toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K.
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication (down) Materials characterization Abbreviated Journal Mater Charact
  Volume 153 Issue Pages 366-371
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000472696900040 Publication Date 2019-05-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R.
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication (down) Materials Characterization Abbreviated Journal Mater Charact
  Volume 178 Issue Pages 111234
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000752582700001 Publication Date 2021-06-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.714 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.714
  Call Number UA @ admin @ c:irua:186509 Serial 7061
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A.
  Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
  Year 2023 Publication (down) Materials characterization Abbreviated Journal
  Volume 200 Issue Pages 112886-11
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000977059100001 Publication Date 2023-04-03
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.7 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714
  Call Number UA @ admin @ c:irua:195598 Serial 7291
Permanent link to this record
 

 
Author Zhou, C.; Ji, G.; Chen, Z.; Wang, M.; Addad, A.; Schryvers, D.; Wang, H.
  Title Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications Type A1 Journal article
  Year 2014 Publication (down) Materials and design Abbreviated Journal Mater Design
  Volume 63 Issue Pages 719-728
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Highly thermally conductive graphite flakes (Gf)/Si/Al composites have been fabricated using Gf, Si powder and an AlSi7Mg0.3 alloy by an optimized pressure infiltration process for thermal management applications. In the composites, the layers of Gf were spaced apart by Si particles and oriented perpendicular to the pressing direction, which offered the opportunity to tailor the thermal conductivity (TC) and coefficient of thermal expansion (CTE) of the composites. Microstructural characterization revealed that the formation of a clean and tightly-adhered interface at the nanoscale between the side surface of the Gf and Al matrix, devoid of a detrimental Al4C3 phase and a reacted amorphous AlSiOC layer, contributed to excellent thermal performance along the alignment direction. With increasing volume fraction of Gf from 13.7 to 71.1 vol.%, the longitudinal (i.e. parallel to the graphite layers) TC of the composites increased from 179 to 526 W/m K, while the longitudinal CTE decreased from 12.1 to 7.3 ppm/K (matching the values of electronic components). Furthermore, the modified layers-in-parallel model better fitted the longitudinal TC data than the layers-in-parallel model and confirmed that the clean and tightly-adhered interface is favorable for the enhanced longitudinal TC.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Reigate Editor
  Language Wos 000340949300086 Publication Date 2014-07-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0261-3069; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 61 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:118124 Serial 1166
Permanent link to this record
 

 
Author Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M.-P.; Leroux, F.; Bahnemann, D.
  Title Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism Type A1 Journal article
  Year 2017 Publication (down) Materials & design Abbreviated Journal Mater Design
  Volume 119 Issue 119 Pages 270-276
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Despite the enormous interest in the properties and applications of porous silica matrix, only a few attempts have been reported to deposit metal and metal oxide nanoparticles (NPs) inside the porous silica matrix. We report a simple approach (i.e. sol-gel hot injection) for insitu synthesis of ZnO NPs inside a porous silica matrix. Control of the Zn:Si molar ratio, reaction temperature, pH value, and annealing temperature permits formation of ZnO NPs (<= 10 nm) inside a porous silica particles, without additives or organic solvents. Results revealed that a solid state reaction inside the ZnO/SiO2 nanocomposites occurs with increasing the annealing temperature. The reaction of ZnO NPs with SiO2 matrix was insignificant up to approximately 500 degrees C. However, ZnO NPs react strongly with the silica matrix when the nanocomposites are annealed at temperatures above 700 degrees C. Extensive annealing of the ZnO/SiO2 nanocomposite at 900 degrees C yields 3D structures made of 500 nm rod-like, 5-7 pm tube-like and 35 pm needle-like Zn2SiO4 crystals. A possible mechanism for forming ZnO NPs inside porous silica matrix and phase transformation of the ZnO/SiO2 nanocomposites into 3D architectures of Zn2SiO4 are carefully discussed. (C) 2017 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000397360000030 Publication Date 2017-01-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.364 Times cited 43 Open Access Not_Open_Access
  Notes ; A.B. would like to thank FWO – Research Foundation Flanders (grant no. V450315N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529 – INSITU) for financial support. TEM and TEM-EDX analyses were performed by Dr. F. Leroux (EMAT, Universiteit Antwerpen). XRD and DSC measurements were performed by T. Segato (4MAT, Universite Libre de Bruxelles). Notes: the authors declare no competing for financial interest. ; Approved Most recent IF: 4.364
  Call Number UA @ lucian @ c:irua:142394UA @ admin @ c:irua:142394 Serial 4689
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B.
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication (down) Materials & design Abbreviated Journal Mater Design
  Volume 262 Issue 262 Pages 74-81
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 2018-01-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles
  Impact Factor 4.364 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.364
  Call Number UA @ lucian @ c:irua:149854 Serial 4938
Permanent link to this record
 

 
Author Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K.
  Title Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting) Type A1 Journal article
  Year 2019 Publication (down) Materials & design Abbreviated Journal Mater Design
  Volume 165 Issue Pages 107598
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In order to increase the production rate during selective laser melting (SLM), a high power laser with a large beam diameter is used to build fully dense Hastelloy X parts. Compared to SLM with a low power and small diameter beam, the productivity was increased from 6 mm3/s to 16 mm3/s, i.e. 2.6 times faster. Besides the productivity benefit, the influence of the use of a high power laser on the rapid solidification microstructure and concomitant material properties is highlighted. The current paper compares the microstructure and tensile properties of Hastelloy X built with low and high power lasers. The use of a high power laser results in wider and shallower melt pools inducing an enhanced morphological and crystallographic texture along the building direction (BD). In addition, the increased heat input results in coarser sub-grains or high density dislocation walls for samples processed with a high power laser. Additionally, the influence of hot isostatic pressing (HIP) as a post-processing technique was evaluated. After HIP, the tensile fracture strain increased as compared to the strain in the as-built state and helped in obtaining competitive mechanical properties as compared to conventionally processed Hastelloy X parts.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000458259300020 Publication Date 2019-01-09
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.364 Times cited 15 Open Access OpenAccess
  Notes This research was supported by the ENGIE Research and Technology Division. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine. S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. Approved Most recent IF: 4.364
  Call Number EMAT @ emat @UA @ admin @ c:irua:157469 Serial 5176
Permanent link to this record
 

 
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M.
  Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
  Year 2022 Publication (down) Materials & design Abbreviated Journal Mater Design
  Volume 221 Issue Pages 110972-10
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000886072100004 Publication Date 2022-07-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 8.4
  Call Number UA @ admin @ c:irua:192194 Serial 7299
Permanent link to this record
 

 
Author Kashiwar, A.; Arseenko, M.; Simar, A.; Idrissi, H.
  Title On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloy Type A1 Journal article
  Year 2024 Publication (down) Materials & design Abbreviated Journal
  Volume 239 Issue Pages 112765-112769
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract A recently developed healable Al-Mg2Si designed by the programmed damage and repair (PDR) strategy is studied considering the role microstructural defects play on precipitation, damage, and healing. The alloy incorporates sacrificial Mg2Si particles that precipitate after friction stir processing (FSP). They act as damage localization sites and are healable based on the solid-state diffusion of Al-matrix. A combination of different transmission electron microscopy (TEM) imaging techniques enabled the visualization and quantification of various crystallographic defects and the spatial distribution of Mg2Si precipitates. Intragrain nucleation is found to be the dominant mechanism for precipitation during FSP whereas grain boundaries and subgrain boundaries mainly lead to coarsening of the precipitates. The statistical and spatial analyses of the damaged particles have shown particle fracture as the dominant damage mechanism which is strongly dependent on the size and aspect ratio of the particles whereas the damage was not found to depend on the location of the precipitates within the matrix. The damaged particles are associated with dislocations accumulated around them. The interplay of these dislocations is directly visualized during healing based on in situ TEM heating which revealed recovery in the matrix as an operative mechanism during the diffusion healing of the PDR alloy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001194110200001 Publication Date 2024-02-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record
  Impact Factor 8.4 Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: 8.4; 2024 IF: 4.364
  Call Number UA @ admin @ c:irua:203298 Serial 9068
Permanent link to this record
 

 
Author Guzzinati, G.; Altantzis, T.; Batuk, M.; De Backer, A.; Lumbeeck, G.; Samaee, V.; Batuk, D.; Idrissi, H.; Hadermann, J.; Van Aert, S.; Schryvers, D.; Verbeeck, J.; Bals, S.
  Title Recent Advances in Transmission Electron Microscopy for Materials Science at the EMAT Lab of the University of Antwerp Type A1 Journal article
  Year 2018 Publication (down) Materials Abbreviated Journal Materials
  Volume 11 Issue 11 Pages 1304
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The rapid progress in materials science that enables the design of materials down to the nanoscale also demands characterization techniques able to analyze the materials down to the same scale, such as transmission electron microscopy. As Belgium’s foremost electron microscopy group, among the largest in the world, EMAT is continuously contributing to the development of TEM techniques, such as high-resolution imaging, diffraction, electron tomography, and spectroscopies, with an emphasis on quantification and reproducibility, as well as employing TEM methodology at the highest level to solve real-world materials science problems. The lab’s recent contributions are presented here together with specific case studies in order to highlight the usefulness of TEM to the advancement of materials science.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000444112800041 Publication Date 2018-07-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.654 Times cited 15 Open Access OpenAccess
  Notes Fonds Wetenschappelijk Onderzoek, G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N AUHA13009 ; European Research Council, COLOURATOM 335078 ; Universiteit Antwerpen, GOA Solarpaint ; G. Guzzinati, T. Altantzis and A. De Backer have been supported by postdoctoral fellowship grants from the Research Foundation Flanders (FWO). Funding was also received from the European Research Council (starting grant no. COLOURATOM 335078), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 770887), the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0502.18N, G.0267.18N, G.0120.12N, G.0365.15N, G.0934.17N, S.0100.18N, G.0401.16N) and from the University of Antwerp through GOA project Solarpaint. Funding for the TopSPIN precession system under grant AUHA13009, as well as for the Qu-Ant-EM microscope, is acknowledged from the HERCULES Foundation. H. Idrissi is mandated by the Belgian National Fund for Scientific Research (F.R.S.-FNRS). (ROMEO:green; preprint:; postprint:can ; pdfversion:can); saraecas; ECAS_Sara; Approved Most recent IF: 2.654
  Call Number EMAT @ emat @c:irua:153737UA @ admin @ c:irua:153737 Serial 5064
Permanent link to this record
 

 
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G.
  Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
  Year 2021 Publication (down) Materials Abbreviated Journal Materials
  Volume 14 Issue 15 Pages 4167
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
  Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000682047700001 Publication Date 2021-07-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.654 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.654
  Call Number UA @ admin @ c:irua:180540 Serial 6966
Permanent link to this record
 

 
Author Marteleur, M.; Idrissi, H.; Amin-Ahmadi, B.; Prima, F.; Schryvers, D.; Jacques, P.J.
  Title On the nucleation mechanism of {112} < 111 > mechanical twins in as-quenched beta metastable Ti-12 wt.% Mo alloy Type A1 Journal article
  Year 2019 Publication (down) Materialia Abbreviated Journal
  Volume 7 Issue Pages Unsp 100418
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Recently developed beta-metastable Ti grades take advantage of the simultaneous activation of TRIP and TWIP effects for enhancing their work hardening rate. However, the role of each plasticity mechanism on the macroscopic mechanical response is still unclear. In this work, the nucleation mechanism of the first activated plasticity mechanism, namely {112} < 111 > twinning, was investigated. Firstly, post-mortem TEM analysis showed that twins nucleate on pre-existing microstructural defects such as thermal jogs with the zonal dislocation mechanism. The precipitation of the omega phase on twin boundaries has been observed, as well as the emission of numerous dislocations from super-jogs present in these twin boundaries. It is also shown that {112} < 111 > twins act as effective dislocation sources for the subsequent plasticity mechanisms such as beta -> alpha '' martensitic transformation and {332} < 111 > twinning. Secondly, in situ TEM tensile testing of the investigated Ti grade highlighted the primary role of the initial defect configuration present in the microstructure. It is shown that twins cannot nucleate without the presence of specific defects allowing the triggering of the dislocation decomposition needed for the twinning mechanism highlighted in investigated bulk samples.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000537131000052 Publication Date 2019-07-31
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:170326 Serial 6875
Permanent link to this record
 

 
Author Lezaack, M.B.; Hannard, F.; Zhao, L.; Orekhov, A.; Adrien, J.; Miettinen, A.; Idrissi, H.; Simar, A.
  Title Towards ductilization of high strength 7XXX aluminium alloys via microstructural modifications obtained by friction stir processing and heat treatments Type A1 Journal article
  Year 2021 Publication (down) Materialia Abbreviated Journal
  Volume 20 Issue Pages 101248
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract High strength 7XXX aluminium series reach exceptional strength, higher than all other industrial aluminium alloys. However, they suffer from a lack of ductility compared to softer series. This work presents a procedure to improve the ductility of 7475 Al alloy in high strength condition, reaching a true fracture strain of 70% at full 500 MPa T6 yield strength. Using friction stir processing (FSP) and post-FSP heat treatments, 100% of industrial rolled material T6 yield stress is maintained but a 180% increase in fracture strain is measured for the processed material. This ductility improvement is studied by in-situ synchrotron X-ray tomography and is explained by the reduction of intermetallic particles size and the homogenization of their spatial distribution. Furthermore, the microstructure after FSP shows equiaxed refined grains which favour crack deviation as opposed to large cracks parallel to the elongated coarse grains in rolled plate. These results are paving the way to better formability and crashworthiness of 7XXX alloys.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000718127100006 Publication Date 2021-10-19
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2589-1529 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access Not_Open_Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:184145 Serial 6894
Permanent link to this record
 

 
Author Zhang, Z.; Bourgeois, L.; Zhang, Y.; Rosalie, J.M.; Medhekar, N.
  Title Advanced imaging and simulations of precipitate interfaces in aluminium alloys and their role in phase transformations Type P1 Proceeding
  Year 2020 Publication (down) MATEC web of conferences T2 – 17th International Conference on Aluminium Alloys (ICAA), October 26-29, 2020 Abbreviated Journal
  Volume Issue Pages 09003
  Keywords P1 Proceeding; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Precipitation is accompanied by the formation and migration of heterophase interfaces. Using the combined approach of advanced imaging and atomistic simulations, we studied the precipitate-matrix interfaces in various aluminium alloy systems, aiming to resolve their detailed atomic structures and illuminate their role in phase transformations.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000652552200053 Publication Date 2020-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume 326 Series Issue Edition
  ISSN 2261-236x; 2274-7214 ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:179147 Serial 6851
Permanent link to this record
 

 
Author Araújo, M.F.D.; Bernard, P.C.; Van Grieken, R.E.
  Title Heavy metal contamination in sediments from the Belgian coast and Scheldt estuary Type A1 Journal article
  Year 1988 Publication (down) Marine pollution bulletin Abbreviated Journal
  Volume 19 Issue 2 Pages 269-273
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Sixty-two samples of total sediments and the separated clay/silt size fractions were analysed by energy-dispersive X-ray fluorescence spectrometry to evaluate the pollution level and the trends in samples collected along the Belgian coast over a period of 6 yr and at four stations located in the Scheldt estuary where two of these were sampled periodically for 4 yr. Three correction methods for grain size effects were applied, either to the bulk sediment samples or to the clay/silt size fractions, and the results were compared. Local variations on the concentrations in some of the elements determined were used to establish whether they result from an anthropogenic or natural origin. The level of pollution was assessed as a function of the location, sampling date, and depth.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos A1988P559400005 Publication Date 2003-08-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0025-326x; 1879-3363 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ admin @ c:irua:116801 Serial 8021
Permanent link to this record
 

 
Author Filippov, S.K.; Sedlacek, O.; Bogomolova, A.; Vetrik, M.; Jirak, D.; Kovar, J.; Kucka, J.; Bals, S.; Turner, S.; Stepanek, P.; Hruby, M.;
  Title Glycogen as a biodegradable construction nanomaterial for in vivo use Type A1 Journal article
  Year 2012 Publication (down) Macromolecular bioscience Abbreviated Journal Macromol Biosci
  Volume 12 Issue 12 Pages 1731-1738
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract It is demonstrated that glycogen as a biodegradable and inexpensive material coming from renewable resources can be used as a carrier for the construction of in vivo imaging nanoagents. The model system considered is composed of glycogen modified with gadolinium and fluorescent labels. Systematic studies of properties of these nanocarriers by a variety of physical methods and results of in vivo tests of biodegradability are reported. This represents, to the authors' best knowledge, the first such use of glycogen.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Weinheim Editor
  Language Wos 000312242600016 Publication Date 2012-11-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1616-5187; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.238 Times cited 22 Open Access
  Notes 262348 ESMI; FWO; Hercules Approved Most recent IF: 3.238; 2012 IF: 3.742
  Call Number UA @ lucian @ c:irua:105286 Serial 1354
Permanent link to this record
 

 
Author Balashova, I.O.; Tolbin, A.Y.; Tarakanov, P.A.; Krot, A.R.; Fedorova, K., V; Sergeeva, I.A.; Trashin, S.A.; De Wael, K.; Pushkarev, V.E.; Koifman, M.O.; Ponomarev, G., V.
  Title A covalently linked dyad based on zinc phthalocyanine and methylpheophorbide α : synthetic and physicochemical study Type A1 Journal article
  Year 2021 Publication (down) Macroheterocycles Abbreviated Journal
  Volume 14 Issue 1 Pages 40-50
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract The first covalently linked conjugate of metal phthalocyaninate and chlorin e(6) derivative has been obtained by transesterification of alpha-ketomethyl ester in methylpheophorbide a with zinc(II) 2-(2-hydroxymethylbenzyloxy)-9(10),16(17),23(24)-tri-tert-butylphthalocyaninate under mild conditions. The dyad exhibits a panchromatic nature revealing both the phthalocyanine and pheophorbide derived bands in the UV-Vis absorption spectrum. The H-1 NMR spectroscopy data combined with theoretical calculations indicate the presence of spatial intramolecular interactions between the phthalocyanine, pheophorbide and spacer fragments of the dyad allowing to forecast its enhanced nonlinear optical properties, as well as the characteristic energy transfer from the excited pheophorbide subunit to the phthalocyanine core. Indeed, when excited in the UV-Vis range, the conjugate shows red fluorescence with the spectral maximum at 686 nm, which is close to the one of the initial zinc phthalocyaninate. Furthermore, the dyad effectively generates singlet oxygen and, in the presence of polyvinylpyrrolidone (PVP) as biocompatible solubilizer, forms stable micellar saline solutions with the particles ranged in size between 40 and 100 nm. These nanoparticles represent promising third-generation photosensitizing systems for application in theranostics.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000659682000003 Publication Date 2021-06-25
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record
  Impact Factor Times cited Open Access OpenAccess
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:179196 Serial 7386
Permanent link to this record
 

 
Author Kálna, K.; Mo×ko, M.; Peeters, F.M.
  Title Electron-electron scattering induced capture in GaAs quantum wells Type A3 Journal article
  Year 1995 Publication (down) Lithuanian journal of physics Abbreviated Journal
  Volume 35 Issue Pages 435-439
  Keywords A3 Journal article; Condensed Matter Theory (CMT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:12201 Serial 927
Permanent link to this record
 

 
Author Schmid, R.; Wilke, M.; Ober, R.; Dong, S.; Janssens, K.; Falkenberg, G.; Franz, L.; Gaab, A.
  Title Micro-XANES determination of ferric iron and its application in thermobarometry Type A1 Journal article
  Year 2003 Publication (down) Lithos Abbreviated Journal
  Volume 70 Issue Pages 381-392
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000186356500017 Publication Date 2003-09-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ admin @ c:irua:42916 Serial 5718
Permanent link to this record
 

 
Author Alloul, A.; Van Kampen, W.; Cerruti, M.; Wittouck, S.; Pabst, M.; Weissbrodt, D.G.
  Title Exploring the role of antimicrobials in the selective growth of purple phototrophic bacteria through genome mining and agar spot assays Type A1 Journal article
  Year 2022 Publication (down) Letters in applied microbiology Abbreviated Journal Lett Appl Microbiol
  Volume 75 Issue 5 Pages 1275-1285
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
  Abstract Purple non-sulphur bacteria (PNSB) are an emerging group of microbes attractive for applied microbiology applications such as wastewater treatment, plant biostimulants, microbial protein, polyhydroxyalkanoates and H-2 production. These photoorganoheterotrophic microbes have the unique ability to grow selectively on organic carbon in anaerobic photobioreactors. This so-called selectivity implies that the microbial community will have a low diversity and a high abundance of a particular PNSB species. Recently, it has been shown that certain PNSB strains can produce antimicrobials, yet it remains unclear whether these contribute to competitive inhibition. This research aimed to understand which type of antimicrobial PNSB produce and identify whether these compounds contribute to their selective growth. Mining 166 publicly-available PNSB genomes using the computational tool BAGEL showed that 59% contained antimicrobial encoding regions, more specifically biosynthetic clusters of bacteriocins and non-ribosomal peptide synthetases. Inter- and intra-species inhibition was observed in agar spot assays for Rhodobacter blasticus EBR2 and Rhodopseudomonas palustris EBE1 with inhibition zones of, respectively, 5.1 and 1.5-5.7 mm. Peptidomic analysis detected a peptide fragment in the supernatant (SVLQLLR) that had a 100% percentage identity match with a known non-ribosomal peptide synthetase with antimicrobial activity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000837055500001 Publication Date 2022-07-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0266-8254 ISBN Additional Links UA library record; WoS full record
  Impact Factor 2.4 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 2.4
  Call Number UA @ admin @ c:irua:189519 Serial 7162
Permanent link to this record
 

 
Author Sreckovic, M.Z.; Tomic, E.; Ostojic, S.M.; Ilic, J.T.; Bundaleski, N.; Sekulic, R.S.; Mlinar, V.
  Title The application of laser beam diffraction and scattering methods in the measurement of shape and determination of material parameters Type A1 Journal article
  Year 2007 Publication (down) Lasers in Engineering (Old City Publishing) Abbreviated Journal Laser Eng
  Volume 17 Issue 3-4 Pages 179-196
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract Lasers can be used for many applications including determination of size, in addition to the theory of diffraction and material dispersion phenomena. In this paper we calculated the corrections in angular intensity for the Gaussian and uniform particle distributions, the scattering intensity on cylindrical objects. We also evaluated the necessary mathematical summations. In addition, we analyse and Simulate the special positions of detectors using laser Doppler anemometric (LDA) methods, which can be used to determine the particle diameter. The dispersion measurements for actual fibres are given at the end. The geometric and material parameters of these fibres were taken before the evaluation of the angular scattering intensity.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0898-1507 ISBN Additional Links UA library record; WoS full record;
  Impact Factor 0.214 Times cited Open Access
  Notes Approved Most recent IF: 0.214; 2007 IF: 0.188
  Call Number UA @ lucian @ c:irua:104050 Serial 3571
Permanent link to this record
 

 
Author Guerrero, A.; Heidari, H.; Ripolles, T.S.; Kovalenko, A.; Pfannmöller, M.; Bals, S.; Kauffmann, L.-D.; Bisquert, J.; Garcia-Belmonte, G.
  Title Shelf life degradation of bulk heterojunction solar cells : intrinsic evolution of charge transfer complex Type A1 Journal article
  Year 2015 Publication (down) Laser physics review Abbreviated Journal Adv Energy Mater
  Volume 5 Issue 5 Pages 1401997
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Achievement of long-term stability of organic photovoltaics is currently one of the major topics for this technology to reach maturity. Most of the techniques used to reveal degradation pathways are destructive and/or do not allow for real-time measurements in operating devices. Here, three different, nondestructive techniques able to provide real-time information, namely, film absorbance, capacitance-voltage (C-V), and impedance spectroscopy (IS), are combined over a period of 1 year using non-accelerated intrinsic degradation conditions. It is discerned between chemical modifications in the active layer, physical processes taking place in the bulk of the blend from those at the active layer/contact interfaces. In particular, it is observed that during the ageing experiment, the main source for device performance degradation is the formation of donor-acceptor charge-transfer complex (P3HT(center dot+)-PCBM center dot-) that acts as an exciton quencher. Generation of these radical species diminishes photocurrent and reduces open-circuit voltage by the creation of electronic defect states. Conclusions extracted from absorption, C-V, and IS measurements will be further supported by a range of other techniques such as atomic force microscopy, X-ray diffraction, and dark-field imaging of scanning transmission electron microscopy on ultrathin cross-sections.
  Address
  Corporate Author Thesis
  Publisher Place of Publication S.l. Editor
  Language Wos 000352708600013 Publication Date 2014-12-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 30 Open Access OpenAccess
  Notes 287594 Sunflower; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 16.721; 2015 IF: 16.146
  Call Number c:irua:126000 Serial 2994
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Bals, S.; Koganezawa, T.; Yoshimoto, N.; Hannani, D.; Gaceur, M.; Videlot-Ackermann, C.; Margeat, O.; Ackermann, J.
  Title Square-centimeter-sized high-efficiency polymer solar cells : how the processing atmosphere and film quality influence performance at large scale Type A1 Journal article
  Year 2016 Publication (down) Laser physics review Abbreviated Journal Adv Energy Mater
  Volume 6 Issue 6 Pages 1600290
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Organic solar cells based on two benzodithiophene-based polymers (PTB7 and PTB7-Th) processed at square centimeter-size under inert atmosphere and ambient air, respectively, are investigated. It is demonstrated that the performance of solar cells processed under inert atmosphere is not limited by the upscaling of photoactive layer and the interfacial layers. Thorough morphological and electrical characterizations of optimized layers and corresponding devices reveal that performance losses due to area enlargement are only caused by the sheet resistance of the transparent electrode reducing the effi ciency from 9.3% of 7.8% for PTB7-Th in the condition that both photoactive layer and the interfacial layers are of high layer quality. Air processing of photoactive layer and the interfacial layers into centimeter-sized solar cells lead to additional, but only slight, losses (< 10%) in all photovoltaic parameters, which can be addressed to changes in the electronic properties of both active layer and ZnO layers rather than changes in layer morphology. The demonstrated compatibility of polymer solar cells using solution-processed photoactive layer and interfacial layers with large area indicates that the introduction of a standard active area of 1 cm(2) for measuring effi ciency of organic record solar cells is feasible. However electric standards for indium tin oxides (ITO) or alternative transparent electrodes need to be developed so that performance of new photovoltaic materials can be compared at square centimeter-size.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Place of publication unknown Editor
  Language Wos 000379314700010 Publication Date 2016-05-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 6 Open Access Not_Open_Access
  Notes ; The authors acknowledge financial support by the French Fond Unique Intermisteriel (FUI) under the project “SFUMATO” (Grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7-contract no. 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The synchrotron radiation experiments were performed at BL46XU and BL19B2 in SPring-8 with the approval of Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2014B1916 and 2015A1984). The authors further acknowledge financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; Approved Most recent IF: 16.721
  Call Number UA @ lucian @ c:irua:134951 Serial 4249
Permanent link to this record
 

 
Author Ben Dkhil, S.; Pfannmöller, M.; Saba, M.I.; Gaceur, M.; Heidari, H.; Videlot-Ackermann, C.; Margeat, O.; Guerrero, A.; Bisquert, J.; Garcia-Belmonte, G.; Mattoni, A.; Bals, S.; Ackermann, J.
  Title Toward high-temperature stability of PTB7-based bulk heterojunction solar cells : impact of fullerene size and solvent additive Type A1 Journal article
  Year 2017 Publication (down) Laser physics review Abbreviated Journal Adv Energy Mater
  Volume 7 Issue 7 Pages 1601486
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 degrees C in bulk heterojunctions based on the benzodithiophene-based polymer (the poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b: 4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl) carbonyl]thieno[3,4-b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7: PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 degrees C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Place of publication unknown Editor
  Language Wos 000396328500009 Publication Date 2016-11-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1614-6832; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 16.721 Times cited 27 Open Access Not_Open_Access
  Notes ; The authors acknowledge financial support by the French Fond Unique Interministeriel (FUI) under the project “SFUMATO” (grant number: F1110019V/ 201308815) as well as by the European Commission under the Project “SUNFLOWER” (FP7-ICT-2011-7, grant number: 287594). Generalitat Valenciana (ISIC/2012/008 Institute of Nanotechnologies for Clean Energies) is also acknowledged for providing financial support. The authors further acknowledge financial support via ERC Starting Grant Colouratoms (335078). ; Approved Most recent IF: 16.721
  Call Number UA @ lucian @ c:irua:141991UA @ admin @ c:irua:141991 Serial 4697
Permanent link to this record
 

 
Author Bertels, E.; Bruyninckx, K.; Kurttepeli; Smet, M.; Bals, S.; Goderis, B.
  Title Highly Efficient Hyperbranched CNT Surfactants: Influence of Molar Mass and Functionalization Type A1 Journal article
  Year 2014 Publication (down) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
  Volume 30 Issue 41 Pages 12200-12209
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract End-group-functionalized hyperbranched polymers were synthesized to act as a carbon nanotube (CNT) surfactant in aqueous solutions. Variation of the percentage of triphenylmethyl (trityl) functionalization and of the molar mass of the hyperbranched polyglycerol (PG) core resulted in the highest measured surfactant efficiency for a 5000 g/mol PG with 5.6% of the available hydroxyl end-groups replaced by trityl functions, as shown by UV-vis measurements. Semiempirical model calculations suggest an even higher efficiency for PG5000 with 2.5% functionalization and maximal molecule specific efficiency in general at low degrees of functionalization. Addition of trityl groups increases the surfactant-nanotube interactions in comparison to unfunctionalized PG because of pi-pi stacking interactions. However, at higher functionalization degrees mutual interactions between trityl groups come into play, decreasing the surfactant efficiency, while lack of water solubility becomes an issue at very high functionalization degrees. Low molar mass surfactants are less efficient compared to higher molar mass species most likely because the higher bulkiness of the latter allows for a better CNT separation and stabilization. The most efficient surfactant studied allowed dispersing 2.85 mg of CNT in 20 mL with as little as 1 mg of surfactant. These dispersions, remaining stable for at least 2 months, were mainly composed of individual CNTs as revealed by electron microscopy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000343638800013 Publication Date 2014-09-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.833 Times cited 15 Open Access OpenAccess
  Notes The authors gratefully acknowledge the SIM NanoForce programme for their financial support and thank the group of Prof. Thierry Verbiest, especially Maarten Bloemen, for the use of their UV−vis equipment. Bart Goderis and Mario Smet thank KU Leuven for financial support through a GOA project. Mert Kurttepeli and Sara Bals acknowledge funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS.; ECAS_Sara; (ROMEO:white; preprint:; postprint:restricted 12 months embargo; pdfversion:cannot); Approved Most recent IF: 3.833; 2014 IF: 4.457
  Call Number UA @ lucian @ c:irua:121140 Serial 1471
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P.
  Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
  Year 2011 Publication (down) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
  Volume 27 Issue 7 Pages 3618-3625
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
  Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000288970900054 Publication Date 2011-02-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.833 Times cited 19 Open Access
  Notes Approved Most recent IF: 3.833; 2011 IF: 4.186
  Call Number UA @ lucian @ c:irua:88366 Serial 1557
Permanent link to this record
 

 
Author Galvan Moya, J.E.; Nelissen, K.; Peeters, F.M.
  Title Structural ordering of self-assembled clusters with competing interactions : transition from faceted to spherical clusters Type A1 Journal article
  Year 2015 Publication (down) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
  Volume 31 Issue 31 Pages 917-924
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The self-assembly of nanoparticles into clusters and the effect of the different parameters of the competing interaction potential on it are investigated. For a small number of particles, the structural organization of the clusters is almost unaffected by the attractive part of the potential, and for an intermediate number of particles the configuration strongly depends on the strength of it. The cluster size is controlled by the range of the interaction potential, and the structural arrangement is guided by the strength of the potential: i.e., the self-assembled cluster transforms from a faceted configuration at low strength to a spherical shell-like structure at high strength. Nonmonotonic behavior of the cluster size is found by increasing the interaction range. An approximate analytical expression is obtained that predicts the smallest cluster for a specific set of potential parameters. A Mendeleev-like table is constructed for different values of the strength and range of the attractive part of the potential in order to understand the structural ordering of the ground-state configuration of the self-assembled clusters.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000348689700005 Publication Date 2014-12-30
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.833 Times cited 4 Open Access
  Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem programme of the Flemish government. Computational resources were provided by the HPC infrastructure of the University of Antwerp (CalcUA), a division of the Flemish Supercomputer Center (VSC). ; Approved Most recent IF: 3.833; 2015 IF: 4.457
  Call Number c:irua:125292 Serial 3243
Permanent link to this record
 

 
Author Cui, J.; Faria, M.; Bjornmalm, M.; Ju, Y.; Suma, T.; Gunawan, S.T.; Richardson, J.J.; Heidar, H.; Bals, S.; Crampin, E.J.; Caruso, F.
  Title A framework to account for sedimentation and diffusion in particle-cell interactions Type A1 Journal article
  Year 2016 Publication (down) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir
  Volume 32 Issue 32 Pages 12394-12402
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract In vitro experiments provide a solid basis for understanding the interactions between particles and biological systems. An important confounding variable for these studies is the difference between the amount of particles administered and that which reaches the surface of cells. Here, we engineer a hydrogel-based nanoparticle system and combine in situ characterization techniques, 3D-printed cell cultures, and computational modeling to evaluate and study particle cell interactions of advanced particle systems. The framework presented demonstrates how sedimentation and diffusion can explain differences in particle cell association, and provides a means to account for these effects. Finally, using in silico modeling, we predict the proportion of particles that reaches the cell surface using common experimental conditions for a wide range of inorganic and organic micro- and nanoparticles. This work can assist in the understanding and control of sedimentation and diffusion when investigating cellular interactions of engineered particles.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Washington, D.C. Editor
  Language Wos 000389117600017 Publication Date 2016-07-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0743-7463 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.833 Times cited 40 Open Access Not_Open_Access
  Notes ; This work was supported by the Australian Research Council (ARC) under the Australian Laureate Fellowship scheme (F.C., FL120100030), the Australian Government through an Australian Postgraduate Award (M.B.), and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology (Project Number CE140100036). This work was performed in part at the Materials Characterization and Fabrication Platform (MCFP) at the University of Melbourne and the Victorian Node of the Australian National Fabrication Facility (ANFF). ; Approved Most recent IF: 3.833
  Call Number UA @ lucian @ c:irua:139210 Serial 4438
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M.
  Title Guidelines for passive control of traffic-related air pollution in street canyons : an overview for urban planning Type A1 Journal article
  Year 2021 Publication (down) Landscape And Urban Planning Abbreviated Journal Landscape Urban Plan
  Volume 207 Issue Pages 103980-20
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Energy and Materials in Infrastructure and Buildings (EMIB); Research Group for Urban Development; Sustainable Energy, Air and Water Technology (DuEL); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Recent studies indicate the necessity of addressing traffic-related air pollution in urban environments, as street canyons are known for their lack of natural ventilation and increased pollution levels. To address this issue, numerous studies have been conducted on different aspects (e.g. aspect ratio, orientation and height variation) and their impact on ventilation and pollution dispersion/dilution performance in street canyons. Despite the numerous studies, the information remains fragmented and the results and applications are fairly unknown in urban planning. Broad review studies on numerous street canyon aspects are also quite scarce. In this study, over 200 studies were collected and reviewed across various parameters and on different configuration levels (street canyon configuration / building configuration / in-canyon configuration). Hereby, the study aims to give a comprehensive overview and to formulate spatial guidelines to improve the application of the reviewed studies for the purpose of urban planning. In total, 19 general guidelines were formulated, and an implementation strategy for the purpose of urban planning was developed. Despite the usability of these guidelines for urban planning, a high number of limitations and variabilities were detected. The broad literature review also revealed knowledge gaps, indicating the potentials for further research.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 000604739400006 Publication Date 2020-11-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.563 Times cited Open Access OpenAccess
  Notes Approved Most recent IF: 4.563
  Call Number UA @ admin @ c:irua:173811 Serial 8014
Permanent link to this record
 

 
Author Voordeckers, D.; Lauriks, T.; Baetens, D.; Ysebaert, T.; Denys, S.; Billen, P.; Tytgat, T.; Van Acker, M.
  Title Numerical study on the impact of traffic lane adjustments and low boundary walls on pedestrian exposure to NO2 in street canyons Type A1 Journal article
  Year 2023 Publication (down) Landscape and urban planning Abbreviated Journal
  Volume 243 Issue Pages 104974-13
  Keywords A1 Journal article; Economics; Law; Engineering sciences. Technology; Art; Sustainable Energy, Air and Water Technology (DuEL); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS); Research Group for Urban Development; Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
  Abstract Mitigating the adverse effects of air pollution, especially on human health, is one of the greater contemporary challenges for cities. Street canyons have herein been identified as bottleneck areas in urbanized environments. Focusing on the necessity of fast-response interventions, strategies to control source-receptor pathways (e.g. implementing low boundary walls (LBWs)) are gaining interest. A potential strategy which is greatly overlooked is the adjustment (reduction or displacement) of traffic lanes in order to increase the distance between source (traffic) and recipient (pedestrians). Within our study, computation fluid dynamics (CFD) is used to simulate the impact of alternations to traffic lanes (whether or not combined with LBWs) on the pedestrian exposure to NO2 for a specific case-study (Belgie center dot lei, Antwerp) under two prevailing wind directions. The average differences in NO2 concentrations for the entire pedestrian area ranged between +1.0 % to-3.6 %. On specific locations, reduction up to-8.0 % were reached. In case of perpendicular winds, a lateral displacement of all traffic lanes towards the windward facade including LBWs was found most beneficial to reduce pedestrian exposure. LBWs also showed to be efficient in reducing potential adverse effects of lane displacement under less frequent wind directions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication Editor
  Language Wos 001134403700001 Publication Date 2023-12-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0169-2046 ISBN Additional Links UA library record; WoS full record
  Impact Factor 9.1 Times cited Open Access
  Notes Approved Most recent IF: 9.1; 2023 IF: 4.563
  Call Number UA @ admin @ c:irua:201400 Serial 9065
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: