toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vasilakou, K.; Billen, P.; Van Passel, S.; Nimmegeers, P. pdf  doi
openurl 
  Title A Pareto aggregation approach for environmental-economic multi-objective optimization applied on a second-generation bioethanol production model Type A1 Journal article
  Year 2024 Publication (down) Energy conversion and management Abbreviated Journal  
  Volume 303 Issue Pages 118184-11  
  Keywords A1 Journal article; Economics; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract Multi-objective optimization is an important decision-making tool for energy processes, as multiple targets need to be achieved. These objectives are usually conflicting since a single solution cannot be optimal for all objectives, resulting in a set of Pareto-optimal solutions. Multiple indicators might be available to describe a sustainability objective, such as the environmental impact which is commonly evaluated by performing a life cycle assessment. In this study, Pareto aggregation is proposed as a method which employs a novel multi-objective optimization-based approach as an alternative to the classically used aggregation in life cycle assessment. This method identifies conflicting environmental indicators and performs an aggregation among those that require a trade-off. An environmental-economic optimization of a second-generation bioethanol plant is used to illustrate and evaluate the proposed method. Process parameters from a biochemical conversion pathway flowsheet simulation model are chosen as optimization variables. To reduce the computational time, surrogate models, based on artificial neural networks, are used. Out of the eighteen ReCiPe Midpoint environmental indicators, five were identified as conflicting, resulting in an aggregated environmental objective, which was then traded off with the economic objective function, chosen as the levelized cost of ethanol. Comparison with the widely used single-score EcoIndicator99 showed that the Pareto aggregation method can reduce most of the environmental indicators by up to 6.5%. This research provides an insight on non-redundant objective functions, aiming at reducing the dimensionality of multi-objective optimization problems, while taking into consideration decision-makers’ preferences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001185718400001 Publication Date 2024-02-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-8904; 1879-2227 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 10.4 Times cited Open Access  
  Notes Approved Most recent IF: 10.4; 2024 IF: 5.589  
  Call Number UA @ admin @ c:irua:203046 Serial 9216  
Permanent link to this record
 

 
Author Osorio-Tejada, J.; Escriba-Gelonch, M.; Vertongen, R.; Bogaerts, A.; Hessel, V. url  doi
openurl 
  Title CO₂ conversion to CO via plasma and electrolysis : a techno-economic and energy cost analysis Type A1 Journal article
  Year 2024 Publication (down) Energy & environmental science Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Electrification and carbon capture technologies are essential for achieving net-zero emissions in the chemical sector. A crucial strategy involves converting captured CO2 into CO, a valuable chemical feedstock. This study evaluates the feasibility of two innovative methods: plasma activation and electrolysis, using clean electricity and captured CO2. Specifically, it compares a gliding arc plasma reactor with an embedded novel carbon bed system to a modern zero-gap type low-temperature electrolyser. The plasma method stood out with an energy cost of 19.5 GJ per tonne CO, marking a 43% reduction compared to electrolysis and conventional methods. CO production costs for plasma- and electrolysis-based plants were $671 and $962 per tonne, respectively. However, due to high uncertainty regarding electrolyser costs, the CO production costs in electrolysis-based plants may actually range from $570 to $1392 per tonne. The carbon bed system in the plasma method was a key factor in facilitating additional CO generation from O-2 and enhancing CO2 conversion, contributing to its cost-effectiveness. Challenges for electrolysis included high costs of equipment and low current densities. Addressing these limitations could significantly decrease production costs, but challenges arise from the mutual relationship between intrinsic parameters, such as CO2 conversion, CO2 input flow, or energy cost. In a future scenario with affordable feedstocks and equipment, costs could drop below $500 per tonne for both methods. While this may be more challenging for electrolysis due to complexity and expensive catalysts, plasma-based CO production appears more viable and competitive.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001218045900001 Publication Date 2024-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1754-5692; 1754-5706 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 32.5 Times cited Open Access  
  Notes Approved Most recent IF: 32.5; 2024 IF: 29.518  
  Call Number UA @ admin @ c:irua:205986 Serial 9138  
Permanent link to this record
 

 
Author Wu, X.; Ding, J.; Cui, W.; Lin, W.; Xue, Z.; Yang, Z.; Liu, J.; Nie, X.; Zhu, W.; Van Tendeloo, G.; Sang, X. url  doi
openurl 
  Title Enhanced electrical properties of Bi2-xSbxTe3 nanoflake thin films through interface engineering Type A1 Journal article
  Year 2024 Publication (down) Energy & environment materials Abbreviated Journal  
  Volume Issue Pages e12755-8  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure-property relationship at interfaces is difficult to probe for thermoelectric materials with a complex interfacial microstructure. Designing thermoelectric materials with a simple, structurally-uniform interface provides a facile way to understand how these interfaces influence the transport properties. Here, we synthesized Bi2-xSbxTe3 (x = 0, 0.1, 0.2, 0.4) nanoflakes using a hydrothermal method, and prepared Bi2-xSbxTe3 thin films with predominantly (0001) interfaces by stacking the nanoflakes through spin coating. The influence of the annealing temperature and Sb content on the (0001) interface structure was systematically investigated at atomic scale using aberration-corrected scanning transmission electron microscopy. Annealing and Sb doping facilitate atom diffusion and migration between adjacent nanoflakes along the (0001) interface. As such it enhances interfacial connectivity and improves the electrical transport properties. Interfac reactions create new interfaces that increase the scattering and the Seebeck coefficient. Due to the simultaneous optimization of electrical conductivity and Seebeck coefficient, the maximum power factor of the Bi1.8Sb0.2Te3 nanoflake films reaches 1.72 mW m(-1) K-2, which is 43% higher than that of a pure Bi2Te3 thin film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001204495900001 Publication Date 2024-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:205438 Serial 9148  
Permanent link to this record
 

 
Author Nabavi-Pelesaraei, A.; Azadi, H.; Van Passel, S.; Saber, Z.; Hosseini-Fashami, F.; Mostashari-Rad, F.; Ghasemi-Mobtaker, H. pdf  url
doi  openurl
  Title Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment Type A1 Journal article
  Year 2021 Publication (down) Energy Abbreviated Journal Energy  
  Volume 223 Issue Pages 120117  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The aim of this study is determination of exergoenvironmental efficiency for using solar technologies in sunflower oil production in Iran. Accordingly, the applications of photovoltaic and photovoltaic/thermal systems were evaluated for both agricultural and industrial phases of sunflower oil production. Energy results reveal that 1 ton of sunflower oil consumes and produces about 180,354 and 39,400 MJ energy, respectively. About 86% of total energy consumption belongs to agricultural phase and electricity with 32%, has the highest share of total energy consumption. IMPACT 2002+ method and cumulative energy demand of life cycle assessment are applied to 3 defined scenarios including Present, photovoltaic and photovoltaic/thermal. Results indicate that total amounts of climate change in Present scenarios is 24537.53 kg CO2 eq.. The highest share of human health (90%), ecosystem quality (90%) and climate change (50%) in all scenarios belongs to direct emissions. Results also illustrates that total cumulative energy demand of Present, photovoltaic and photovoltaic/thermal scenarios are about 177,538, 99,054 and 132,158 MJ 1TSO(-1), respectively. Furthermore, the most contribution of non-renewable resources and fossil fuels belongs to electricity (37%), nitrogen (52%) and photovoltaic/thermal panels (39%) in Present, photovoltaic and photovoltaic/thermal scenarios, respectively. Finally the photovoltaic scenario is the best environmental-friendly scenario. (c) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000637964000003 Publication Date 2021-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:178193 Serial 6940  
Permanent link to this record
 

 
Author Quintero-Coronel, D.A.; Lenis-Rodas, Y.A.; Corredor, L.A.; Perreault, P.; Gonzalez-Quiroga, A. pdf  url
doi  openurl
  Title Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor : experimental assessment of the ignition front propagation velocity Type A1 Journal article
  Year 2021 Publication (down) Energy Abbreviated Journal Energy  
  Volume 220 Issue Pages 119702-119710  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Co-thermochemical conversion of coal and biomass can potentially decrease the use of fossil carbon and pollutant emissions. This work presents experimental results for the so-called top-lit updraft fixed bed reactor, in which the ignition front starts at the top and propagates downward while the gas product flows upwards. The study focuses on the ignition front propagation velocity for the co-thermochemical conversion of palm kernel shell and high-volatile bituminous coal. Within the range of assessed air superficial velocities, the process occurred under gasification and near stoichiometric conditions. Under gasification conditions increasing coal particle size from 7.1 to 22 mm decreased ignition front velocity by around 26% regardless of the coal volume percentage. Furthermore, increasing coal volume percentage and decreasing coal particle size result in product gas with higher energy content. For the operation near stoichiometric conditions, increasing coal volume percentage from 10 to 30% negatively affected the ignition front velocity directly proportional to its particle size. Additional experiments confirmed a linear dependence of ignition front velocity on air superficial velocity. Further steps in the development of the top-lit updraft technology are implementing continuous solids feeding and variable cross-sectional area and optimizing coal particle size distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000623087300003 Publication Date 2020-12-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.52 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.52  
  Call Number UA @ admin @ c:irua:175861 Serial 8664  
Permanent link to this record
 

 
Author Saviuc, I.; Peremans, H.; Van Passel, S.; Milis, K. url  doi
openurl 
  Title Economic performance of using batteries in European residential microgrids under the net-metering scheme Type A1 Journal article
  Year 2019 Publication (down) Energies Abbreviated Journal Energies  
  Volume 12 Issue 1 Pages 165-28  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract Decentralized energy production offers an increased share of renewable energy and autonomy compared to the conventional, grid-only solution. However, under the net-metering scheme, the energy losses in batteries translate into financial losses to an investor seeking to move away from grid-only electricity and set up a residential PV+Battery microgrid. Our paper examines a hypothetical support scheme for such a project, designed to balance the economic disadvantage through partially supporting the acquisition of batteries, and thus ensure that the microgrid solution is more attractive than no investment. For this we develop four case studies based on experiments carried out in Greece, Italy, Denmark and Finland. Using the minimization of the Net Present Cost for each project, we compare the PV+Battery solution to the grid-only scenario over 25 years, for a range of electricity prices. The results illustrate first how the success of this project depends on the price of electricity. Second, we find that under current conditions in the respective countries the need for battery support varies between zero in Denmark and 86% in Italy, which reflects how the disadvantages of net metering can only be counterbalanced by either very high electricity price or very high solar resource. Our paper contributes thus to the discussion about the favourable environment for batteries in residential microgrids.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2019-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Additional Links UA library record  
  Impact Factor 2.262 Times cited Open Access  
  Notes Approved Most recent IF: 2.262  
  Call Number UA @ admin @ c:irua:156009 Serial 6189  
Permanent link to this record
 

 
Author Perreault, P.; Boruntea, C.-R.; Dhawan Yadav, H.; Portela Soliño, I.; Kummamuru, N.B. url  doi
openurl 
  Title Combined methane pyrolysis and solid carbon gasification for electrified CO₂-free hydrogen and syngas production Type A1 Journal article
  Year 2023 Publication (down) Energies Abbreviated Journal  
  Volume 16 Issue 21 Pages 7316-7320  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The coupling of methane pyrolysis with the gasification of a solid carbon byproduct provides CO2-free hydrogen and hydrogen-rich syngas, eliminating the conundrum of carbon utilization. Firstly, the various types of carbon that are known to result during the pyrolysis process and their dependencies on the reaction conditions for catalytic and noncatalytic systems are summarized. The synchronization of the reactions’ kinetics is considered to be of paramount importance for efficient performance. This translates to the necessity of finding suitable reaction conditions, carbon reactivities, and catalysts that might enable control over competing reactions through the manipulation of the reaction rates. As a consequence, the reaction kinetics of methane pyrolysis is then emphasized, followed by the particularities of carbon deposition and the kinetics of carbon gasification. Given the urgency in finding suitable solutions for decarbonizing the energy sector and the limited information on the gasification of pyrolytic carbon, more research is needed and encouraged in this area. In order to provide CO2-free hydrogen production, the reaction heat should also be provided without CO2. Electrification is one of the solutions, provided that low-carbon sources are used to generate the electricity. Power-to-heat, i.e., where electricity is used for heating, represents the first step for the chemical industry.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001103312100001 Publication Date 2023-10-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1073 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200456 Serial 8842  
Permanent link to this record
 

 
Author Van Grieken, R.; Fobe, B. openurl 
  Title Kultuurpatrimonium, zure regen en energie Type A3 Journal article
  Year 1990 Publication (down) Energie en milieu: tijdschrift over energie en leefmilieu Abbreviated Journal  
  Volume Issue 1 Pages 10-11  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0777-4850 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116827 Serial 8143  
Permanent link to this record
 

 
Author Mescia, L.; Chiapperino, M.A.; Bia, P.; Lamacchia, C.M.; Gielis, J.; Caratelli, D. url  doi
openurl 
  Title Design of electroporation process in irregularly shaped multicellular systems Type A1 Journal article
  Year 2019 Publication (down) Electronics (Basel) Abbreviated Journal  
  Volume 8 Issue 1 Pages 37  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Electroporation technique is widely used in biotechnology and medicine for the transport of various molecules through the membranes of biological cells. Different mathematical models of electroporation have been proposed in the literature to study pore formation in plasma and nuclear membranes. These studies are mainly based on models using a single isolated cell with a canonical shape. In this work, a spacetime (x,y,t) multiphysics model based on quasi-static Maxwells equations and nonlinear Smoluchowskis equation has been developed to investigate the electroporation phenomenon induced by pulsed electric field in multicellular systems having irregularly shape. The dielectric dispersion of the cell compartments such as nuclear and plasmatic membranes, cytoplasm, nucleoplasm and external medium have been incorporated into the numerical algorithm, too. Moreover, the irregular cell shapes have been modeled by using the Gielis transformations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457142800037 Publication Date 2019-01-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-9292 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157203 Serial 7765  
Permanent link to this record
 

 
Author Alexiades, V.; Autrique, D. openurl 
  Title Enthalpy model for heating, melting, and vaporization in laser ablation Type A1 Journal article
  Year 2010 Publication (down) Electronic journal of differential equations Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a selfconsistent way.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000455668500001 Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1072-6691 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:190550 Serial 7925  
Permanent link to this record
 

 
Author Ryabova, A.S.; Istomin, S.Y.; Dosaev, K.A.; Bonnefont, A.; Hadermann, J.; Arkharova, N.A.; Orekhov, A.S.; Sena, R.P.; Saveleva, V.A.; Kerangueven, G.; Antipov, E., V.; Savinova, E.R.; Tsirlina, G.A. pdf  url
doi  openurl
  Title Mn₂O₃ oxide with bixbyite structure for the electrochemical oxygen reduction reaction in alkaline media : highly active if properly manipulated Type A1 Journal article
  Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 367 Issue Pages 137378  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We consider compositional and structural factors which can affect the activity of bixbyite alpha-Mn2O3 towards the oxygen reduction reaction (ORR) and the stability of this oxide in alkaline solution. We compare electrochemistry of undoped, Fe and Al-doped alpha-Mn2O3 with bixbyite structure and braunite Mn7SiO12 having bixbyite-related crystal structure, using the rotating disk electrode (RDE), the rotating ring-disk electrode (RRDE), and cyclic voltammetry (CV) techniques. All manganese oxides under study are stable in the potential range between the ORR onset and ca. 0.7 V vs. Reversible Hydrogen Electrode (RHE). It is found that any changes introduced in the bixbyite structure and/or composition of alpha-Mn2O3 lead to an activity drop in both the oxygen reduction and hydrogen peroxide reactions in this potential interval. For the hydrogen peroxide reduction reaction these modifications also result in a change in the nature of the rate-determining step. The obtained results confirm that due to its unique crystalline structure undoped alpha-Mn2O3 is the most ORR active (among currently available) Mn oxide catalyst and favor the assumption of the key role of the (111) surface of alpha-Mn2O3 in the very high activity of this material towards the ORR. (C) 2020 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607621500013 Publication Date 2020-10-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176080 Serial 6731  
Permanent link to this record
 

 
Author Stefan, G.; Hosu, O.; De Wael, K.; Jesus Lobo-Castanon, M.; Cristea, C. pdf  doi
openurl 
  Title Aptamers in biomedicine : selection strategies and recent advances Type A1 Journal article
  Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 376 Issue Pages 137994  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Aptamers have come in the spotlight as bio-mimetic molecular recognition elements in the field of biomedicine due to various applications in diagnostics, drug delivery, therapeutics, and pharmaceutical analysis. Aptamers are composed of nucleic acid strands (DNA or RNA) that can specifically interact in a three-dimensional tailored design with the target molecule. The basic method to generate aptamers is Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Recent technological advances in aptamer selection allow for faster and cheaper production of a new generation of high-affinity aptamers compared to the traditional SELEX, which can last up to several months. Rigorous characterization performed by multiple research groups endorsed several well-defined aptamer sequences. Binding affinity, nature of the biomolecular interactions and structural characterization are of paramount importance for aptamer screening and development of applications. However, remarkable challenges still need to be dealt with before the aptamers can make great contributions to the biomedical field. Poor specificity and sensitivity, questionable clinical use, low drug loading, in vivo stability and toxicity are only some of the identified challenges. This review accounts for the 30th celebration of the SELEX technology underlining the most important aptamers' achievements in the biomedical field within mostly the past five years. Aptamers' advantages over antibodies are discussed. Because of potential clinical translational utility, insights of remarkable developments in aptamer-based methods for diagnosis and monitoring of disease biomarkers and pharmaceuticals are discussed focusing on the recent studies (2015-2020). The current challenges and promising opportunities for aptamers for therapeutic and theragnostic purposes are also presented. (C) 2021 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000634761900003 Publication Date 2021-02-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:177677 Serial 7491  
Permanent link to this record
 

 
Author Schram, J.; Thiruvottriyur Shanmugam, S.; Sleegers, N.; Florea, A.; Samyn, N.; van Nuijs, A.L.N.; De Wael, K. pdf  doi
openurl 
  Title Local conversion of redox inactive molecules into redox active ones : a formaldehyde based strategy for the electrochemical detection of illicit drugs containing primary and secondary amines Type A1 Journal article
  Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 367 Issue Pages 137515  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract Electrochemical techniques have evidenced to be highly suitable for the development of portable, rapid and accurate screening methods for the detection of illicit drugs in seized samples. However, the redox inactivity of primary amines, one of the most common functional groups of illicit drugs, masks voltammetric detection in aqueous environment at carbon electrodes and, therefore, leads to false negative results if only these primary amines are present in the structures. This work explores the feasibility of a derivatisation approach that introduces formaldehyde in the measuring conditions in order to achieve methylation, via an Eschweiler-Clarke mechanism, of illicit drugs containing primary and secondary amines, using amphetamine (AMP) and methamphetamine (MET) as model molecules. As a result the electrochemical fingerprint is enriched and thereby the detectability enhanced. A combination of liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOFMS) and square-wave voltammetric (SWV) measurements is employed to identify reaction products and link them to the observed redox peaks. Although an alkaline environment (pH 12.0) proved to increase the reaction yield, a richer electrochemical fingerprint (EF) is obtained in neutral conditions (pH 7.0). Similarly, the addition of formate improved the reaction conversion but reduced the EF by eliminating a redox peak that is attributed to side products formed in the absence of formate. To illustrate the applicability, the derivatisation strategy is applied to several prominent illicit drugs containing primary and secondary amines to demonstrate its EF enriching capabilities. Finally, real street samples from forensic seizures are analysed. Overall, this strategy unlocks the detectability of the hitherto undetectable AMP and other drugs only containing primary amines, while strongly facilitating the identification of MET and analogues. These findings are not limited to illicit drugs, the insights can ultimately be applied to other target molecules containing similar functional groups. (C) 2020 Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000607620700010 Publication Date 2020-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:176083 Serial 8177  
Permanent link to this record
 

 
Author Mendonça, C.D.; Khan, S.U.; Rahemi, V.; Verbruggen, S.W.; Machado, S.A.S.; De Wael, K. pdf  url
doi  openurl
  Title Surface plasmon resonance-induced visible light photocatalytic TiO₂ modified with AuNPs for the quantification of hydroquinone Type A1 Journal article
  Year 2021 Publication (down) Electrochimica Acta Abbreviated Journal Electrochim Acta  
  Volume 389 Issue Pages 138734  
  Keywords A1 Journal article; Engineering sciences. Technology; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The impregnation of size-controlled gold nanoparticles (AuNPs) on an anatase TiO2 structure (AuNPs@TiO2) was studied for the photoelectrochemical detection of hydroquinone (HQ) under visible light illumination integrated into a flow injection analysis (FIA) setup. The crystalline form of TiO2 was preserved during synthesis and the homogeneous distribution of AuNPs over the TiO2 structure was confirmed. Its photoelectrocatalytic activity was improved due to the presence of AuNPs, preventing charge recombination in TiO2 and improving its light absorption ability by the surface plasmon resonance effect (SPR). The FIA system was used in order to significantly reduce the electrode fouling during electroanalysis through periodic washing steps of the electrode surface. During the amperometric detection process, reactive oxygen species (ROS), generated by visible light illumination of AuNPs@TiO2, participate in the oxidation process of HQ. The reduction of the oxidized form of HQ, i.e. benzoquinone (BQ) occurs by applying a negative potential and the measurable amperometric response will be proportional to the initial HQ concentration. The influencing parameters on the response of the amperometric photocurrent such as applied potential, flow rate and pH were investigated. The linear correlation between the amperometric response and the concentration of HQ was recorded (range 0.0125 – 1.0 µM) with a limit of detection (LOD) of 33.8 nM and sensitivity of 0.22 A M−1 cm−2. In this study, we illustrated for the first time that the impregnation of AuNPs in TiO2 allows the sensitive detection of phenolic substances under green laser illumination by using a photoelectrochemical flow system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000687283100018 Publication Date 2021-06-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.798 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.798  
  Call Number UA @ admin @ c:irua:178908 Serial 8626  
Permanent link to this record
 

 
Author Joosten, F.; Parrilla, M.; van Nuijs, A.L.N.; Ozoemena, K.Id; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical detection of illicit drugs in oral fluid : potential for forensic drug testing Type A1 Journal article
  Year 2022 Publication (down) Electrochimica acta Abbreviated Journal  
  Volume 2022 Issue 436 Pages 141309-141315  
  Keywords A1 Journal article; Pharmacology. Therapy; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Illicit drugs continue to pose a serious threat to society and public health. Drug (ab)use is linked to organised crime and violence. Therefore, to fight the so-called war on drugs, police and law enforcement agencies need to be equipped with accurate and efficient sensors for the detection of illicit drugs and drug use. Even though colour tests (for powders) and lateral flow immunoassays (for biological samples) lack accuracy, they are relied upon for fast and easy on-site detection. Alternatively, in recent years, there has been an increasing interest in electrochemical sensors as a promising technique for the rapid and accurate on-site detection of illicit drugs. While a myriad of literature exists on the use of electrochemical sensors for drug powder analysis, literature on their use for the detection of drug use in biological samples is scarce. To this end, this review presents an overview of strategies for the electrochemical detection of illicit drugs in oral fluid. First, pharmacokinetics of drugs in oral fluid and the legal limit dilemma regarding the analytical cut-offs for roadside drug detection tests are elaborated to present the reader with the background knowledge required to develop such a test. Subsequently, an overview of electrochemical strategies developed for the detection of illicit drugs in oral fluid is given. Importantly, key challenges to address in the development of roadside tests are highlighted to improve the design of the next electrochemical devices and to bring them to the field. Overall, electrochemical sensors for illicit drugs detection in oral fluid show promise to disrupt current strategies for roadside testing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000882442300001 Publication Date 2022-10-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191107 Serial 8855  
Permanent link to this record
 

 
Author Montiel, F.N.; Parrilla, M.; Sleegers, N.; Van Durme, F.; van Nuijs, A.L.N.; De Wael, K. pdf  url
doi  openurl
  Title Electrochemical sensing of amphetamine-type stimulants (pre)-precursors to fight against the illicit production of synthetic drugs Type A1 Journal article
  Year 2022 Publication (down) Electrochimica acta Abbreviated Journal  
  Volume 436 Issue Pages 141446-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Toxicological Centre; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The illicit drug precursor market for the manufacture of amphetamine-type stimulants (ATS), mainly amphetamine, methamphetamine and methylenedioxymethamphetamine (MDMA), has emerged quickly in the last years. The evidence of a more complex and sophisticated drug market underlines the pressing need for new on-site methods to quickly detect precursors of synthetic drugs, with electrochemical analysis as a promising technique. Herein, the electrochemical fingerprints of ten common ATS precursors-3-oxo-2-phenylbutanenitrile (APAAN), 3-oxo-2-phenylbutanamide (APAA), methyl 3-oxo-2-phenylbutanoate (MAPA), benzyl methyl ketone (BMK), 1-(1,3-benzodioxol-5-yl)propan-2-one (PMK), ephedrine, pseudoephedrine, safrole, sassafras oil and piperonal- are reported for the first time. The electrochemical screening disclosed the redox inactivity of BMK, which is an essential starting material for the production of ATS. Therefore, the local derivatization of BMK at an electrode surface by reductive amination is presented as a feasible solution to enrich its electrochemical fingerprint. To prove that, the resulting mixture was analyzed using a set of chromatographic techniques to understand the reaction mechanism and to identify possible electrochemical active products. Two reaction products (i.e. methamphetamine and 1-phenylpropan-2-ol) were found and characterized using mass spectrometry and electrochemical methods. Subsequently, the optimization of the reaction parameters was carefully addressed to set the portable electrochemical sensing strategy. Ultimately, the analysis concept was validated for the qualitative identification of ATS precursors in seizures from a forensic institute. Overall, the electrochemical approach demonstrates to be a useful and affordable analytical tool for the early identification of ATS precursors to prevent trafficking and drug manufacture in clandestine laboratories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000914833800003 Publication Date 2022-10-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:191622 Serial 8858  
Permanent link to this record
 

 
Author Almabadi, M.H.; Truta, F.M.; Adamu, G.; Cowen, T.; Tertis, M.; Alanazi, K.D.M.; Stefan, M.-G.; Piletska, E.; Kiss, B.; Cristea, C.; De Wael, K.; Piletsky, S.A.; Cruz, A.G. url  doi
openurl 
  Title Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination Type A1 Journal article
  Year 2023 Publication (down) Electrochimica acta Abbreviated Journal  
  Volume 446 Issue Pages 142009-142010  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract Screening drugs on the street and biological samples pose a challenge to law enforcement agencies due to existing detection methods and instrument limitations. Herein we present a graphene-assisted molecularly imprinted polymer nanoparticle-based sensor for amphetamine. These nanoparticles are electroactive by incorporating ferrocene in their structure. These particles act as specific actuators in electrochemical sensors, and the presence of a ferrocene redox probe embedded in the structure allows the detection of non-electroactive amphetamine. In a control approach, nanoparticles were covalently immobilised onto electrochemical sensors by drop-casting using silanes. Alternatively, nanoparticles were immobilised employing 3D printing and a graphene ink composite. The electrochemical performance of both approaches was evaluated. As a result, 3D printed nanoMIPs/graphene sensors displayed the highest selectivity in spiked human plasma, with sensitivity at 73 nA nM-1, LOD of 68 nM (RSD 2.4%) when compared to the silane drop cast electrodes. The main advantage of the optimised 3D printing technology is that it allows quantitative determination of amphetamine, a nonelectroactive drug, challenging to detect with conventional electrochemical sensors. In addition, the costefficient 3D printing method makes these sensors easy to manufacture, leading to robust, highly selective and sensitive sensors. As proof of concept, sensors were evaluated on the street specimens and clinically relevant samples and successfully validated using UPLC-MS.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000953087600001 Publication Date 2023-02-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6.6; 2023 IF: 4.798  
  Call Number UA @ admin @ c:irua:196145 Serial 8888  
Permanent link to this record
 

 
Author Rabani, I.; Tahir, M.S.; Nisar, S.; Parrilla, M.; Truong, H.B.; Kim, M.; Seo, Y.-S. pdf  doi
openurl 
  Title Fabrication of larger surface area of ZIF8@ZIF67 reverse core-shell nanostructures for energy storage applications Type A1 Journal article
  Year 2024 Publication (down) Electrochimica acta Abbreviated Journal  
  Volume 475 Issue Pages 143532-11  
  Keywords A1 Journal article; Antwerp Electrochemical and Analytical Sciences Lab (A-Sense Lab)  
  Abstract The construction of uniform nanostructure with larger surface area electrodes is a huge challenge for the highvalue added energy storage application. Herein, we demonstrates ZIF67@ZIF8 (core-shell) and ZIF8@ZIF67 (reverse core-shell) nanostructures using a low-cost wet chemical route and used them as supercapacitors. Pristine ZIF-67 and ZIF-8 was used as reference electrodes. Benefiting from the synergistic effect between the ZIF8 and ZIF67, the ZIF8@ZIF67 exhibited the outstanding electrochemical consequences owing to its larger surface area with uniform hexagonal morphology. As optimized ZIF8@ZIF67 nanostructure displayed the highcapacity of 1521 F/g at 1 A/g of current density in a three-electrode assembly in 1 M KOH electrolyte compared with other as-fabricated electrodes. In addition, the ZIF8@ZIF67 nanostructure employed into the symmetric supercapacitors (SSCs) with 1 M KOH electrolyte in two-electrode setup and it exhibited still superior output including capacity (249.8 F/g at 1 A/g), remarkable repeatability (87 % over 10,000 GCD cycles) along with high energy and power density (61.2 Wh/kg & 1260 W/kg). The present study uncovers the relationship between the larger surface area and electrocatalyst performance, supporting an effective approach to prepare favorable materials for enhanced capacity, extended lifespan, and energy density.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001134022100001 Publication Date 2023-12-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4686 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 6.6 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 6.6; 2024 IF: 4.798  
  Call Number UA @ admin @ c:irua:202082 Serial 9036  
Permanent link to this record
 

 
Author Bottari, F.; Moretto, L.M.; Ugo, P. pdf  doi
openurl 
  Title Impedimetric sensing of the immuno-enzymatic reaction of gliadin with a collagen-modified electrode Type A1 Journal article
  Year 2018 Publication (down) Electrochemistry communications Abbreviated Journal  
  Volume 97 Issue Pages 51-55  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract This paper presents a previously unexplored biosensing strategy for detecting gliadin which exploits the crosslinking of gliadin with collagen, catalyzed by transglutaminase at the interfacial electron transfer rate, on a modified electrode. The process is monitored by electrochemical impedance spectroscopy using a glassy carbon electrode coated with a collagen layer. To validate the specificity of the response as well as to eliminate possible interferences from other proteins, such as soy protein or casein, the captured gliadin is further reacted with a specific anti-gliadin antibody. Changes in charge transfer resistance, measured from the Nyquist plots, scale linearly with the gliadin concentration in the range 5-20 mg/L, a range suitable for testing the gliadin concentration in gluten-free food commodities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000451326800011 Publication Date 2018-10-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481; 1873-1902 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:156285 Serial 8067  
Permanent link to this record
 

 
Author Nakazato, R.; Matsumoto, K.; Yamaguchi, N.; Cavallo, M.; Crocella, V.; Bonino, F.; Quintelier, M.; Hadermann, J.; Rosero-navarro, N.C.; Miura, A.; Tadanaga, K. doi  openurl
  Title CO₂ electrochemical reduction with Zn-Al layered double hydroxide-loaded gas-diffusion electrode Type A1 Journal article
  Year 2023 Publication (down) Electrochemistry Abbreviated Journal  
  Volume 91 Issue 9 Pages 097003-97007  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Carbon dioxide electrochemical reduction (CO2ER) has attracted considerable attention as a technology to recycle CO2 into raw materials for chemicals using renewable energies. We recently found that Zn-Al layered double hydroxides (Zn-Al LDH) have the CO-forming CO2ER activity. However, the activity was only evaluated by using the liquid-phase CO2ER. In this study, Ni-Al and Ni-Fe LDHs as well as Zn-Al LDH were synthesized using a facile coprecipitation process and the gas-phase CO2ER with the LDH-loaded gas-diffusion electrode (GDE) was examined. The products were characterized by XRD, STEM-EDX, BF-TEM and ATR-IR spectroscopy. In the ATR-IR results, the interaction of CO2 with Zn-Al LDH showed a different carbonates evolution with respect to other LDHs, suggesting a different electrocatalytic activity. The LDH-loaded GDE was prepared by simple drop-casting of a catalyst ink onto carbon paper. For gas-phase CO2ER, only Zn-Al LDH exhibited the CO2ER activity for carbon monoxide (CO) formation. By using different potassium salt electrolytes affording neutral to strongly basic conditions, such as KCl, KHCO3 and KOH, the gas-phase CO2ER with Zn-Al LDH-loaded GDE showed 1.3 to 2.1 times higher partial current density for CO formation than the liquid-phase CO2ER.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001082818000001 Publication Date 2023-09-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:200340 Serial 9009  
Permanent link to this record
 

 
Author Lefrancois, P.; Girard-Sahun, F.; Badets, V.; Clement, F.; Arbault, S. pdf  url
doi  openurl
  Title Electroactivity of superoxide anion in aqueous phosphate buffers analyzed with platinized microelectrodes Type A1 Journal article
  Year 2020 Publication (down) Electroanalysis Abbreviated Journal Electroanal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The reactivity of platinized ultramicroelectrodes (Pt-black UMEs) towards superoxide anion O-2(.-), an unstable Reactive Oxygen Species (ROS), and its relatives, H2O2 and O-2, was studied. Voltammetric studies in PBS demonstrate that Pt-black UMEs provide: i) a well-resolved reversible redox signature for O-2(.-) detected in both alkaline and physiological buffers (pH 12 and 7.4); ii) irreversible oxidation and reduction waves for H2O2 at pH 7.4. The oxygen reduction reaction (ORR) at Pt-black surfaces solely yields H2O2 (2 electrons/2 H+) at physiological pH. Consequently, Pt-black UMEs allow to sense different ROS including superoxide anion for future biomedical or physico-chemical investigations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000590291800001 Publication Date 2020-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3 Times cited Open Access  
  Notes Approved Most recent IF: 3; 2020 IF: 2.851  
  Call Number UA @ admin @ c:irua:174264 Serial 6764  
Permanent link to this record
 

 
Author Jain, R.; Rather, J.A.; Dwivedi, A.; Vikas pdf  doi
openurl 
  Title Highly sensitive and selective voltammetric sensor fullerene modified glassy carbon electrode for determination of cefitizoxime in solubilized system Type A1 Journal article
  Year 2010 Publication (down) Electroanalysis Abbreviated Journal  
  Volume 22 Issue 21 Pages 2600-2606  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The usefulness of fullerene modified glassy carbon electrode in mediating the reduction of cefitizoxime in solubilized system has been demonstrated. Due to the unique structure and extraordinary properties, fullerene shows higher catalytic efficiency towards cefitizoxime reduction. The kinetic parameters, electron transfer coefficient (α) and rate constant (K0) across the modified electrode are 0.37 and 0.1081/s respectively. The proposed square-wave voltammetric method is linear over the concentration range 1.210.3 µg/mL. The limit of detection (LOD) is found 0.27 ng/mL. High sensitivity and selectivity together with low detection limit of the electrode response make it suitable for the determination of cefitizoxime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000284052900015 Publication Date 2010-10-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1040-0397 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:98690 Serial 8042  
Permanent link to this record
 

 
Author De Valck, J.; Beames, A.; Liekens, I.; Bettens, M.; Seuntjens, P.; Broekx, S. pdf  doi
openurl 
  Title Valuing urban ecosystem services in sustainable brownfield redevelopment Type A1 Journal article
  Year 2019 Publication (down) Ecosystem services Abbreviated Journal  
  Volume 35 Issue Pages 139-149  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract Urban environments provide opportunities for greater resource efficiency and the fostering of urban ecosystems. Brownfield areas are a typical example of underused land resources. Brownfield redevelopment projects that include green infrastructure allow for further ecosystems to be accommodated in urban environments. Green infrastructure also deliver important urban ecosystem services (UES) to local residents, which can greatly contribute to improving quality of life in cities. In this case study, we quantify and assess the economic value of five UES for a brownfield redevelopment project in Antwerp, Belgium. The assessment is carried out using the “Nature Value Explorer” modelling tool. The case includes three types of green infrastructure (green corridor, infiltration gullies and green roofs) primarily intended to connect nature reserves on the urban periphery and to avoid surface runoff. The green infrastructure also provides air filtration, climate regulation, carbon sequestration and recreation ecosystem services. The value of recreation far exceeds other values, including the value of avoided runoff. The case study raises crucial questions as to whether existing UES valuation approaches adequately account for the range of UES provided and whether such approaches can be improved to achieve more accurate and reliable value estimates in future analyses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000457119300016 Publication Date 2018-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:157539 Serial 8733  
Permanent link to this record
 

 
Author Christis, M.; Geerken, T.; Vercalsteren, A.; Vrancken, K.C.M. pdf  doi
openurl 
  Title Improving footprint calculations of small open economies : combining local with multi-regional input-output tables Type A1 Journal article
  Year 2017 Publication (down) Economic systems research Abbreviated Journal  
  Volume 29 Issue 1 Pages 25-47  
  Keywords A1 Journal article; Economics; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract In a small, open and resource-poor economy, import and export dependency have an ever-growing impact on local policy decisions, which makes local (environmental) policy-makers increasingly depend on global data. This increases the interest in models that link local production and consumption data to global production, trade and environmental data. The recent increase in availability of global environmentally extended multi-regional input-output tables (EE-MRIO tables) provides an opportunity to link them with existing local environmentally extended input-output tables (EE-RIO tables). These combined tables make it possible (1) to analyse the links between local and global production and consumption and (2) to study global value chains, material use and environmental impacts simultaneously. However, estimations using input-output (I-O) analyses contain errors due to imperfect databases. In this article the magnitude of specification, aggregation and time errors are estimated and compared. The results show the need to combine local datasets with multi-regional ones and show that highest detailed (country and sector levels) as well as time series of I-O tables are the way forward for using I-O analyses in local policy-making. The paper provides guidance on trading off investments in model adoption and/or extension and the reliability of estimation results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000395062800002 Publication Date 2016-11-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-5314 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:142012 Serial 8071  
Permanent link to this record
 

 
Author Shi, P.-J.; Xu, Q.; Sandhu, H.S.; Gielis, J.; Ding, Y.-L.; Li, H.-R.; Dong, X.-B. url  doi
openurl 
  Title Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant Type A1 Journal article
  Year 2015 Publication (down) Ecology and evolution Abbreviated Journal  
  Volume 5 Issue 20 Pages 4578-4589  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a −3/2 power between average biomass and density or a −1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000363731500008 Publication Date 2015-09-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:128662 Serial 7691  
Permanent link to this record
 

 
Author Lin, S.; Zhang, L.; Reddy, G.V.P.; Hui, C.; Gielis, J.; Ding, Y.; Shi, P. url  doi
openurl 
  Title A geometrical model for testing bilateral symmetry of bamboo leaf with a simplified Gielis equation Type A1 Journal article
  Year 2016 Publication (down) Ecology and evolution Abbreviated Journal  
  Volume 6 Issue 19 Pages 6798-6806  
  Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)  
  Abstract The size and shape of plant leaves change with growth, and an accurate description of leaf shape is crucial for describing plant morphogenesis and development. Bilateral symmetry, which has been widely observed but poorly examined, occurs in both dicot and monocot leaves, including all nominated bamboo species (approximately 1,300 species), of which at least 500 are found in China. Although there are apparent differences in leaf size among bamboo species due to genetic and environmental profiles, bamboo leaves have bilateral symmetry with parallel venation and appear similar across species. Here, we investigate whether the shape of bamboo leaves can be accurately described by a simplified Gielis equation, which consists of only two parameters (leaf length and shape) and produces a perfect bilateral shape. To test the applicability of this equation and the occurrence of bilateral symmetry, we first measured the leaf length of 42 bamboo species, examining >500 leaves per species. We then scanned 30 leaves per species that had approximately the same length as the median leaf length for that species. The leaf-shape data from scanned profiles were fitted to the simplified Gielis equation. Results confirmed that the equation fits the leaf-shape data extremely well, with the coefficients of determination being 0.995 on average. We further demonstrated the bilateral symmetry of bamboo leaves, with a clearly defined leaf-shape parameter of all 42 bamboo species investigated ranging from 0.02 to 0.1. This results in a simple and reliable tool for precise determination of bamboo species, with applications in forestry, ecology, and taxonomy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000385626100003 Publication Date 2016-09-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:144547 Serial 7998  
Permanent link to this record
 

 
Author Vallicrosa, H.; Lugli, L.F.; Fuchslueger, L.; Sardans, J.; Ramirez-Rojas, I.; Verbruggen, E.; Grau, O.; Brechet, L.; Peguero, G.; Van Langenhove, L.; Verryckt, L.T.; Terrer, C.; Llusia, J.; Ogaya, R.; Marquez, L.; Roc-Fernandez, P.; Janssens, I.; Penuelas, J. url  doi
openurl 
  Title Phosphorus scarcity contributes to nitrogen limitation in lowland tropical rainforests Type A1 Journal article
  Year 2023 Publication (down) Ecology Abbreviated Journal  
  Volume 104 Issue 6 Pages e4049-12  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract There is increasing evidence to suggest that soil nutrient availability can limit the carbon sink capacity of forests, a particularly relevant issue considering today's changing climate. This question is especially important in the tropics, where most part of the Earth's plant biomass is stored. To assess whether tropical forest growth is limited by soil nutrients and to explore N and P limitations, we analyzed stem growth and foliar elemental composition of the five stem widest trees per plot at two sites in French Guiana after 3 years of nitrogen (N), phosphorus (P), and N + P addition. We also compared the results between potential N-fixer and non-N-fixer species. We found a positive effect of N fertilization on stem growth and foliar N, as well as a positive effect of P fertilization on stem growth, foliar N, and foliar P. Potential N-fixing species had greater stem growth, greater foliar N, and greater foliar P concentrations than non-N-fixers. In terms of growth, there was a negative interaction between N-fixer status, N + P, and P fertilization, but no interaction with N fertilization. Because N-fixing plants do not show to be completely N saturated, we do not anticipate N providing from N-fixing plants would supply non-N-fixers. Although the soil-age hypothesis only anticipates P limitation in highly weathered systems, our results for stem growth and foliar elemental composition indicate the existence of considerable N and P co-limitation, which is alleviated in N-fixing plants. The evidence suggests that certain mechanisms invest in N to obtain the scarce P through soil phosphatases, which potentially contributes to the N limitation detected by this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977760600001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658; 1939-9170 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.8 Times cited Open Access  
  Notes Approved Most recent IF: 4.8; 2023 IF: 4.809  
  Call Number UA @ admin @ c:irua:196804 Serial 9218  
Permanent link to this record
 

 
Author Deutsch, F.; Vankerkom, J.; Janssen, L.; Janssen, S.; Bencs, L.; Van Grieken, R.; Fierens, F.; Dumont, G.; Mensink, C. doi  openurl
  Title Modelling concentrations of airborne primary and secondary PM10 and PM2.5 with the BelEUROS-model in Belgium Type A1 Journal article
  Year 2008 Publication (down) Ecological modelling Abbreviated Journal  
  Volume 217 Issue 3/4 Pages 230-239  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The Eulerian Chemistry-Transport Model BelEUROS was used to calculate the concentrations of airborne PM10 and PM2.5 over Europe. Both primary as well as secondary particulate matter in the respirable size-range was taken into account. Especially PM2.5 aerosols are often formed in the atmosphere from gaseous precursor compounds. Comprehensive computer codes for the calculation of gas phase chemical reactions and thermodynamic equilibria between compounds in the gas-phase and the particulate phase had been implemented into the BelEUROS-model. Calculated concentrations of PM10 and PM2.5 are compared to observations, including both the spatial and daily, temporal distribution of particulate matter in Belgium for certain monitoring locations and periods. The concentrations of the secondary compounds ammonium, nitrate and sulfate have also been compared to observed values. BeIEUROS was found to reproduce the observed concentrations rather well. The model was applied to assess the contribution of emissions derived from the sector agriculture in Flanders, the northern part of Belgium, to PM10- and PM2.5-concentrations. The results demonstrate the importance of ammonia emissions in the formation of secondary particulate matter. Hence, future European emission abatement policy should consider more the role of ammonia in the formation of secondary particles  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000259842900004 Publication Date 2008-07-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:70073 Serial 8268  
Permanent link to this record
 

 
Author Van Putte, N.; Meire, P.; Seuntjens, P.; Joris, I.; Verreydt, G.; Hambsch, L.; Temmerman, S. pdf  url
doi  openurl
  Title Solving hindered groundwater dynamics in restored tidal marshes by creek excavation and soil amendments : a model study Type A1 Journal article
  Year 2022 Publication (down) Ecological engineering: the journal of ecotechnology Abbreviated Journal Ecol Eng  
  Volume 178 Issue Pages 106583-15  
  Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL); Ecosphere  
  Abstract Groundwater fluxes in tidal marshes largely control key ecosystem functions and services, such as vegetation growth, soil carbon sequestration, and nutrient cycling. In tidal marshes restored on formerly embanked agricultural land, groundwater fluxes are often limited as compared to nearby natural marshes, as a result of historical agricultural soil compaction. To improve the functioning of restored tidal marshes, knowledge is needed on how much certain design options can optimize soil-groundwater interactions in future restoration projects. Based on measured data on soil properties and tidally induced groundwater dynamics, we calibrated and evaluated a 2D vertical model of a creek-marsh cross-section, accounting for both saturated and unsaturated groundwater flow and solute transport in a variably saturated groundwater flow model. We found that model simulations of common restoration practices such as soil amendments (increasing the depth of porous soil on top of the compact layer) and creek excavation (increasing the creek density) increase the soil aeration depth and time, the drainage depth and the solute flux, and decrease the residence time of solutes in the porewater. Our simulations indicate that increasing the depth to the compact layer from 20 cm to 40 cm, or increasing the creek density from 1 creek to 2 creeks along a 50 m marsh transect (while maintaining the total creek cross-sectional area), in both cases more than doubles the volume of water processed by the marsh soil. We discuss that this may stimulate nutrient cycling. As such, our study demonstrates that groundwater modelling can support the design of marsh restoration measures aiming to optimize groundwater fluxes and related ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000795478200005 Publication Date 2022-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8574 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.8 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 3.8  
  Call Number UA @ admin @ c:irua:186605 Serial 7210  
Permanent link to this record
 

 
Author Moretti, M.; Vanschoenwinkel, J.; Van Passel, S. pdf  doi
openurl 
  Title Accounting for externalities in cross-sectional economic models of climate change impacts Type A1 Journal article
  Year 2021 Publication (down) Ecological Economics Abbreviated Journal Ecol Econ  
  Volume 185 Issue Pages 107058  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Environmental effects and natural resources depletion associated with agriculture production affect the agriculture response to climate change. Traditional cross-sectional climate response models ignore this requirement. This research estimates the impact of climate on European agriculture using a continental scale Ricardian analysis. We correct farm income by accounting for resources (energy, fertilisers, pesticides, and water) use intensity and calculate the sustainable value for a sample of 9497 specialized field crop farms. Compared with the traditional Ricardian method, the marginal effects of temperature remain positive (but less positive) in Northern countries, while it leads to less damages in Southern countries when net revenue and farms? sustainable values are used as dependent variables. Accounting for the environmental effects and depletion of natural capital improves the ability of the Ricardian method to estimate agriculture climate response functions in the long run.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000647544700012 Publication Date 2021-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009; 1873-6106 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 2.965 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.965  
  Call Number UA @ admin @ c:irua:178955 Serial 6911  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: