toggle visibility
Search within Results:
Display Options:
Number of records found: 7465

Select All    Deselect All
 | 
Citations
 | 
   print
Ammonia Synthesis by Radio Frequency Plasma Catalysis: Revealing the Underlying Mechanisms”. Shah J, Wang W, Bogaerts A, Carreon ML, ACS applied energy materials 1, 4824 (2018). http://doi.org/10.1021/acsaem.8b00898
toggle visibility
Increased Performance Improvement of Lithium-Ion Batteries by Dry Powder Coating of High-Nickel NMC with Nanostructured Fumed Ternary Lithium Metal Oxides”. Herzog MJ, Gauquelin N, Esken D, Verbeeck J, Janek J, ACS applied energy materials 4, 8832 (2021). http://doi.org/10.1021/acsaem.1c00939
toggle visibility
Grain boundaries as a diffusion-limiting factor in lithium-rich NMC cathodes for high-energy lithium-ion batteries”. Abakumov AM, Li C, Boev A, Aksyonov DA, Savina AA, Abakumova TA, Van Tendeloo G, Bals S, ACS applied energy materials 4, 6777 (2021). http://doi.org/10.1021/ACSAEM.1C00872
toggle visibility
Exploring the role of graphene oxide as a co-catalyst in the CZTS photocathodes for improved photoelectrochemical properties”. Vishwakarma M, Batra Y, Hadermann J, Singh A, Ghosh A, Mehta BR, ACS applied energy materials 5, 7538 (2022). http://doi.org/10.1021/ACSAEM.2C01011
toggle visibility
Effect of hydrostatic pressure on lone pair activity and phonon transport in Bi₂O₂S”. Yedukondalu N, Pandey T, Roshan SCR, ACS applied energy materials 6, 2401 (2023). http://doi.org/10.1021/ACSAEM.2C03725
toggle visibility
Achieving Fast Kinetics and Enhanced Li Storage Capacity for Ti3C2O2 by Intercalation of Quinone Molecules”. Siriwardane EMD, Demiroglu I, Sevik C, Cakir D, ACS applied energy materials 2, 1251 (2019). http://doi.org/10.1021/ACSAEM.8B01801
toggle visibility
Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells”. Yildiz A, Chouki T, Atli A, Harb M, Verbruggen SW, Ninakanti R, Emin S, ACS applied energy materials 4, 10618 (2021). http://doi.org/10.1021/ACSAEM.1C01628
toggle visibility
Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution”. Alexander CT, Abakumov AM, Forslund RP, Johnston KP, Stevenson KJ, ACS applied energy materials 1, 1549 (2018). http://doi.org/10.1021/ACSAEM.7B00339
toggle visibility
Understanding the Activation of Anionic Redox Chemistry in Ti4+-Substituted Li2MnO3as a Cathode Material for Li-Ion Batteries”. Paulus A, Hendrickx M, Mayda S, Batuk M, Reekmans G, von Holst M, Elen K, Abakumov AM, Adriaensens P, Lamoen D, Partoens B, Hadermann J, Van Bael MK, Hardy A, ACS applied energy materials 6, 6956 (2023). http://doi.org/10.1021/acsaem.3c00451
toggle visibility
Electronic and chemical properties of nickel oxide thin films and the intrinsic defects compensation mechanism”. Poulain R, Lumbeeck G, Hunka J, Proost J, Savolainen H, Idrissi H, Schryvers D, Gauquelin N, Klein A, ACS applied electronic materials 4, 2718 (2022). http://doi.org/10.1021/ACSAELM.2C00230
toggle visibility
High-strain-induced local modification of the electronic properties of VO₂, thin films”. Birkholzer YA, Sotthewes K, Gauquelin N, Riekehr L, Jannis D, van der Minne E, Bu Y, Verbeeck J, Zandvliet HJW, Koster G, Rijnders G, ACS applied electronic materials 4, 6020 (2022). http://doi.org/10.1021/ACSAELM.2C01176
toggle visibility
Effect of atomic mass contrast on lattice thermal conductivity : a case study for alkali halides and alkaline-earth chalcogenides”. Rakesh Roshan SC, Yedukondalu N, Pandey T, Kunduru L, Muthaiah R, Rajaboina RK, Ehm L, Parise JB, ACS applied electronic materials 5, 5852 (2023). http://doi.org/10.1021/ACSAELM.3C00759
toggle visibility
Laurdan as a molecular rotor in biological environments”. Osella S, Knippenberg S, ACS applied bio materials 2, 5769 (2019). http://doi.org/10.1021/ACSABM.9B00789
toggle visibility
Toward the Understanding of Selective Si Nano-Oxidation by Atomic Scale Simulations”. Khalilov U, Bogaerts A, Neyts EC, Accounts of chemical research 50, 796 (2017). http://doi.org/10.1021/acs.accounts.6b00564
toggle visibility
Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts”. Janssens K, Dik J, Cotte M, Susini J, Accounts of chemical research 43, 814 (2010). http://doi.org/10.1021/AR900248E
toggle visibility
Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward”. Cotte M, Susini J, Dik J, Janssens K, Accounts of chemical research 43, 705 (2010). http://doi.org/10.1021/AR900199M
toggle visibility
Three-Dimensional Nanoparticle Transformations Captured by an Electron Microscope”. Albrecht W, Van Aert S, Bals S, Accounts Of Chemical Research 54, 1189 (2021). http://doi.org/10.1021/acs.accounts.0c00711
toggle visibility
Surfactant layers on gold nanorods”. Mosquera J, Wang D, Bals S, Liz-Marzan LM, Accounts of chemical research 56, 1204 (2023). http://doi.org/10.1021/ACS.ACCOUNTS.3C00101
toggle visibility
The general case of cutting of Generalized Möbius-Listing surfaces and bodies”. Gielis J, Tavkhelidze I, 4Open 3, 7 (2020). http://doi.org/10.1051/FOPEN/2020007
toggle visibility
Engineering the electronic properties of silicene by tuning the composition of MoX2 and GaX (X = S,Se,Te) chalchogenide templates”. Scalise E, Houssa M, Cinquanta E, Grazianetti C, van den Broek B, Pourtois G, Stesmans A, Fanciulli M, Molle A, 2D materials 1, 011010 (2014). http://doi.org/10.1088/2053-1583/1/1/011010
toggle visibility
Current-induced birefringent absorption and non-reciprocal plasmons in graphene”. Van Duppen B, Tomadin A, Grigorenko AN, Polini M, 2D materials 3, 015011 (2016). http://doi.org/10.1088/2053-1583/3/1/015011
toggle visibility
System-size dependent band alignment in lateral two-dimensional heterostructures”. Leenaerts O, Vercauteren S, Schoeters B, Partoens B, 2D materials 3, 025012 (2016). http://doi.org/10.1088/2053-1583/3/2/025012
toggle visibility
Electronic and magnetic properties of 1T-TiSe2 nanoribbons”. Ozaydin HD, Sahin H, Kang J, Peeters FM, Senger RT, 2D materials 2, 044002 (2015). http://doi.org/10.1088/2053-1583/2/4/044002
toggle visibility
Piezoelectricity in asymmetrically strained bilayer graphene”. Van der Donck M, De Beule C, Partoens B, Peeters FM, Van Duppen B, 2D materials 3, 035015 (2016). http://doi.org/10.1088/2053-1583/3/3/035015
toggle visibility
Two-dimensional hexagonal tin : ab initio geometry, stability, electronic structure and functionalization”. van den Broek B, Houssa M, Scalise E, Pourtois G, Afanas'ev VV, Stesmans A, 2D materials 1, 021004 (2014). http://doi.org/10.1088/2053-1583/1/2/021004
toggle visibility
Functional silicene and stanene nanoribbons compared to graphene: electronic structure and transport”. van den Broek B, Houssa M, Iordanidou K, Pourtois G, Afanas'ev VV, Stesmans A, 2D materials 3, 015001 (2016). http://doi.org/10.1088/2053-1583/3/1/015001
toggle visibility
Gate induced monolayer behavior in twisted bilayer black phosphorus”. Sevik C, Wallbank JR, Gulseren O, Peeters FM, Çakir D, 2D materials 4, 035025 (2017). http://doi.org/10.1088/2053-1583/AA80C4
toggle visibility
Magnetic field dependence of the atomic collapse state in graphene”. Moldovan D, Masir MR, Peeters FM, 2D materials 5, 015017 (2018). http://doi.org/10.1088/2053-1583/AA9647
toggle visibility
Thermal activated rotation of graphene flake on graphene”. Peymanirad F, Singh SK, Ghorbanfekr-Kalashami H, Novoselov KS, Peeters FM, Neek-Amal M, 2D materials 4, 025015 (2017). http://doi.org/10.1088/2053-1583/AA58A4
toggle visibility
Carrier transport in two-dimensional topological insulator nanoribbons in the presence of vacancy defects”. Tiwari S, Van de Put ML, Sorée B, Vandenberghe WG, 2D materials 6, 025011 (2019). http://doi.org/10.1088/2053-1583/AB0058
toggle visibility
Select All    Deselect All
 | 
Citations
 | 
   print

Save Citations:
Export Records: