toggle visibility
Search within Results:
Display Options:
Number of records found: 1296

Select All    Deselect All
 | 
Citations
 | 
   print
Microprobe speciation analysis of inorganic solids by Fourier transform laser mass spectrometry”. Poels K, van Vaeck L, Gijbels R, Analytical chemistry 70, 504 (1998). http://doi.org/10.1021/ac9709108
toggle visibility
Microscopic mechanisms of vertical graphene and carbon nanotube cap nucleation from hydrocarbon growth precursors”. Khalilov U, Bogaerts A, Neyts EC, Nanoscale 6, 9206 (2014). http://doi.org/10.1039/c4nr00669k
toggle visibility
The mode-deviation effect of trapped spinor bose gas beyond mean field theory”. Xu Y, Jia D-J, Chen Z, Gao Y, Li F-S, International journal of modern physics: B: condensed matter physics, statistical physics, applied physics 18, 1339 (2004). http://doi.org/10.1142/S0217979204024719
toggle visibility
Modeling adatom surface processes during crystal growth: a new implementation of the Metropolis Monte Carlo algorithm”. Eckert M, Neyts E, Bogaerts A, CrystEngComm 11, 1597 (2009). http://doi.org/10.1039/b822973m
toggle visibility
Modeling and experimental investigation of the plasma uniformity in CF4/O2 capacitively coupled plasmas, operating in single frequency and dual frequency regime”. Zhang Y-R, Tinck S, De Schepper P, Wang Y-N, Bogaerts A, Journal of vacuum science and technology: A: vacuum surfaces and films 33, 021310 (2015). http://doi.org/10.1116/1.4906819
toggle visibility
Modeling and experimental study of trichloroethylene abatement with a negative direct current corona discharge”. Vandenbroucke AM, Aerts R, Van Gaens W, De Geyter N, Leys C, Morent R, Bogaerts A, Plasma chemistry and plasma processing 35, 217 (2015). http://doi.org/10.1007/s11090-014-9584-7
toggle visibility
Modeling of a dielectric barrier discharge used as a flowing chemical reactor”. Petrović, D, Martens T, van Dijk J, Brok WJM, Bogaerts A, Journal of physics : conference series 133, 012023 (2008). http://doi.org/10.1088/1742-6596/133/1/012023
toggle visibility
Modeling of a microsecond pulsed glow discharge: behavior of the argon excited levels and of the sputtered copper atoms and ions”. Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 16, 239 (2001). http://doi.org/10.1039/b009289o
toggle visibility
Modeling of a millisecond pulsed glow discharge: investigation of the afterpeak”. Bogaerts A, Gijbels R, Jackson GP, Journal of analytical atomic spectrometry 18, 533 (2003). http://doi.org/10.1039/b212606k
toggle visibility
Modeling of argon direct current glow discharges and comparison with experiment: how good is the agreement?”.Bogaerts A, Gijbels R, Journal of analytical atomic spectrometry 13, 945 (1998). http://doi.org/10.1039/a800329g
toggle visibility
Modeling of gas discharge plasmas: What can we learn from it?”.Bogaerts A, de Bleecker K, Kolev I, Madani M, Surface and coatings technology 200, 62 (2005). http://doi.org/10.1016/j.surfcoat.2005.02.057
toggle visibility
Modeling of glow discharge ion sources for mass spectrometry: potentials and limitations”. Gijbels R, Bogaerts A, Spectroscopy 9, 8 (1997)
toggle visibility
Modeling of glow discharge optical emission spectrometry: calculation of the argon atomic optical emission spectrum”. Bogaerts A, Gijbels R, Vlcek J, Spectrochimica acta: part B : atomic spectroscopy 53, 1517 (1998). http://doi.org/10.1016/S0584-8547(98)00139-6
toggle visibility
Modeling of glow discharge sources with flat and pin cathodes and implications for mass spectrometric analysis”. Bogaerts A, Gijbels R, Journal of the American Society of Mass Spectrometry 8, 1021 (1997). http://doi.org/10.1016/S1044-0305(97)00120-7
toggle visibility
Modeling of glow discharges: what can we learn from it?”.Bogaerts A, Gijbels R, Analytical chemistry A-pages 69, 719 (1997)
toggle visibility
Modeling of magnetron and glow discharges”. Bogaerts A, Kolev I, Le vide: science, technique et applications 57, 296 (2002)
toggle visibility
Modeling of metastable argon atoms in a direct current glow discharge”. Bogaerts A, Gijbels R, Physical review : A : atomic, molecular and optical physics 52, 3743 (1995). http://doi.org/10.1103/PhysRevA.52.3743
toggle visibility
Modeling of plasma and plasma-surface interactions for medical, environmental and nano applications”. Bogaerts A, Aerts R, Snoeckx R, Somers W, Van Gaens W, Yusupov M, Neyts E, Journal of physics : conference series 399, 012011 (2012). http://doi.org/10.1088/1742-6596/399/1/012011
toggle visibility
Modeling of radio-frequency and direct current glow discharges in argon”. Bogaerts A, Gijbels R, Journal of technical physics 41, 183 (2000)
toggle visibility
Modeling of the formation and transport of nanoparticles in silane plasmas”. de Bleecker K, Bogaerts A, Goedheer W, Physical review : E : statistical physics, plasmas, fluids, and related interdisciplinary topics 70, 056407 (2004). http://doi.org/10.1103/PhysRevE.70.056407
toggle visibility
Modeling of the plasma chemistry and plasmasurface interactions in reactive plasmas”. Bogaerts A, De Bie C, Eckert M, Georgieva V, Martens T, Neyts E, Tinck S, Pure and applied chemistry 82, 1283 (2010). http://doi.org/10.1351/PAC-CON-09-09-20
toggle visibility
Modeling of the sputtering process of cubic silver halide microcrystals and its relevance in depth profiling by secondary ion-mass spectrometry (SIMS)”. Lenaerts J, Verlinden G, Ignatova VA, van Vaeck L, Gijbels R, Geuens I, Fresenius' journal of analytical chemistry 370, 654 (2001). http://doi.org/10.1007/s002160100880
toggle visibility
Modeling of the synthesis and subsequent growth of nanoparticles in dusty plasmas”. de Bleecker K, Bogaerts A, High temperature material processes 11, 21 (2007). http://doi.org/10.1615/HighTempMatProc.v11.i1.20
toggle visibility
Modeling of the target surface modification by reactive ion implantation during magnetron sputtering”. Depla D, Chen ZY, Bogaerts A, Ignatova V, de Gryse R, Gijbels R, Journal of vacuum science and technology: A: vacuum surfaces and films 22, 1524 (2004). http://doi.org/10.1116/1.1705641
toggle visibility
Modeling PECVD growth of nanostructured carbon materials”. Neyts E, Bogaerts A, van de Sanden MCM, High temperature material processes 13, 399 (2009). http://doi.org/10.1615/HighTempMatProc.v13.i3-4.120
toggle visibility
Modeling study on the influence of the pressure on a dielectric barrier discharge microplasma”. Martens T, Bogaerts A, Brok WJM, van der Mullen JJAM, Journal of analytical atomic spectrometry 22, 1003 (2007). http://doi.org/10.1039/b704903j
toggle visibility
Modeling SiH4/O2/Ar inductively coupled plasmas used for filling of microtrenches in shallow trench isolation (STI)”. Tinck S, Bogaerts A, Plasma processes and polymers 9, 522 (2012). http://doi.org/10.1002/ppap.201100093
toggle visibility
Wendelen W (2014) Modeling ultrashort pulsed laser induced electron emission. Antwerpen
toggle visibility
Modelleren van plasmas gebruikt voor de afzetting van dunne lagen”. Herrebout D, Bogaerts A, Gijbels R, Chemie magazine , 34 (2004)
toggle visibility
Modelling of a dielectric barrier glow discharge at atmospheric pressure in nitrogen”. Madani M, Bogaerts A, Gijbels R, Vangeneugden D, , 130 (2002)
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: