toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nikolaev, A.V.; Michel, K.H. url  doi
openurl 
  Title Superexchange and electron correlations in alkali fullerides AC60, A=K, Rb, Cs Type A1 Journal article
  Year 2005 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 122 Issue 6 Pages 064310-64314  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Superexchange interactions in alkali fullerides AC(60) are derived for C-60 molecular ions separated by interstitial alkali-metal ions. We use a multiconfiguration approach which comprises the lowest molecular orbital states of the C-60 molecule and the excited s and d states of the alkali-metal atom A. Interactions are described by the valence bond (Heitler-London) method for a complex (C-60 – A – C-60) – with two valence electrons. The electronic charge transfer between the alkali-metal atom and a neighboring C-60 molecule is not complete. The occupation probability of excited d and s states of the alkali atom is not negligible. In correspondence with the relative positions of the C-60 molecules and A atoms in the polymer crystal, we consider 180degrees and 90degrees (angle) superexchange pathways. For the former case the ground state is found to be a spin singlet separated from a triplet at similar to20 K. For T < 20 K there appear strong spin correlations for the 180degrees superexchange pathway. The results are related to spin lattice relaxation experiments on CsC60 in the polymerized and in the quenched cubic phase. (C) 2005 American Institute of Physics.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000226918100018 Publication Date 2005-02-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.965; 2005 IF: 3.138  
  Call Number UA @ lucian @ c:irua:102740 Serial 3377  
Permanent link to this record
 

 
Author Milat, O.; Van Tendeloo, G.; Amelinckx, S.; Babu, T.G.N.; Greaves, C. pdf  doi
openurl 
  Title Superstructure and structural variants in Sr2CuO2(CO3) Type A1 Journal article
  Year 1994 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 109 Issue 1 Pages 5-14  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos A1994MY48800002 Publication Date 2002-09-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.133 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 28/145 Q1 #  
  Call Number UA @ lucian @ c:irua:99919 Serial 3384  
Permanent link to this record
 

 
Author Margueritat, J.; Gonzalo, J.; Afonso, C.N.; Hörmann, U.; Van Tendeloo, G.; Mlayah, A.; Murray, D.B.; Saviot, L.; Zhou, Y.; Hong, M.H.; Luk'yanchuk, B.S. doi  openurl
  Title Surface enhanced Raman scattering of silver sensitized cobalt nanoparticles in metaldielectric nanocomposites Type A1 Journal article
  Year 2008 Publication Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 19 Issue 37 Pages 375701,1-375701,4  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the preparation of a new type of nanocomposite containing cobalt and silver nanoparticles organized in parallel layers with a well controlled separation. This arrangement allows the observation of an enhanced low-frequency Raman signal at the vibration frequency of cobalt nanoparticles excited through the surface plasmons of silver nanoparticles. Numerical simulations of the electric field confirm the emergence of hot spots when the separation between silver and cobalt nanoparticles is small enough.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Bristol Editor  
  Language Wos 000258385600018 Publication Date 2008-08-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.44; 2008 IF: 3.446  
  Call Number UA @ lucian @ c:irua:81873 Serial 3396  
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J. url  doi
openurl 
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B  
  Volume 71 Issue 71 Pages 127-143  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Copenhagen Editor  
  Language Wos 000352166500002 Publication Date 2015-04-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.032 Times cited 11 Open Access  
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA  
  Call Number c:irua:124411 Serial 3408  
Permanent link to this record
 

 
Author Vandecasteele, C.; van Grieken, R.; Gijbels, R.; Speecke, A. pdf  doi
openurl 
  Title Systematic errors in 14-MeV neutron activation analysis for oxygen : part 1 : neutron and γ-ray attenuation effects Type A1 Journal article
  Year 1973 Publication Analytica chimica acta Abbreviated Journal Anal Chim Acta  
  Volume 64 Issue 2 Pages 187-196  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A detailed account is given of neutron and γ-ray attenuation effects in 14-MeV neutron activation analysis of oxygen. Appropriate neutron cross-section values have been determined in two different ways and compared with literature values. It appears that the attenuation process is best described in terms of nonelastic scattering cross-sections. It is also shown that the narrow beam total γ-ray attenuation coefficients at 6 MeV, given in the literature are suitable for correction purposes if 16N γ-rays are counted with a window of 4.56.5 MeV. Attention was paid to the contribution of β-rays when the 16N activity is counted in this energy interval with a NaI(Tl) detector.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Amsterdam Editor  
  Language Wos A1973P353000003 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-2670; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.513 Times cited 11 Open Access  
  Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #  
  Call Number UA @ lucian @ c:irua:116363 Serial 3464  
Permanent link to this record
 

 
Author Alekseeva, A.M.; Abakumov, A.M.; Leithe-Jasper, A.; Schnelle, W.; Prots, Y.; Van Tendeloo, G.; Antipov, E.V.; Grin, Y. doi  openurl
  Title Mg8Rh4B: a new type of boron stabilized Ti2Ni structure Type A1 Journal article
  Year 2006 Publication Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 179 Issue 9 Pages 2751-2761  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos 000240157400004 Publication Date 2006-01-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.299; 2006 IF: 2.107  
  Call Number UA @ lucian @ c:irua:60810 Serial 3544  
Permanent link to this record
 

 
Author Govorov, V.A.; Abakumov, A.M.; Rozova, M.G.; Borzenko, A.G.; Vassiliev, S.Y.; Mazin, V.M.; Afanasov, M.I.; Fabritchnyi, P.B.; Tsirlina, G.A.; Antipov, E.V.; Morozova, E.N.; Gippius, A.A.; Ivanov, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title Sn2-2xSbxFexO4 solid solutions as possible inert anode materials in aluminum electrolysis Type A1 Journal article
  Year 2005 Publication Chemistry of materials Abbreviated Journal Chem Mater  
  Volume 17 Issue 11 Pages 3004-3011  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Washington, D.C. Editor  
  Language Wos 000229656000030 Publication Date 2005-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0897-4756;1520-5002; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.466 Times cited 11 Open Access  
  Notes Approved Most recent IF: 9.466; 2005 IF: 4.818  
  Call Number UA @ lucian @ c:irua:59053 Serial 3554  
Permanent link to this record
 

 
Author Ball, J.M.; Schryvers, D. doi  openurl
  Title The analysis of macrotwins in NiAl martensite Type A1 Journal article
  Year 2003 Publication Journal de physique: 4 T2 – 10th International Conference on Martensitic Transformations, JUN 10-14, 2002, ESPOO, FINLAND Abbreviated Journal J Phys Iv  
  Volume 112 Issue Part 1 Pages 159-162  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We present a theoretical study of macrotwins arising in cubic to tetragonal martensitic transformations. The results help to explain some features of such macrotwins observed in Ni65Al35.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Les Ulis Editor  
  Language Wos 000186503200024 Publication Date 2008-08-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1155-4339; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:103275 Serial 3569  
Permanent link to this record
 

 
Author Teodorescu, V.S.; Mihailescu, I.N.; Gyorgy, E.; Luches, A.; Martino, M.; Nistor, L.C.; van Landuyt, J.; Hermann, J. doi  openurl
  Title The study of a crater forming on the surface of a Ti target submitted to multipulse excimer laser irradiation under low pressure N2 Type A1 Journal article
  Year 1996 Publication Journal of modern optics Abbreviated Journal J Mod Optic  
  Volume 43 Issue 9 Pages 1773-1784  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A Ti target was submitted to laser ablation in low ambient pressure N-2. Electron microscopy examination of the cross-section of the crater zone forming on the Ti target, and XPS analyses, indicate that there is a small effect on the nitridation processes taking place on and in the vicinity of the target. The studies show a zone influenced by the multipulse laser treatment extending beneath the crater down to a depth of the same order of magnitude as the crater depth (i.e. similar to 10 mu m). In this zone, TiN could be identified as being present only in traces, while the whole zone exhibited a layer structure with differences in morphology and mechanical wear.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos A1996VF31900002 Publication Date 2007-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0950-0340;1362-3044; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.008 Times cited 11 Open Access  
  Notes Approved PHYSICS, APPLIED 47/145 Q2 #  
  Call Number UA @ lucian @ c:irua:95238 Serial 3594  
Permanent link to this record
 

 
Author Lepoittevin, C.; Hadermann, J.; Malo, S.; Pérez, O.; Van Tendeloo, G.; Hervieu, M. pdf  doi
openurl 
  Title Two variants of the 1/2[110]p(203)p crystallographic shear structures: the phasoid Sr0.61Pb0.18(Fe0.75Mn0.25)O2.29 Type A1 Journal article
  Year 2009 Publication Inorganic chemistry Abbreviated Journal Inorg Chem  
  Volume 48 Issue 17 Pages 8257-8262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract For the composition (Sr0.61Pb0.18)(Fe0.75Mn0.25)O2.29, a new modulated crystallographic shear structure, related to perovskite, has been synthesized and structurally characterized by transmission electron microscopy. The structure can be described using a monoclinic supercell with cell parameters am = 27.595(2) Å, bm = 3.8786(2) Å, cm = 13.3453(9) Å, and βm = 100.126(5)°, refined from powder X-ray diffraction data. The incommensurate crystallographic shear phases require an alternative approach using the superspace formalism. This allows a unified description of the incommensurate phases from a monoclinically distorted perovskite unit cell and a modulation wave vector. The structure deduced from the high-resolution transmission electron microscopy and high-angle annular dark-field−scanning transmission electron microscopy images is that of a 1/2[110]p(203)p crystallographic shear structure. The structure follows the concept of a phasoid, with two coexisting variants with the same unit cell. The difference is situated at the translational interface, with the local formation of double (phase 2) or single (phase 1) tunnels, where the Pb cations are likely located.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Easton, Pa Editor  
  Language Wos 000269313500032 Publication Date 2009-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0020-1669;1520-510X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.857 Times cited 11 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.857; 2009 IF: 4.657  
  Call Number UA @ lucian @ c:irua:78482 Serial 3786  
Permanent link to this record
 

 
Author van den Heuvel, W.; Tikhomirov, V.K.; Kirilenko, D.; Schildermans, N.; Chibotaru, L.F.; Vanacken, J.; Gredin, P.; Mortier, M.; Van Tendeloo, G.; Moshchalkov, V.V. url  doi
openurl 
  Title Ultralow blocking temperature and breakdown of the giant spin model in Er3+-doped nanoparticles Type A1 Journal article
  Year 2010 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 82 Issue 9 Pages 094421-094421,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magnetization of luminescent Er3+-doped PbF2 nanoparticles (formula Er0.3Pb0.7F2.3) has been studied. Despite the high concentration of the doping Er3+ ions and relatively large size (8 nm) of these nanoparticles we have found no deviation between field-cooled and zero-field-cooled magnetization curves down to T=0.35 K, which points out an ultralow blocking temperature for the reversal of magnetization. We also have found strongly deviating magnetization curves M(H/T) for different temperatures T. These results altogether show that the investigated nanoparticles are not superparamagnetic, but rather each Er3+ ion in these nanoparticles is found in a paramagnetic state down to very low temperatures, which implies the breakdown of the Néel-Brown giant spin model in the case of these nanoparticles. Calculations of magnetization within a paramagnetic model of noninteracting Er3+ ions completely support this conclusion. Due to the ultralow blocking temperature, these nanoparticles have a potential for magnetic field-induced nanoscale refrigeration with an option of their optical localization and temperature control.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000281773300005 Publication Date 2010-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121;1550-235X; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Fwo Approved Most recent IF: 3.836; 2010 IF: 3.774  
  Call Number UA @ lucian @ c:irua:85423 Serial 3796  
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.; doi  openurl
  Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
  Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale  
  Volume 7 Issue 7 Pages 17109-17115  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Cambridge Editor  
  Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 11 Open Access  
  Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394  
  Call Number UA @ lucian @ c:irua:129434 Serial 4175  
Permanent link to this record
 

 
Author da Costa; Zarenia, M.; Chaves, A.; Pereira, J.M., Jr.; Farias, G.A.; Peeters, F.M. url  doi
openurl 
  Title Hexagonal-shaped monolayer-bilayer quantum disks in graphene : a tight-binding approach Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 94 Issue 94 Pages 035415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using the tight-binding approach, we investigate confined states in two different hybrid monolayer-bilayer systems: (i) a hexagonal monolayer area surrounded by bilayer graphene in the presence of a perpendicularly applied electric field and (ii) a hexagonal bilayer graphene dot surrounded by monolayer graphene. The dependence of the energy levels on dot size and external magnetic field is calculated. We find that the energy spectrum for quantum dots with zigzag edges consists of states inside the gap which range from dot-localized states, edge states, to mixed states coexisting together, whereas for dots with armchair edges, only dot-localized states are observed.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000379502200008 Publication Date 2016-07-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was financially supported by CNPq, under contract NanoBioEstruturas No. 555183/2005-0, PRONEX/FUNCAP, CAPES Foundation, under the process No. BEX 7178/13-1, the Flemish Science Foundation (FWO-Vl), the Bilateral programme between CNPq and FWO-Vl, the Brazilian Program Science Without Borders (CsF), and the Lemann Foundation. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:134947 Serial 4190  
Permanent link to this record
 

 
Author Zha, G.-Q.; Covaci, L.; Peeters, F.M.; Zhou, S.-P. url  doi
openurl 
  Title Majorana zero-energy modes and spin current evolution in mesoscopic superconducting loop systems with spin-orbit interaction Type A1 Journal article
  Year 2015 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume 92 Issue 92 Pages 094516  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The Majorana zero modes and persistent spin current in mesoscopic d-wave-superconducting loops with spin-orbit (SO) interaction are investigated by numerically solving the spin-generalized Bogoliubov-de Gennes equations self-consistently. For some appropriate strength of the SO coupling, Majorana zero-energy states and sharp jumps of the spin-polarized currents can be observed when the highest energy levels cross the Fermi energy in the spectrum, leading to spin currents with opposite chirality flowing near the inner and outer edges of the sample. When the threaded magnetic flux turns on, four flux-dependent patterns of the persistent spin current with step-like features show up, accompanied by Majorana edge modes at flux values where the energy gap closes. Moreover, the Majorana zero mode is highly influenced by the direction of the Zeeman field. A finite in-plane field can lead to the gap opening since the inversion symmetry is broken. Remarkably, multiple Majorana zero-energy states occur in the presence of an out-of-plane field h(z), and the number of steps in the spin current evolution can be effectively tuned by the field strength due to the shift of Majorana zero modes. Finally, when the loop sample contains surface indentation defects, zero-energy modes can always show up in the presence of an appropriate h(z). Interestingly, multiple Majorana states may be present in the system with a corner defect even if h(z) = 0.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000362081000002 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by National Natural Science Foundation of China under Grants No. 61371020, No. 61271163, and No. 61571277, by the Visiting Scholar Program of Shanghai Municipal Education Commission, and by the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 3.836; 2015 IF: 3.736  
  Call Number UA @ lucian @ c:irua:132467 Serial 4203  
Permanent link to this record
 

 
Author Özen, M.; Mertens, M.; Snijkers, F.; Van Tendeloo, G.; Cool, P. pdf  url
doi  openurl
  Title Texturing of hydrothermally synthesized BaTiO3 in a strong magnetic field by slip casting Type A1 Journal article
  Year 2016 Publication Ceramics international Abbreviated Journal Ceram Int  
  Volume 42 Issue 42 Pages 5382-5390  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Barium titanate powder was processed by slip casting in a rotating strong magnetic field of 9.4 T. The orientation factor of the sintered compact was analyzed by the X-ray diffraction technique and the microstructure (grain-size) was analyzed by scanning electron microscope. The hydrothermally prepared barium titanate was used as matrix material and the molten-salt synthesized barium titanate, with a larger particle-size, was used as template for the templated grain-growth process. Addition of large template particles was observed to increase the orientation factor of the sintered cast (5 vol% loading). Template particles acted as starting grains for the abnormal grain-growth process and the average grain-size was increased after sintering. Increasing the solid loading (15 vol%) resulted in a similar orientation factor with a decrease of the average grain size by more than half. However, addition of templates to the 15 vol% cast had a negative effect on the orientation factor. The impingement of growing particles was stated as the primary cause of particle misorientation resulting in a low orientation factor after sintering. Different heating conditions were tested and it was determined that a slow heating rate gave the highest orientation factor, the smallest average grain-size and the highest relative density. (C) 2015 Elsevier Ltd and Techna Group S.r.l. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Barking Editor  
  Language Wos 000369460500098 Publication Date 2015-12-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-8842 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.986 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.986  
  Call Number UA @ lucian @ c:irua:132228 Serial 4260  
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B. url  doi
openurl 
  Title Transport properties of bilayer graphene in a strong in-plane magnetic field Type A1 Journal article
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 93 Issue 93 Pages 115423  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A strong in-plane magnetic field drastically alters the low-energy spectrum of bilayer graphene by separating the parabolic energy dispersion into two linear Dirac cones. The effect of this dramatic change on the transport properties strongly depends on the orientation of the in-plane magnetic field with respect to the propagation direction of the charge carriers and the angle at which they impinge on the electrostatic potentials. For magnetic fields oriented parallel to the potential boundaries an additional propagating mode that results from the splitting into Dirac cones enhances the transmission probability for charge carriers tunneling through the potentials and increases the corresponding conductance. Our results show that the chiral suppression of transmission at normal incidence, reminiscent of bilayer graphene's 2 pi Berry phase, is turned into a chiral enhancement when the magnetic field increases, thus indicating a transition from a bilayer to a monolayer-like system at normal incidence. Further, we find that the typical transmission resonances stemming from confinement in a potential barrier are shifted to higher energy and are eventually transformed into antiresonances with increasing magnetic field. For magnetic fields oriented perpendicular to the potential boundaries we find a very pronounced transition from a bilayer system to two separated monolayer-like systems with Klein tunneling emerging at certain incident angles symmetric around 0, which also leaves a signature in the conductance. For both orientations of the magnetic field, the transmission probability is still correctly described by pseudospin conservation. Finally, to motivate the large in-plane magnetic field, we show that its energy spectrum can be mimicked by specific lattice deformations such as a relative shift of one of the layers. With this equivalence we introduce the notion of an in-plane pseudomagnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000372409900006 Publication Date 2016-03-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO-Vl) through an aspirant research grant to M.V.D.D. and B.V.D. ; Approved Most recent IF: 3.836  
  Call Number UA @ lucian @ c:irua:133197 Serial 4267  
Permanent link to this record
 

 
Author Cariglia, M.; Vargas-Paredes, A.; Doria, M.M.; Bianconi, A.; Milošević, M.V.; Perali, A. doi  openurl
  Title Shape-Resonant Superconductivity in Nanofilms: from Weak to Strong Coupling Type A1 Journal article
  Year 2016 Publication Journal of superconductivity and novel magnetism Abbreviated Journal J Supercond Nov Magn  
  Volume 29 Issue 29 Pages 3081-3086  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Ultrathin superconductors of different materials are becoming a powerful platform to find mechanisms for enhancement of superconductivity, exploiting shape resonances in different superconducting properties. Here, we evaluate the superconducting gap and its spatial profile, the multiple gap components, and the chemical potential, of generic superconducting nanofilms, considering the pairing attraction and its energy scale as tunable parameters, from weak to strong coupling, at fixed electron density. Superconducting properties are evaluated at mean field level as a function of the thickness of the nanofilm, in order to characterize the shape resonances in the superconducting gap. We find that the most pronounced shape resonances are generated for weakly coupled superconductors, while approaching the strong coupling regime the shape resonances are rounded by a mixing of the subbands due to the large energy gaps extending over large energy scales. Finally, we find that the spatial profile, transverse to the nanofilm, of the superconducting gap acquires a flat behavior in the shape resonance region, indicating that a robust and uniform multigap superconducting state can arise at resonance.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000390030600016 Publication Date 2016-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-1939 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.18 Times cited 11 Open Access  
  Notes ; We acknowledge D. Valentinis, D. Van der Marel, and C. Berthod for useful discussions. A. Ricci is also acknowledged for his comments on the experimental detection of the predictions of this paper. A. Bianconi acknowledges financial support from Superstripes non-profit organization. M. Cariglia acknowledges CNPq support from project (205029 / 2014-0) and FAPEMIG support from project APQ-02164-14. M.M. Doria acknowledges CNPq support from funding (23079.014992 / 2015-39). M.V. Milosevic acknowledges support from Research Foundation – Flanders (FWO). A. Perali acknowledges financial support from the University of Camerino under the project FAR “Control and enhancement of superconductivity by engineering materials at the nanoscale”. All authors acknowledge the collaboration within the MultiSuper Network (http://www.multisuper.org) for exchange of ideas and suggestions. ; Approved Most recent IF: 1.18  
  Call Number UA @ lucian @ c:irua:140347 Serial 4461  
Permanent link to this record
 

 
Author Dzhurakhalov, A.A.; Atanasov, I.; Hou, M. url  doi
openurl 
  Title Calculation of binary and ternary metallic immiscible clusters with icosahedral structures Type A1 Journal article
  Year 2008 Publication Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B  
  Volume Issue Pages 115415  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Recently, core-shell Ag-Co, Ag-Cu, and “onionlike” Cu-Co equilibrium configurations were predicted in the case of isolated face centered cubic (fcc) bimetallic clusters, and three shell onionlike configurations were predicted in the case of ternary metallic clusters with spherical and truncated octahedral morphologies. In the present paper, immiscible binary CuCo and ternary AgCuCo clusters with icosahedral structures are studied as functions of their size and composition. Clusters studied are formed by 13, 55, 147, 309, and 561 atoms corresponding to the five smallest possible closed shell icosahedral structures. An embedded atom model potential is used to describe their cohesion. Equilibrium configurations are investigated by means of Metropolis Monte Carlo free energy minimization in the (NPT) canonical ensemble. Most simulations are achieved at 10 and 300 K. The effect of temperature on segregation ordering is systematically investigated. Selected cases are used to identify the effect of size and composition on melting. In contrast with fcc clusters, homogeneous onionlike configurations of binary clusters are not predicted. When it is allowed by the composition, a complete outer shell is formed by Cu in binary Cu-Co clusters and by Ag in ternary Ag-Cu-Co clusters. Depending on temperature, Co may precipitate into decahedral groups under the Cu vertices of the icosahedra in binary clusters, while the Co-Cu configuration in ternary clusters drastically depends on the Ag coating. Despite the multicomponent character of the clusters and the immiscibility of the species forming them, for most compositions and sizes, equilibrium structures remain close to perfectly icosahedral at 10 K as well as at 300 K.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lancaster, Pa Editor  
  Language Wos 000254542800167 Publication Date 2008-03-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121; 1550-235x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes Approved Most recent IF: 3.836; 2008 IF: 3.322  
  Call Number UA @ lucian @ c:irua:104033 Serial 4517  
Permanent link to this record
 

 
Author Fedoseeva, Y.V.; Orekhov, A.S.; Chekhova, G.N.; Koroteev, V.O.; Kanygin, M.A.; Seovskiy, B.V.; Chuvilin, A.; Pontiroli, D.; Ricco, M.; Bulusheva, L.G.; Okotrub, A.V. pdf  doi
openurl 
  Title Single-walled carbon nanotube reactor for redox transformation of mercury dichloride Type A1 Journal article
  Year 2017 Publication ACS nano Abbreviated Journal Acs Nano  
  Volume 11 Issue 9 Pages 8643-8649  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('Single-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl2) and guide its transformation into dimercury dichloride (Hg2Cl2) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest Hg2Cl2 nanocrystals. The density functional theory calculations reveal that the encapsulated HgCl2 molecules become negatively charged and start interacting via chlorine bridges when local concentration increases. This reduces the bonding strength in HgCl2, which facilitates removal of chlorine, finally leading to formation of Hg2Cl2 species. The present work demonstrates that SWCNTs not only serve as a template for growing nanocrystals but also behave as an electron-transfer catalyst in the spatially confined redox reaction by donation of electron density for temporary use by the guests.'));  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000411918200012 Publication Date 2017-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1936-0851 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.942 Times cited 11 Open Access Not_Open_Access  
  Notes ; Collaboration between partner institutions was partially supported by European FP7 IRSES project 295180. We are grateful to the bilateral Program “Russian-German Laboratory at BESSY II” for the assistance in XPS and NEXAFS measurements. We acknowledge C. Tollan for proofreading the manuscript. We are grateful to Dr. Y.V. Shubin for XRD measurements of graphite with HgCl<INF>2</ INF>. ; Approved Most recent IF: 13.942  
  Call Number UA @ lucian @ c:irua:146770 Serial 4895  
Permanent link to this record
 

 
Author Rios, P.L.; Perali, A.; Needs, R.J.; Neilson, D. doi  openurl
  Title Evidence from quantum Monte Carlo simulations of large-gap superfluidity and BCS-BEC crossover in double electron-hole layers Type A1 Journal article
  Year 2018 Publication Physical review letters Abbreviated Journal Phys Rev Lett  
  Volume 120 Issue 17 Pages 177701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report quantum Monte Carlo evidence of the existence of large gap superfluidity in electron-hole double layers over wide density ranges. The superfluid parameters evolve from normal state to BEC with decreasing density, with the BCS state restricted to a tiny range of densities due to the strong screening of Coulomb interactions, which causes the gap to rapidly become large near the onset of superfluidity. The superfluid properties exhibit similarities to ultracold fermions and iron-based superconductors, suggesting an underlying universal behavior of BCS-BEC crossovers in pairing systems.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000430547800002 Publication Date 2018-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.462 Times cited 11 Open Access  
  Notes ; The authors thank G. Baym, M. Bonitz, and G. Senatore for useful discussions. A. P. and D. N. acknowledge financial support from University of Camerino FAR project CESEMN and from the Italian MIUR through the PRIN 2015 program under Contract No. 2015C5SEJJ001. R. J. N. acknowledges financial support from the Engineering and Physical Sciences Research Council, U.K., under Grant No. EP/ P034616/1. P. L. R. acknowledges financial support from the Max-Planck Society. Computational resources have been provided by the High Performance Computing Service of the University of Cambridge and by the Max-Planck Institute for Solid State Research. ; Approved Most recent IF: 8.462  
  Call Number UA @ lucian @ c:irua:150750UA @ admin @ c:irua:150750 Serial 4967  
Permanent link to this record
 

 
Author Mei, H.; Xu, W.; Wang, C.; Yuan, H.; Zhang, C.; Ding, L.; Zhang, J.; Deng, C.; Wang, Y.; Peeters, F.M. pdf  url
doi  openurl
  Title Terahertz magneto-optical properties of bi- and tri-layer graphene Type A1 Journal article
  Year 2018 Publication Journal of physics : condensed matter Abbreviated Journal J Phys-Condens Mat  
  Volume 30 Issue 17 Pages 175701  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Magneto-optical (MO) properties of bi- and tri-layer graphene are investigated utilizing terahertz time-domain spectroscopy (THz TDS) in the presence of a strong magnetic field at room-temperature. In the Faraday configuration and applying optical polarization measurements, we measure the real and imaginary parts of the longitudinal and transverse MO conductivities of different graphene samples. The obtained experimental data fits very well with the classical MO Drude formula. Thus, we are able to obtain the key sample and material parameters of bi- and tri-layer graphene, such as the electron effective mass, the electronic relaxation time and the electron density. It is found that in high magnetic fields the electronic relaxation time tau for bi- and tri-layer graphene increases with magnetic field B roughly in a form tau similar to B-2. Most importantly, we obtain the electron effective mass for bi- and tri-layer graphene at room-temperature under non-resonant conditions. This work shows how the advanced THz MO techniques can be applied for the investigation into fundamental physics properties of atomically thin 2D electronic systems.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication London Editor  
  Language Wos 000429329500001 Publication Date 2018-03-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-8984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.649 Times cited 11 Open Access  
  Notes ; This work was supported by the National Natural Science Foundation of China (11574319, 11304317, 11304272), the Ministry of Science and Technology of China (2011YQ130018), the Center of Science and Technology of Hefei Academy of Science, the Department of Science and Technology of Yunnan Province, and by the Chinese Academy of Sciences. ; Approved Most recent IF: 2.649  
  Call Number UA @ lucian @ c:irua:150715UA @ admin @ c:irua:150715 Serial 4983  
Permanent link to this record
 

 
Author Kandemir, A.; Peeters, F.M.; Sahin, H. pdf  doi
openurl 
  Title Monitoring the effect of asymmetrical vertical strain on Janus single layers of MoSSe via spectrum Type A1 Journal article
  Year 2018 Publication The journal of chemical physics Abbreviated Journal J Chem Phys  
  Volume 149 Issue 8 Pages 084707  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants). Published by AIP Publishing.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication New York, N.Y. Editor  
  Language Wos 000444035800044 Publication Date 2018-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9606 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.965 Times cited 11 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). H.S. acknowledges financial support from TUBITAK under Project No. 117F095. F.M.P. was supported by the FLAG-ERA-TRANS<INF>2D</INF>TMD. ; Approved Most recent IF: 2.965  
  Call Number UA @ lucian @ c:irua:153711UA @ admin @ c:irua:153711 Serial 5115  
Permanent link to this record
 

 
Author Weng, Y.; Jia, Z.; Ding, L.; Muraishi, S.; Liu, Q. pdf  url
doi  openurl
  Title Clustering behavior during natural aging and artificial aging in Al-Mg-Si alloys with different Ag and Cu addition Type A1 Journal article
  Year 2018 Publication Microstructure And Processing Abbreviated Journal Mat Sci Eng A-Struct  
  Volume 732 Issue 732 Pages 273-283  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The effect of Ag and Cu addition on clustering behavior of Al-Mg-Si alloys during natural aging (NA) and artificial aging (AA) was investigated by hardness measurement, tensile test and atom probe tomography analysis. The results show that both Ag and Cu atoms could enter clusters and GP-zones, change the Mg/Si ratio and increase their volume fractions. Compared with the Al base alloy, the clusters in the Ag/Cu-added alloys more easily transform to beta" phases for size and compositional similarity, and the strengthening ability of these particles is enhanced by the increased volume fraction and shear modulus. In NA condition, Cu is greater in improving the volume fraction of clusters than Ag and thus produces higher T4 temper hardness. In AA condition, in contrary, Ag is more effective in facilitating the formation and growth of particles than Cu due to the stronger Ag-Mg interaction and the high diffusivity of Ag atoms in Al matrix, leading to highest hardening response. Compared to the Cu-added alloy, the Ag-added alloy shows higher precipitation kinetics during AA treatment and maintains a lower T4 temper hardness.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Lausanne Editor  
  Language Wos 000441486100032 Publication Date 2018-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-5093 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.094 Times cited 11 Open Access OpenAccess  
  Notes ; This work was supported by the Special major R & D Projects for Key Technology Innovation of Key Industries in Chongqing (Grant no. cstc2017zdcy-zdzxX0006), the Fundamental Research Funds for the Central Universities of China (Grant no. 106112016CDJXZ338825 and 106112017CDJQJ308822) and the program of China Scholarships Council (No. 201706050125). ; Approved Most recent IF: 3.094  
  Call Number UA @ lucian @ c:irua:153107 Serial 5083  
Permanent link to this record
 

 
Author Marikutsa, A.; Rumyantseva, M.; Gaskov, A.; Batuk, M.; Hadermann, J.; Sarmadian, N.; Saniz, R.; Partoens, B.; Lamoen, D. url  doi
openurl 
  Title Effect of zinc oxide modification by indium oxide on microstructure, adsorbed surface species, and sensitivity to CO Type A1 Journal article
  Year 2019 Publication Frontiers in materials Abbreviated Journal  
  Volume 6 Issue 6 Pages  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)  
  Abstract Additives in semiconductor metal oxides are commonly used to improve sensing behavior of gas sensors. Due to complicated effects of additives on the materials microstructure, adsorption sites and reactivity to target gases the sensing mechanism with modified metal oxides is a matter of thorough research. Herein, we establish the promoting effect of nanocrystalline zinc oxide modification by 1-7 at.% of indium on the sensitivity to CO gas due to improved nanostructure dispersion and concentration of active sites. The sensing materials were synthesized via an aqueous coprecipitation route. Materials composition, particle size and BET area were evaluated using X-ray diffraction, nitrogen adsorption isotherms, high-resolution electron microscopy techniques and EDX-mapping. Surface species of chemisorbed oxygen, OH-groups, and acid sites were characterized by probe molecule techniques and infrared spectroscopy. It was found that particle size of zinc oxide decreased and the BET area increased with the amount of indium oxide. The additive was observed as amorphous indium oxide segregated on agglomerated ZnO nanocrystals. The measured concentration of surface species was higher on In2O3-modified zinc oxide. With the increase of indium oxide content, the sensor response of ZnO/In2O3 to CO was improved. Using in situ infrared spectroscopy, it was shown that oxidation of CO molecules was enhanced on the modified zinc oxide surface. The effect of modifier was attributed to promotion of surface OH-groups and enhancement of CO oxidation on the segregated indium ions, as suggested by DFT in previous work.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000461540600001 Publication Date 2019-03-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-8016 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access OpenAccess  
  Notes ; Research was supported by the grant from Russian Science Foundation (project No. 18-73-00071). ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:158540 Serial 5205  
Permanent link to this record
 

 
Author Lozano, D.P.; Couet, S.; Petermann, C.; Hamoir, G.; Jochum, J.K.; Picot, T.; Menendez, E.; Houben, K.; Joly, V.; Antohe, V.A.; Hu, M.Y.; Leu, B.M.; Alatas, A.; Said, A.H.; Roelants, S.; Partoens, B.; Milošević, M.V.; Peeters, F.M.; Piraux, L.; Van de Vondel, J.; Vantomme, A.; Temst, K.; Van Bael, M.J. url  doi
openurl 
  Title Experimental observation of electron-phonon coupling enhancement in Sn nanowires caused by phonon confinement effects Type A1 Journal article
  Year 2019 Publication Physical review B Abbreviated Journal Phys Rev B  
  Volume 99 Issue 6 Pages 064512  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract Reducing the size of a superconductor below its characteristic length scales can either enhance or suppress its critical temperature (T-c). Depending on the bulk value of the electron-phonon coupling strength, electronic and phonon confinement effects will play different roles in the modification of T-c. Experimentally disentangling each contribution has remained a challenge. We have measured both the phonon density of states and T-c of Sn nanowires with diameters of 18, 35, and 100 nm in order to quantify the effects of phonon confinement on superconductivity. We observe a shift of the phonon frequency towards the low-energy region and an increase in the electron-phonon coupling constant that can account for the measured increase in T-c.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000459322400005 Publication Date 2019-02-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.836 Times cited 11 Open Access  
  Notes ; We would like to thanks Jeroen Scheerder and Wout Keijers for their help and assistance during the low-temperature measurements. This work was supported by the Research Foundation Flanders (FWO), the Concerted Research Action (GOA/14/ 007), the Federation Wallonie-Bruxelles (ARC 13/18-052, Supracryst) and the Fonds de la Recherche Scientifique -FNRS under Grant No. T.0006.16. The authors acknowledge Hercules Stichting (Project Nos. AKUL/13/19 and AKUL/13/25). D.P.L. thanks the FWO for financial support. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. ; Approved Most recent IF: 3.836  
  Call Number UA @ admin @ c:irua:158621 Serial 5212  
Permanent link to this record
 

 
Author Chen, Q.; Li, L.L.; Peeters, F.M. pdf  url
doi  openurl
  Title Inner and outer ring states of MoS2 quantum rings : energy spectrum, charge and spin currents Type A1 Journal article
  Year 2019 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 125 Issue 24 Pages 244303  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We investigate the energy levels and persistent currents of MoS2 quantum rings having different shapes and edge types in the presence of a perpendicular magnetic field by means of the tight-binding approach. We find states localized at the inner and outer boundaries of the ring. These energy levels exhibit different magnetic field dependences for the inner and outer ring states due to their different localization properties. They both exhibit the usual Aharanov-Bohm oscillations but with different oscillation periods. In the presence of spin-orbit coupling, we show distinct spin and charge persistent currents for inner and outer ring states. We find well-defined spin currents with negligibly small charge currents. This is because the local currents of spin-up and -down states flow in opposite directions.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000474439600026 Publication Date 2019-06-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; 1089-7550 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes ; This work was supported by the Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2080, and 2018JJ4047), the National Natural Science Foundation of China (NNSFC) (No. 51502087), the Scientific Research Fund of Hunan Provincial Education Department (Nos. 15A042, 15B056, and 17B060), and the Flemish Science Foundation (FWO-VI). ; Approved Most recent IF: 2.068  
  Call Number UA @ admin @ c:irua:161309 Serial 5417  
Permanent link to this record
 

 
Author Silva, A.L.M.; Carvalho, M.L.; Janssens, K.; Veloso, J.F.C.A. pdf  doi
openurl 
  Title A large area full-field EDXRF imaging system based on a THCOBRA gaseous detector Type A1 Journal article
  Year 2015 Publication Journal of analytical atomic spectrometry Abbreviated Journal J Anal Atom Spectrom  
  Volume 30 Issue 2 Pages 343-352  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract By taking advantage of the attractive features in terms of gain, position and energy resolution of the 2D-THCOBRA detector, a new large area Full-Field X-ray Fluorescence Imaging (FF-XRFI) system for EDXRF imaging applications was developed. The proposed FF-XRFI system has an active area of 10 x 10 cm(2) and can be used to examine macroscopic samples with a moderately good energy resolution (< 1.6 keV FWHM at 8 keV) and a suitable spatial resolution (similar to 500 mu m FWHM). This combination of characteristics allows us to record elemental distribution maps from the surface of different sample types by combining image and energy information. Two different approaches were used for X-ray optics, one based on a single pinhole and another based on a parallel multiple-hole collimator. To illustrate the system capabilities, some sample examples were imaged and studied.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000349145700003 Publication Date 2014-10-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0267-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.379 Times cited 11 Open Access  
  Notes ; The authors thank Stijn Legrand for acquisition of the MAXRF maps shown in Fig. 15. This work was partially supported by projects CERN/FP/123604/2011 FEDER, COMPETE and FCT (Lisbon) programs. A. L. M. Silva is supported by the QREN programme Mais Centro – Programa Operacional Regional do Centro, FEDER and COMPETE, through the project Biomaterials for Regenerative Medicine (CENTRO-07-ST24-FEDER-002030). ; Approved Most recent IF: 3.379; 2015 IF: 3.466  
  Call Number UA @ admin @ c:irua:125297 Serial 5452  
Permanent link to this record
 

 
Author Trashin, S.; De Jong, M.; Luyckx, E.; Dewilde, S.; De Wael, K. url  doi
openurl 
  Title Electrochemical evidence for neuroglobin activity on NO at physiological concentrations Type A1 Journal article
  Year 2016 Publication Journal of biological chemistry Abbreviated Journal J Biol Chem  
  Volume 291 Issue 36 Pages 18959-18966  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The true function of neuroglobin (Ngb) and, particularly, human Ngb (NGB) has been under debate since its discovery 15 years ago. It has been expected to play a role in oxygen binding/supply, but a variety of other functions have been put forward, including NO dioxygenase activity. However, in vitro studies that could unravel these potential roles have been hampered by the lack of an Ngb-specific reductase. In this work, we used electrochemical measurements to investigate the role of an intermittent internal disulfide bridge in determining NO oxidation kinetics at physiological NO concentrations. The use of a polarized electrode to efficiently interconvert the ferric (Fe3+) and ferrous (Fe2+) forms of an immobilized NGB showed that the disulfide bridge both defines the kinetics of NO dioxygenase activity and regulates appearance of the free ferrous deoxy-NGB, which is the redox active form of the protein in contrast to oxy-NGB. Our studies further identified a role for the distal histidine, interacting with the hexacoordinated iron atom of the heme, in oxidation kinetics. These findings may be relevant in vivo, for example in blocking apoptosis by reduction of ferric cytochrome c, and gentle tuning of NO concentration in the tissues.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000383242300031 Publication Date 2016-07-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9258; 1083-351x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.125 Times cited 11 Open Access  
  Notes ; This work was supported by Fonds Wetenschappelijk Onderzoek (FWO) Grant G.0687.13 and Universiteit Antwerpen GOA BOF 28312. The authors declare that they have no conflicts of interest with the contents of this article. ; Approved Most recent IF: 4.125  
  Call Number UA @ admin @ c:irua:134340 Serial 5590  
Permanent link to this record
 

 
Author Vincze, L.; Vekemans, B.; Szalóki, I.; Janssens, K.; Van Grieken, R.; Feng, H.; Jones, K.W.; Adams, F. doi  openurl
  Title High-resolution X-ray fluorescence micro-tomography on single sediment particles Type H1 Book chapter
  Year 2002 Publication Abbreviated Journal  
  Volume Issue Pages 240-248  
  Keywords H1 Book chapter; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000175177400027 Publication Date 2003-11-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 11 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:39525 Serial 5643  
Permanent link to this record
 

 
Author van der Snickt, G.; Dubois, H.; Sanyova, J.; Legrand, S.; Coudray, A.; Glaude, C.; Postec, M.; van Espen, P.; Janssens, K. pdf  doi
openurl 
  Title Large-area elemental imaging reveals Van Eyck's original paint layers on the Ghent altarpiece (1432), rescoping its conservation treatment Type A1 Journal article
  Year 2017 Publication Angewandte Chemie: international edition in English Abbreviated Journal Angew Chem Int Edit  
  Volume 56 Issue 17 Pages 4797-4801  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract A combination of large-scale and micro-scale elemental imaging, yielding elemental distribution maps obtained by, respectively non-invasive macroscopic X-ray fluorescence (MA-XRF) and by secondary electron microscopy/energy dispersive X-ray analysis (SEM-EDX) and synchrotron radiation-based micro-XRF (SR m-XRF) imaging was employed to reorient and optimize the conservation strategy of van Eyck's renowned Ghent Altarpiece. By exploiting the penetrative properties of X-rays together with the elemental specificity offered by XRF, it was possible to visualize the original paint layers by van Eyck hidden below the overpainted surface and to simultaneously assess their condition. The distribution of the high-energy Pb-L and Hg-L emission lines revealed the exact location of hidden paint losses, while Fe-K maps demonstrated how and where these lacunae were filled-up using an iron-containing material. The chemical maps nourished the scholarly debate on the overpaint removal with objective, chemical arguments, leading to the decision to remove all skillfully applied overpaints, hitherto interpreted as work by van Eyck. MA-XRF was also employed for monitoring the removal of the overpaint during the treatment phase. To gather complementary information on the in-depth layer build-up, SEM-EDX and SR mu-XRF imaging was used on paint cross sections to record microscale elemental maps.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Wos 000398576000019 Publication Date 2017-03-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7851; 0570-0833 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 11.994 Times cited 11 Open Access  
  Notes ; This research was supported by the Baillet Latour fund, the Belgian Science Policy Office (Projects MO/39/011) and the Gieskes-Strijbis fund. The authors are also indebted to the BOF-GOA SOLAR Paint project of the University of Antwerp Research Council. The church wardens of the cathedral of St. Bavo and their chairman L. Collin are acknowledged for this agreeable collaboration. We also wish to thank conservators L. Depuydt, B. De Volder, F. Rosier, N. Laquiere and G. Steyaert as well as the members of the international committee. We are indebted to Prof. Em. A. Van Grevenstein-Kruse. ; Approved Most recent IF: 11.994  
  Call Number UA @ admin @ c:irua:142376 Serial 5688  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: