toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Paulussen, S.; Verheyde, B.; Tu, X.; De Bie, C.; Martens, T.; Petrovic, D.; Bogaerts, A.; Sels, B. pdf  doi
openurl 
  Title Conversion of carbon dioxide to value-added chemicals in atmospheric pressure dielectric barrier discharges Type A1 Journal article
  Year 2010 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 19 Issue 3 Pages 034015,1-034015,6  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The aim of this work consists of the evaluation of atmospheric pressure dielectric barrier discharges for the conversion of greenhouse gases into useful compounds. Therefore, pure CO2 feed flows are administered to the discharge zone at varying discharge frequency, power input, gas temperature and feed flow rates, aiming at the formation of CO and O2. The discharge obtained in CO2 is characterized as a filamentary mode with a microdischarge zone in each half cycle of the applied voltage. It is shown that the most important parameter affecting the CO2-conversion levels is the gas flow rate. At low flow rates, both the conversion and the CO-yield are significantly higher. In addition, also an increase in the gas temperature and the power input give rise to higher conversion levels, although the effect on the CO-yield is limited. The optimum discharge frequency depends on the power input level and it cannot be unambiguously stated that higher frequencies give rise to increased conversion levels. A maximum CO2 conversion of 30% is achieved at a flow rate of 0.05 L min−1, a power density of 14.75 W cm−3 and a frequency of 60 kHz. The most energy efficient conversions are achieved at a flow rate of 0.2 L min−1, a power density of 11 W cm−3 and a discharge frequency of 30 kHz.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000277982800016 Publication Date 2010-05-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 116 Open Access  
  Notes Approved Most recent IF: 3.302; 2010 IF: 2.218  
  Call Number UA @ lucian @ c:irua:82408 Serial (down) 512  
Permanent link to this record
 

 
Author Tinck, S.; Bogaerts, A. doi  openurl
  Title Computer simulations of an oxygen inductively coupled plasma used for plasma-assisted atomic layer deposition Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 1 Pages 015008-015008,10  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an O2 inductively coupled plasma used for plasma enhanced atomic layer deposition of Al2O3 thin films is investigated by means of modeling. This work intends to provide more information about basic plasma properties such as species densities and species fluxes to the substrate as a function of power and pressure, which might be hard to measure experimentally. For this purpose, a hybrid model developed by Kushner et al is applied to calculate the plasma characteristics in the reactor volume for different chamber pressures ranging from 1 to 10 mTorr and different coil powers ranging from 50 to 500 W. Density profiles of the various oxygen containing plasma species are reported as well as fluxes to the substrate under various operating conditions. Furthermore, different orientations of the substrate, which can be placed vertically or horizontally in the reactor, are taken into account. In addition, special attention is paid to the recombination process of atomic oxygen on the different reactor walls under the stated operating conditions. From this work it can be concluded that the plasma properties change significantly in different locations of the reactor. The plasma density near the cylindrical coil is high, while it is almost negligible in the neighborhood of the substrate. Ion and excited species fluxes to the substrate are found to be very low and negligible. Finally, the orientation of the substrate has a minor effect on the flux of O2, while it has a significant effect on the flux of O. In the horizontal configuration, the flux of atomic oxygen can be up to one order of magnitude lower than in the vertical configuration.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000286592200009 Publication Date 2011-01-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:85285 Serial (down) 467  
Permanent link to this record
 

 
Author Bogaerts, A.; de Bleecker, K.; Georgieva, V.; Kolev, I.; Madani, M.; Neyts, E. doi  openurl
  Title Computer simulations for processing plasmas Type A1 Journal article
  Year 2006 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 3 Issue 2 Pages 110-119  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000235628300003 Publication Date 2006-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.846; 2006 IF: 2.298  
  Call Number UA @ lucian @ c:irua:56076 Serial (down) 465  
Permanent link to this record
 

 
Author Bogaerts, A.; Bultinck, E.; Eckert, M.; Georgieva, V.; Mao, M.; Neyts, E.; Schwaederlé, L. doi  openurl
  Title Computer modeling of plasmas and plasma-surface interactions Type A1 Journal article
  Year 2009 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 6 Issue 5 Pages 295-307  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this paper, an overview is given of different modeling approaches used for describing gas discharge plasmas, as well as plasma-surface interactions. A fluid model is illustrated for describing the detailed plasma chemistry in capacitively coupled rf discharges. The strengths and limitations of Monte Carlo simulations and of a particle-in-cell-Monte Carlo collisions model are explained for a magnetron discharge, whereas the capabilities of a hybrid Monte Carlo-fluid approach are illustrated for a direct current glow discharge used for spectrochemical analysis of materials. Finally, some examples of molecular dynamics simulations, for the purpose of plasma-deposition, are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Weinheim Editor  
  Language Wos 000266471800003 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850;1612-8869; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 18 Open Access  
  Notes Approved Most recent IF: 2.846; 2009 IF: 4.037  
  Call Number UA @ lucian @ c:irua:76833 Serial (down) 461  
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R. openurl 
  Title Comprehensive three-dimensional modeling network for a dc glow discharge plasma Type A1 Journal article
  Year 1998 Publication Plasma physics reports Abbreviated Journal Plasma Phys Rep+  
  Volume 24 Issue Pages 573-583  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000075129800005 Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-780x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.984 Times cited 8 Open Access  
  Notes Approved Most recent IF: 0.984; 1998 IF: 0.444  
  Call Number UA @ lucian @ c:irua:24123 Serial (down) 452  
Permanent link to this record
 

 
Author Bogaerts, A. doi  openurl
  Title Comprehensive modelling network for dc glow discharges in argon Type A1 Journal article
  Year 1999 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 8 Issue Pages 210-229  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000080660600004 Publication Date 2002-08-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 27 Open Access  
  Notes Approved Most recent IF: 3.302; 1999 IF: 2.038  
  Call Number UA @ lucian @ c:irua:24129 Serial (down) 451  
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N. pdf  doi
openurl 
  Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
  Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas  
  Volume 17 Issue 11 Pages 113512-113512,11  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Woodbury, N.Y. Editor  
  Language Wos 000285486500105 Publication Date 2010-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.115 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.115; 2010 IF: 2.320  
  Call Number UA @ lucian @ c:irua:84763 Serial (down) 429  
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A. pdf  doi
openurl 
  Title Characterization of an Ar/O2 magnetron plasma by a multi-species Monte Carlo model Type A1 Journal article
  Year 2011 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 20 Issue 4 Pages 045013-045013,12  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract A combined Monte Carlo (MC)/analytical surface model is developed to study the plasma processes occurring during the reactive sputter deposition of TiOx thin films. This model describes the important plasma species with a MC approach (i.e. electrons, Ar+ ions, {\rm O}_2  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000295829800015 Publication Date 2011-06-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.302; 2011 IF: 2.521  
  Call Number UA @ lucian @ c:irua:89732 Serial (down) 316  
Permanent link to this record
 

 
Author Nelissen, K.; Partoens, B.; Peeters, F.M. url  doi
openurl 
  Title Bubble, stripe, and ring phases in a two-dimensional cluster with competing interactions Type A1 Journal article
  Year 2005 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 71 Issue Pages 066204,1-11  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000230275000049 Publication Date 2005-06-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 30 Open Access  
  Notes Approved Most recent IF: 2.366; 2005 IF: 2.418  
  Call Number UA @ lucian @ c:irua:62446 Serial (down) 258  
Permanent link to this record
 

 
Author Apolinario, S.W.S.; Peeters, F.M. doi  openurl
  Title Binary dusty plasma Coulomb balls Type A1 Journal article
  Year 2011 Publication Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics Abbreviated Journal Phys Rev E  
  Volume 83 Issue 4 Pages 041136,1-041136,8  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigated the mixing and segregation of a system consisting of two different species of particles, having different charges, interacting through a pure Coulomb potential, and confined in a three-dimensional parabolic trap. The structure of the cluster and its normal mode spectrum are analyzed as a function of the relative charge and the relative number of different types of particles. We found that (a) the system can be in a mixed or segregated state depending on the relative charge ratio parameter and (b) the segregation process is mediated by a first or second order structural phase transition which strongly influences the magic cluster properties of the system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lancaster, Pa Editor  
  Language Wos 000290154900004 Publication Date 2011-04-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-3755;1550-2376; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.366 Times cited 10 Open Access  
  Notes ; This work was supported by FACEPE (Fundacao de Amparo a Ciencia e Tecnologia do Estado de Pernambuco) and the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 2.366; 2011 IF: 2.255  
  Call Number UA @ lucian @ c:irua:89716 Serial (down) 236  
Permanent link to this record
 

 
Author Kolev, S.; Bogaerts, A. pdf  url
doi  openurl
  Title A 2D model for a gliding arc discharge Type A1 Journal article
  Year 2015 Publication Plasma sources science and technology Abbreviated Journal Plasma Sources Sci T  
  Volume 24 Issue 24 Pages 015025  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In this study we report on a 2D fluid model of a gliding arc discharge in argon. Despite the 3D nature of the discharge, 2D models are found to be capable of providing very useful information about the operation of the discharge. We employ two modelsan axisymmetric and a Cartesian one. We show that for the considered experiment and the conditions of a low current arc (around 30 mA) in argon, there is no significant heating of the cathode surface and the discharge is sustained by field electron emission from the cathode accompanied by the formation of a cathode spot. The obtained discharge power and voltage are relatively sensitive to the surface properties and particularly to the surface roughness, causing effectively an amplification of the normal electric field. The arc body and anode region are not influenced by this and depend mainly on the current value. The gliding of the arc is modelled by means of a 2D Cartesian model. The arcelectrode contact points are analysed and the gliding mechanism along the electrode surface is discussed. Following experimental observations, the cathode spot is simulated as jumping from one point to another. A complete arc cycle is modelled from initial ignition to arc decay. The results show that there is no interaction between the successive gliding arcs.  
  Address  
  Corporate Author Thesis  
  Publisher Institute of Physics Place of Publication Bristol Editor  
  Language Wos 000348298200026 Publication Date 2014-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0963-0252;1361-6595; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.302 Times cited 34 Open Access  
  Notes Approved Most recent IF: 3.302; 2015 IF: 3.591  
  Call Number c:irua:122538 c:irua:122538 c:irua:122538 c:irua:122538 Serial (down) 3  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: