toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ariskin, D.A.; Schweigert, I.V.; Alexandrov, A.L.; Bogaerts, A.; Peeters, F.M. doi  openurl
  Title Modeling of chemical processes in the low pressure capacitive radio frequency discharges in a mixture of Ar/C2H2 Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 6 Pages 063305,1-063305,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract We study the properties of a capacitive 13.56 MHz discharge with a mixture of Ar/C<sub>2</sub>H<sub>2</sub> taking into account the plasmochemistry and growth of heavy hydrocarbons. A hybrid model was developed to combine the kinetic description for electron motion and the fluid approach for negative and positive ion transports and plasmochemical processes. A significant change in plasma parameters related to injection of 5.8% portion of acetylene in argon was observed and analyzed. We found that the electronegativity of the mixture is about 30%. The densities of negatively and positively charged heavy hydrocarbons are sufficiently large to be precursors for the formation of nanoparticles in the discharge volume.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000264774000059 Publication Date 2009-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 21 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:74496 Serial 2121  
Permanent link to this record
 

 
Author Payette, C.; Partoens, B.; Yu, G.; Gupta, J.A.; Austing, D.G.; Nair, S.V.; Amaha, S.; Tarucha, S. doi  openurl
  Title Modeling single-particle energy levels and resonance currents in a coherent electronic quantum dot mixer Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 94 Issue 22 Pages 222101,1-22101,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present model calculations based on a coherent tunneling picture, which reproduce well both the single-particle energy level position and the resonant current strength at two typical anticrossings, one involving two levels and the other three levels in a coherent mixer composed of two weakly coupled vertical quantum dots. An essential ingredient is the inclusion of higher degree terms to account for deviations from an ideal elliptical parabolic confining potential in realistic dots. We also calculate density plots of the mixed states for the modified potential.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000266674300024 Publication Date 2009-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:77380 Serial 2139  
Permanent link to this record
 

 
Author Titantah, J.T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Modified atomic scattering amplitudes and size effects on the 002 and 220 electron structure factors of multiple Ga1-xInxAs/GaAs quantum wells Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 105 Issue 8 Pages 084310,1-084310,8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The modified atomic scattering amplitudes (MASAs) of mixed Ga<sub>1-x</sub>In<sub>x</sub>As, GaAs<sub>1-x</sub>N<sub>x</sub>, and InAs<sub>1-x</sub>N<sub>x</sub> are calculated using the density functional theory approach and the results are compared with those of the binary counterparts. The MASAs of N, Ga, As, and In for various scattering vectors in various chemical environments and in the zinc-blende structure are compared with the frequently used Doyle and Turner values. Deviation from the Doyle and Turner results is found for small scattering vectors (s<0.3 Å<sup>-1</sup>) and for these scattering vectors the MASAs are found to be sensitive to the orientation of the scattering vector and on the chemical environment. The chemical environment sensitive MASAs are used within zero pressure classical Metropolis Monte Carlo, finite temperature calculations to investigate the effect of well size on the electron 002 and 220 structure factors (SFs). The implications of the use of the 002 (200) spot for the quantification of nanostructured Ga<sub>1-x</sub>In<sub>x</sub>As systems are examined while the 220 SF across the well is evaluated and is found to be very sensitive to the in-plane static displacements.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000268064700149 Publication Date 2009-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.068 Times cited Open Access  
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:78282 Serial 2160  
Permanent link to this record
 

 
Author Dhong, H.M.; Zhang, J.; Peeters, F.M.; Xu, W. doi  openurl
  Title Optical conductance and transmission in bilayer graphene Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 4 Pages 043103,1-043103,6  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present a theoretical study of the optoelectronic properties of bilayer graphene. The optical conductance and transmission coefficient are calculated using the energy-balance equation derived from a Boltzmann equation for an air/graphene/dielectric-wafer system. For short wavelengths (<0.2 µm), we obtain the universal optical conductance =e2/(2). Interestingly, there exists an optical absorption window in the wavelength range 10100 µm, which is induced by different transition energies required for inter- and intra-band optical absorptions in the presence of the MossBurstein effect. As a result, the position and width of this absorption window depend sensitively on temperature, carrier density, and sample mobility of the system. These results are relevant for applications of recently developed graphene devices in advanced optoelectronics such as the infrared photodetectors.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000270083800004 Publication Date 2009-08-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 11 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:79315 Serial 2472  
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M. doi  openurl
  Title Phonons in Ge nanowires Type A1 Journal article
  Year 2009 Publication Applied physics letters Abbreviated Journal Appl Phys Lett  
  Volume 95 Issue 12 Pages 122110,1-122110,3  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The phonon spectra of thin freestanding, hydrogen passivated, Ge nanowires are calculated by ab initio techniques. The effect of confinement on the phonon modes as caused by the small diameters of the wires is investigated. Confinement causes a hardening of the optical modes and a softening of the longitudinal acoustic modes. The stability of the nanowires, undoped or doped with B or P atoms, is investigated using the obtained phonon spectra. All considered wires were stable, except for highly doped, very thin nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000270243800035 Publication Date 2009-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.411 Times cited 12 Open Access  
  Notes Approved Most recent IF: 3.411; 2009 IF: 3.554  
  Call Number UA @ lucian @ c:irua:79307 Serial 2606  
Permanent link to this record
 

 
Author Zhang, Y.; Fischetti, M.V.; Sorée, B.; Magnus, W.; Heyns, M.; Meuris, M. doi  openurl
  Title Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers Type A1 Journal article
  Year 2009 Publication Journal of applied physics Abbreviated Journal J Appl Phys  
  Volume 106 Issue 8 Pages 083704,1-083704,9  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We present comprehensive calculations of the low-field hole mobility in Ge p-channel inversion layers with SiO2 insulator using a six-band k·p band-structure model. The cases of relaxed, biaxially, and uniaxially (both tensily and compressively) strained Ge are studied employing an efficient self-consistent methodmaking use of a nonuniform spatial mesh and of the Broyden second methodto solve the coupled envelope-wave function k·p and Poisson equations. The hole mobility is computed using the KuboGreenwood formalism accounting for nonpolar hole-phonon scattering and scattering with interfacial roughness. Different approximations to handle dielectric screening are also investigated. As our main result, we find a large enhancement (up to a factor of 10 with respect to Si) of the mobility in the case of uniaxial compressive stress similarly to the well-known case of Si. Comparison with experimental data shows overall qualitative agreement but with significant deviations due mainly to the unknown morphology of the rough Ge-insulator interface, to additional scattering with surface optical phonon from the high- insulator, to Coulomb scattering interface traps or oxide chargesignored in our calculationsand to different channel structures employed.  
  Address  
  Corporate Author Thesis  
  Publisher (up) American Institute of Physics Place of Publication New York, N.Y. Editor  
  Language Wos 000271358100050 Publication Date 2009-10-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.068 Times cited 29 Open Access  
  Notes Approved Most recent IF: 2.068; 2009 IF: 2.072  
  Call Number UA @ lucian @ c:irua:80137 Serial 2617  
Permanent link to this record
 

 
Author Cao, S.; Nishida, M.; Somsen, C.; Eggeler, G.; Schryvers, D. doi  openurl
  Title 3D FIB/SEM study of Ni4Ti3 precipitates in Ni-Ti alloys with different thermal-mechanical histories Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 02004,1-02004,6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The three-dimensional size, morphology and distribution of Ni4Ti3 precipitates growing in binary Ni-rich Ni-Ti alloys have been investigated via a slice view procedure in a Dual-Beam FIB/SEM system, in order to better stress-free Ni50.8Ti49.2 alloy with all four variants of precipitates and a compressed Ni51Ti49 alloy with aligned precipitates in one family were studied. The Ni4Ti3 precipitates reach a volume fraction of 9.6% in the reconstructed region of the stress-free alloy and 4.3% in the compressed one. In both cases, the mean volume, specific surface area, sphericity and aspect ratio of the precipitates are calculated and the Pair Distribution Functions of the precipitates are obtained. It is shown that most precipitates in the stress-free sample grow larger and have a more lenticular shape, while those in the compressed sample are more cylindrical. Deviations from these ideal shapes reveal internal steps in the stress-free sample and lamellae formation in the compressed one.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300008 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81950 c:irua:81950 Serial 14  
Permanent link to this record
 

 
Author Tirry, W.; Schryvers, D. doi  openurl
  Title 3D strain fields surrounding Ni4Ti3: direct measurement and correlation with the R-phase Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 02032,1-02032,6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Strain fields introduced by coherent Ni4Ti3 precipitates in austenitic Ni-Ti are believed to be a possible origin of why the R-phase transformation is introduced as an extra step before transforming to the B19'. The presence of this strain field was already confirmed in the past by conventional transmission electron microscopy (TEM) techniques and measured quantitatively by high resolution TEM (HRTEM). This time the geometrical phase method is applied on HRTEM micrographs to measure the full 3D strain tensor of the strain fields. Since each atomic resolution micrograph only results in a 2D measurement of the strain, observations in two different zone orientations are combined to retrieve the 3 x 3 strain tensor. In this work observations in a [1-1 1](B2) and [1 0-1](B2) zone orientation are used and this in case of precipitates with a diameter of around 50nm. In a next step the measured strain tensor is compared to the calculated eigenstrain of the R-phase in reference to the B2 matrix. This comparison shows that the introduced strain is very similar to the eigenstrain of one R-phase variant. Since for both structures, Ni4Ti3 and R-phase, four orientation variants are possible, each variant of the R-phase is thus able to accommodate the strain field of one of the Ni4Ti3 variants.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300036 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81953 Serial 17  
Permanent link to this record
 

 
Author Idrissi, H.; Schryvers, D.; Salje, E.K.H.; Zhang, H.; Carpenter, M.A.; Moya, X. url  doi
openurl 
  Title Pinning of the martensitic microstructures by dislocations in Cu74.08Al23.13Be2.79 Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 02029,1-02029,5  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract A single crystal of Cu74.08Al23.13Be2.79 undergoes a martensitic phase transition at 246K and 232K under heating and cooling, respectively. Surprisingly, the martensite phase is elastically much harder than the austenite phase showing that interfaces between various crystallographic variants are strongly pinned and can not be moved by external stress while the phase boundary between the austenite and martensite regions in the sample remains mobile. This unusual behavior was revealed by Dynamical Mechanical Analysis and Resonant Ultrasound Spectroscopy. Transmission Electron Microscopy shows that the pinning is generated by dislocations, which are inherited from the austenite phase. Such dislocations can hinder the movement of stacking faults in the 18R martensite structure or twin boundaries between martensite variants.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300033 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 2 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81952 Serial 2626  
Permanent link to this record
 

 
Author Tian, H.; Schryvers, D.; Shabalovskaya, S.; van Humbeeck, J. url  doi
openurl 
  Title TEM study of the mechanism of Ni ion release from Nitinol wires with original oxides Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 05027,1-05027,6  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract The surface of commercial Nitinol wires with original oxides and a thickness in the 30-190 nm range was investigated by different state of art TEM techniques. The oxide surface layer was identified as a combination of TiO and TiO2 depending on the processing of the wire. Between the core of the wires and the oxidized surface, an interfacial Ni3Ti nanolayer was observed while Ni nanoparticles are found inside the original oxide. The particle sizes, their distribution in the surface and the Ti-O stoichiometry were deduced from the analysis of the obtained data. Molecular dynamics calculations performed for evaluation of the stability of Ni particles relative to the atomic state revealed that a pure Ni particle has a lower energy than free Ni atoms inside the TiO2 lattice. The obtained results are discussed with respect to surface stability and Ni release in the human body.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300092 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 1 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81954 Serial 3493  
Permanent link to this record
 

 
Author Delville, R.; James, R.D.; Salman, U.; Finel, A.; Schryvers, D. doi  openurl
  Title Transmission electron microscopy study of low-hysteresis shape memory alloys Type P1 Proceeding
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 02005,1-02005,7  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract Recent findings have linked low hysteresis in shape memory alloys with phase compatibility between austenite and martensite. In order to investigate the evolution of microstructure as the phase compatibility increases and the hysteresis is reduced, transmission electron microscopy was used to study the alloy system Ti50Ni50-xPdx where the composition is systemically tuned to approach perfect compatibility. Changes in morphology, twinning density and twinning modes are reported along with special microstructures occurring when the compatibility is achieved. In addition, the interface between austenite and a single variant of martensite was studied by high-resolution and conventional electron microscopy. The atomically sharp, defect free, low energy configuration of the interface suggests that it plays an important role in the lowering of hysteresis. Finally, dynamical modeling of the martensitic transformation using the phase-field micro-elasticity model within the geometrically linear theory succeeded in reproducing the change in microstructure as the compatibility condition is satisfied. Latest results on the extension of these findings in other Ni-Ti based ternary/quaternary systems are also reported.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Edp Place of Publication Coutaboeuf Editor  
  Language Wos 000274582300009 Publication Date 2009-08-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 3 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81951 Serial 3716  
Permanent link to this record
 

 
Author Dong, H.M.; Qin, H.; Zhang, J.; Peeters, F.M.; Xu, W. pdf  isbn
openurl 
  Title Terahertz absorption window in bilayer graphene Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 247-248  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT)  
  Abstract We present a detailed theoretical study of terahertz (THz) optical absorption in bilayer graphene. Considering an air/graphene/dielectric-wafer system, we find that there is an absorption window in the range 3 similar to 30 THz. Such an absorption window is induced by different transition energies required for inter- and intra-band optical absorption in the presence of the Pauli blockade effect. As a result, the position and width of this THz absorption window depend sensitively on temperature and carrier density of the system. These results are pertinent to the applications of recently developed graphene systems as novel optoelectronic devices such as THz photo-detectors.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Ieee Place of Publication New York, N.Y. Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4244-5416-7 Additional Links UA library record; WoS full record;  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99225 Serial 3506  
Permanent link to this record
 

 
Author Liu, S.; Wei, M.; Sui, X.; Cheng, X.; Cool, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title A scanning electron microscopy study on hollow silica microspheres: defects and influences of the synthesis composition Type A1 Journal article
  Year 2009 Publication Journal of sol-gel science and technology Abbreviated Journal J Sol-Gel Sci Techn  
  Volume 49 Issue 3 Pages 373-379  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Electron microscopy for materials research (EMAT)  
  Abstract Defects on hollow silica spheres synthesized in a tetraethylorthosilicate-octylamine-HCl-H2O system were recorded by scanning microscope. Based on the results, influences of synthesis composition on the formation of these defects are discussed. It is evidenced that products prepared with different octylamine-to-tetraethylorthosilicate ratios may have surface depressions, cracks and non-hollow microspheres. However, by changing water and acid additions, these defects could be reduced or eliminated. Generally, samples synthesized with a large octylamine addition commonly exhibit surface depressions. A small octylamine or a large water addition benefits the formation of solid silica microspheres among the product. Acid, although is not indispensable for the formation of hollow spheres, helps to eliminate or reduce depressions on the hollow shells. It is explained that the added acid gives rise to a relative localized fast hydrolysis versus condensation, facilitating an easy mobility of hydrolyzed silica species, and consequently the shell surface is smoothened.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Kluwer Place of Publication Dordrecht Editor  
  Language Wos 000263260100015 Publication Date 2008-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-0707;1573-4846; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.575 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.575; 2009 IF: 1.393  
  Call Number UA @ lucian @ c:irua:74962 Serial 2941  
Permanent link to this record
 

 
Author Bals, S.; Stes, A.; Celis, V. isbn  openurl
  Title Klassieke toetsing in de praktijk Type H2 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 211-225  
  Keywords H2 Book chapter; Educational sciences; EduBROn; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) LannooCampus Place of Publication Leuven Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978 90 209 8819 2 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:79658 Serial 1762  
Permanent link to this record
 

 
Author Goorden, L.; Van Tendeloo, G.; Lenaerts, S.; Deblonde, M.; et al. pdf  openurl
  Title Nanotechnologie: gewikt en gewogen Type Minutes and reports
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Minutes and reports; Engineering sciences. Technology; Engineering Management (ENM); Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) NanoSoc Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82905 Serial 2277  
Permanent link to this record
 

 
Author Goorden, L.; Van Tendeloo, G.; Lenaerts, S.; Deblonde, M.; van Oudheusden, M.; et al. pdf  openurl
  Title Nanotechnologie op de agenda Type Minutes and reports
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Minutes and reports; Engineering sciences. Technology; Engineering Management (ENM); Society and Environment; Sustainable Energy, Air and Water Technology (DuEL); Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (up) NanoSoc Place of Publication Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:82903 Serial 2278  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  isbn
openurl 
  Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 1-14  
  Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Springer Place of Publication Dordrecht Editor  
  Language Wos 000274282900001 Publication Date 2009-07-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:99226 Serial 3761  
Permanent link to this record
 

 
Author Steiner, R.E.; Barshick, C.M.; Bogaerts, A. isbn  openurl
  Title Glow discharge optical spectroscopy and mass spectrometry Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal  
  Volume Issue Pages 1-28  
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupolemass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (5001500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (e.g. Ar, Ne, and Xe) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. Unfortunately, the GD source functions optimally in a dry environment, making analysis of solutions more difficult. These sources also suffer from difficulties associated with analyzing nonconductingsamples. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This section focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GDsources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with avariety of spectroscopic and spectrometric instruments for both quantitative and qualitative analysis.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Wiley Place of Publication Chichester Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0471976709 Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:78169 Serial 1352  
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M. doi  openurl
  Title Superconducting nanowires: quantum-confinement effect on the critical magnetic field and supercurrent Type A1 Journal article
  Year 2009 Publication International journal of modern physics: B: condensed matter physics, statistical physics, applied physics T2 – 32nd International Workshop on Condensed Matter Theories, Aug 12-19, 2008, Loughborough Univ, Loughborough, England Abbreviated Journal Int J Mod Phys B  
  Volume 23 Issue 20-21 Pages 4257-4268  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)  
  Abstract We study the effect of electron confinement on the superconducting-to-normal phase transition driven by a magnetic field and/or on the current-carrying state of the superconducting condensate in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We show that in a parallel magnetic field and/or in the presence of supercurrent the transition from superconducting to normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magnetic field exhibits quantum-size oscillations with pronounced resonant enhancements.  
  Address  
  Corporate Author Thesis  
  Publisher (up) World scientific Place of Publication Singapore Editor  
  Language Wos 000274525500026 Publication Date 2009-09-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-9792;1793-6578; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 0.736 Times cited 1 Open Access  
  Notes Approved Most recent IF: 0.736; 2009 IF: 0.408  
  Call Number UA @ lucian @ c:irua:95673 Serial 3362  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: