant stress. Herein, we present a low-cost 3D-printed hollow microneedle array (HMA) patch as a sampling device coupled with biosensors based on screen-printing technology, leading to affordable analysis of biomarkers in the plant fluid of a leaf. First, a refinement of the 3D-printing method showed a tip diameter of 25.9 ± 3.7 μm with a side hole diameter on the microneedle of 228.2 ± 18.6 μm using an affordable 3D printer (<500 EUR). Notably, the HMA patch withstanded the forces exerted by thumb pressing (i.e. 20-40 N). Subsequently, the holes of the HMA enabled the fluid extraction tested in vitro and in vivo in plant leaves (i.e. 13.5 ± 1.1 μL). A paper-based sampling strategy adapted to the HMA allowed the collection of plant fluid. Finally, integrating the sampling device onto biosensors facilitated the in situ electrochemical analysis of plant health biomarkers (i.e. H2O2, glucose, and pH) and the electrochemical profiling of plants in five plant species. Overall, this electrochemical platform advances precise and versatile sensors for plant health monitoring. The wearable device can potentially improve precision farming practices, addressing the critical need for sustainable and resilient agriculture in changing environmental conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001198047000001 Publication Date 2024-02-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0956-5663 ISBN Additional Links UA library record; WoS full record
Impact Factor 12.6 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 12.6; 2024 IF: 7.78
Call Number UA @ admin @ c:irua:203204 Serial (down) 8998
Permanent link to this record