|   | 
Details
   web
Records
Author Van Alphen, S.; Hecimovic, A.; Kiefer, C.K.; Fantz, U.; Snyders, R.; Bogaerts, A.
Title Modelling post-plasma quenching nozzles for improving the performance of CO2 microwave plasmas Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 462 Issue Pages 142217
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Given the ecological problems associated to the CO2 emissions of fossil fuels, plasma technology has gained

interest for conversion of CO2 into value-added products. Microwave plasmas operating at atmospheric pressure

have proven to be especially interesting, due to the high gas temperatures inside the reactor (i.e. up to 6000 K)

allowing for efficient thermal dissociation of CO2 into CO and O2. However, the performance of these high

temperature plasmas is limited by recombination of CO back into CO2 once the gas cools down in the afterglow.

In this work, we computationally investigated several quenching nozzles, developed and experimentally tested

by Hecimovic et al., [1] for their ability to quickly cool the gas after the plasma, thereby quenching the CO

recombination reactions. Using a 3D computational fluid dynamics model and a quasi-1D chemical kinetics

model, we reveal that a reactor without nozzle lacks gas mixing between hot gas in the center and cold gas near

the reactor walls. Especially at low flow rates, where there is an inherent lack of convective cooling due to the

low gas flow velocity, the temperature in the afterglow remains high (between 2000 and 3000 K) for a relatively

long time (in the 0.1 s range). As shown by our quasi-1D chemical kinetics model, this results in a important loss

of CO due to recombination reactions. Attaching a nozzle in the effluent of the reactor induces fast gas quenching

right after the plasma. Indeed, it introduces (i) more convective cooling by forcing cool gas near the walls to mix

with hot gas in the center of the reactor, as well as (ii) more conductive cooling through the water-cooled walls of

the nozzle. Our model shows that gas quenching and the suppression of recombination reactions have more

impact at low flow rates, where recombination is the most limiting factor in the conversion process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000962382600001 Publication Date 2023-03-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID GoF9618n, EOS ID 30505023), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 810182 – SCOPE ERC Synergy project), and through long-term structural funding (Methusalem). The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UAntwerpen), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the UAntwerpen. Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:195889 Serial 7259
Permanent link to this record
 

 
Author Wang, J.; Zhang, K.; Meynen, V.; Bogaerts, A.
Title Dry reforming in a dielectric barrier discharge reactor with non-uniform discharge gap : effects of metal rings on the discharge behavior and performance Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume Issue Pages 142953-29
Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The application of dielectric barrier discharge (DBD) plasma reactors is promising in various environmental and energy processes, but is limited by their low energy yield. In this study, we put a number of stainless steel rings over the inner electrode rod of the DBD reactor to change the local discharge gap and electric field, and we studied the dry reforming performance. At 50 W supplied power, the metal rings mostly have a negative impact on the performance, which we attribute to the non-uniform spatial distribution of the discharges caused by the rings. However, at 30 W supplied power, the energy yield is higher than at 50 W and the placement of the rings improves the performance of the reactor. More rings and with a larger cross-sectional diameter can further improve the performance. The reactor with 20 rings with a 3.2 mm cross-sectional diameter exhibits the best performance in this study. Compared to the reactor without rings, it increases the CO2 conversion from 7% to 16 %, the CH4 conversion from 12% to 23%, and the energy yield from 0.05 mmol/kJ supplied power to 0.1 mmol/kJ (0.19 mmol/kJ if calculated from the plasma power), respectively. The presence of the rings increases the local electric field, the displaced charge and the discharge fraction, and also makes the discharge more stable and with more uniform intensity. It also slightly improves the selectivity to syngas. The performance improvement observed by placing stainless steel rings in this study may also be applicable to other plasma-based processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000986051300001 Publication Date 2023-04-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:195603 Serial 7264
Permanent link to this record
 

 
Author Orozco-Jimenez, A.J.; Pinilla-Fernandez, D.A.; Pugliese, V.; Bula, A.; Perreault, P.; Gonzalez-Quiroga, A.
Title Angular momentum based-analysis of gas-solid fluidized beds in vortex chambers Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 457 Issue Pages 141222-21
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Gas-solid vortex chambers are a promising alternative for reactive and non-reactive processes requiring enhanced heat and mass transfer rates and order-of-milliseconds contact time. The conservation of angular momentum is instrumental in understanding how the interactions between gas, particulate solids, and chamber walls influence the formation of a rotating solids bed. Therefore, this work applies the conservation of angular momentum to derive a model that gives the average angular velocity of solids in terms of gas injection velocity, wall-solids bed drag coefficient, gas and particle properties, and chamber geometry. Three datasets from published studies, comprising 1 g-Geldart B- and d-type particles in different vortex chambers, validate the model results. Using a sensitivity analysis, we assessed the effect of input variables on the average angular velocity of solids, average void fraction, and average bed height. Results indicate that the top and bottom end-wall boundaries exert the most significant braking effect on the rotating solids bed compared with the cylindrical outer wall and gas injection boundaries. The wall-solids bed drag coefficient appears independent of the gas injection velocity for a wide range of operating conditions. The proposed model is a valuable tool for analyzing and comparing gas–solid vortex typologies, unraveling improvement opportunities, and scale-up.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000951011600001 Publication Date 2022-12-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:192868 Serial 7282
Permanent link to this record
 

 
Author Wang, K.; Ceulemans, S.; Zhang, H.; Tsonev, I.; Zhang, Y.; Long, Y.; Fang, M.; Li, X.; Yan, J.; Bogaerts, A.
Title Inhibiting recombination to improve the performance of plasma-based CO2 conversion Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 481 Issue Pages 148684
Keywords A1 Journal Article; Plasma-based CO2 splitting Recombination reactions In-situ gas sampling Fluid dynamics modeling Kinetics modeling Afterglow quenching; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Warm plasma offers a promising route for CO2 splitting into valuable CO, yet recombination reactions of CO with oxygen, forming again CO2, have recently emerged as critical limitation. This study combines experiments and fluid dynamics + chemical kinetics modelling to comprehensively analyse the recombination reactions upon CO2 splitting in an atmospheric plasmatron. We introduce an innovative in-situ gas sampling technique, enabling 2D spatial mapping of gas product compositions and temperatures, experimentally confirming for the first time the substantial limiting effect of CO recombination reactions in the afterglow region. Our results show that the CO mole fraction at a 5 L/min flow rate drops significantly from 11.9 % at a vertical distance of z = 20 mm in the afterglow region to 8.6 % at z = 40 mm. We constructed a comprehensive 2D model that allows for spatial reaction rates analysis incorporating crucial reactions, and we validated it to kinetically elucidate this phenomenon. CO2 +M⇌O+CO+M and CO2 +O⇌CO+O2 are the dominant reactions, with the forward reactions prevailing in the plasma region and the backward reactions becoming prominent in the afterglow region. These results allow us to propose an afterglow quenching strategy for performance enhancement, which is further demonstrated through a meticulously developed plasmatron reactor with two-stage cooling. Our approach substantially increases the CO2 conversion (e.g., from 6.6 % to 19.5 % at 3 L/min flow rate) and energy efficiency (from 13.5 % to 28.5 %, again at 3 L/min) and significantly shortens the startup time (from ~ 150 s to 25 s). Our study underscores the critical role of inhibiting recombination reactions in plasma-based CO2 conversion and offers new avenues for performance enhancement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001168999200001 Publication Date 2024-01-10
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access
Notes Key Research and Development Program of Zhejiang Province, 2023C03129 ; Vlaamse regering; European Research Council; National Natural Science Foundation of China, 51976191 52276214 ; Horizon 2020 Framework Programme; Fonds De La Recherche Scientifique – FNRS; Fonds Wetenschappelijk Onderzoek, 1101524N ; Vlaams Supercomputer Centrum; Horizon 2020, 101081162 810182 ; European Research Council; Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:204352 Serial 8993
Permanent link to this record
 

 
Author Brienza, F.; Van Aelst, K.; Devred, F.; Magnin, D.; Tschulkow, M.; Nimmegeers, P.; Van Passel, S.; Sels, B.F.; Gerin, P.; Debecker, D.P.; Cybulska, I.
Title Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass Type A1 Journal article
Year 2022 Publication (down) Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 450 Issue 3 Pages 138179-14
Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)
Abstract The development of biomass pretreatment approaches that, next to (hemi)cellulose valorization, aim at the conversion of lignin to chemicals is essential for the long-term success of a biorefinery. Herein, we discuss a dithionite-assisted organosolv fractionation (DAOF) of lignocellulose in n-butanol and water to produce cellulosic pulp and mono-/oligo-aromatics. The study frames the technicalities of this biorefinery process and relates them to the features of the obtained product streams. We comprehensively identify and quantify all products of interest: solid pulp (acid hydrolysis-HPLC, ATR-FTIR, XRD, SEM, enzymatic hydrolysis-HPLC), lignin derivatives (GPC, GC-MS/FID, 1H-13C HSQC NMR, ICP-AES), and carbohydrate derivatives (HPLC). These results were used for inspecting the economic feasibility of DAOF. In the best process configuration, a high yield of monophenolics was reached (~20%, based on acid insoluble lignin in birch sawdust). Various other lignocellulosic feedstocks were also explored, showing that DAOF is particularly effective on hardwood and herbaceous biomass. Overall, this study demonstrates that DAOF is a viable fractionation method for the sustainable upgrading of lignocellulosic biomass.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000888204900005 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 15.1
Call Number UA @ admin @ c:irua:189322 Serial 7373
Permanent link to this record
 

 
Author Roegiers, J.; van Walsem, J.; Denys, S.
Title CFD- and radiation field modeling of a gas phase photocatalytic multi-tube reactor Type A1 Journal article
Year 2018 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 338 Issue Pages 287-299
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract This paper focusses on the development of a Multiphysics model as a tool for assessing the performance of a multi-tube photoreactor. The model predicts the transient behavior of acetaldehyde concentration, as a model compound for the organic fraction of the indoor air pollutants, under varying sets of conditions. A 3D-model couples radiation field modeling with reaction kinetics and fluid dynamics in order to simulate the transport of the pollutant as it progresses through the reactor. A model-based approach is proposed to determine the layer thickness and refractive index of different P25-powder modified solgel coatings, using an optimization procedure to estimate these parameters based on UV-irradiance measurements. The radiation field model was able to accurately predict the irradiance on the catalytic surface within the reactor. Consequently, the radiation field model was used to define an irradiance dependent reaction rate constant in a coupled Multiphysics model. An optimization routine was deployed to estimate the adsorption, desorption- and photocatalytic reaction rate constants on the TiO2-surface, using experimentally determined, transient outlet concentrations of acetaldehyde. Additionally, a validation test was performed in an air-tight climate chamber at much higher flow rates, higher irradiance and realistic indoor pollutant concentrations to emphasize the reliability and accuracy of the parameters for adsorption, desorption and photocatalytic reaction. The developed model makes it possible to optimize the reactor design and scale-up for commercial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000427618400031 Publication Date 2018-01-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:149115 Serial 7589
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S.
Title CFD-modelling of activated carbon fibers for indoor air purification Type A1 Journal article
Year 2019 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 365 Issue Pages 80-87
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Activated carbon fibers for indoor air purification were investigated by means of pressure drop and adsorption capacity. The Darcy-Forchheimer law combined with Computational Fluid Dynamics (CFD) modelling was deployed to simulate the pressure drop over an activated carbon fiber (ACF) filter with varying filter thickness. The CFD model was later combined with adsorption modelling to simulate breakthrough profiles of acetaldehyde adsorption on the ACF-filter. The adsorption model incorporates mass transfer resistance and adsorption equilibrium. It assumes local equilibrium between gas phase and solid phase. The latter was investigated for three different adsorption isotherms: linear, Langmuir and Freundlich adsorption. Successful agreement between model simulations and experimental data was obtained, using the Freundlich adsorption model. The numerical model could provide valuable insights and allows to continuously improve the design of filtration devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000459009800009 Publication Date 2019-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:156996 Serial 7590
Permanent link to this record
 

 
Author Roegiers, J.; Denys, S.
Title Development of a novel type activated carbon fiber filter for indoor air purification Type A1 Journal article
Year 2021 Publication (down) Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 417 Issue Pages 128109
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel type of activated carbon fiber filter was developed for indoor air purification. The filter is equipped with electrodes for thermo-electrical regeneration at the point of saturation. The electrodes are arranged in such a way that the filter forms a pleated structure with an electrode in the tip of each pleat. This allows for a uniform temperature distribution on the filter surface during the regeneration process and the pleated structure reduces the overall pressure drop across the filter. The latter was validated by Computational Fluid Dynamics, using Darcy-Forchheimer parameters derived in previous work. The CFD model was further used to perform a virtual sensitivity study in search for the optimal ACF filter design by varying the pleat length, pleat height and filter thickness. Finally, adsorption and desorption properties were investigated with acetaldehyde and toluene as model compounds. Freundlich and Langmuir adsorption parameters, derived in previous work were successfully validated with a Multiphysics model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000653229500132 Publication Date 2020-12-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.216 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 6.216
Call Number UA @ admin @ c:irua:174105 Serial 7800
Permanent link to this record
 

 
Author Spooren, J.; Kim, E.; Horckmans, L.; Broos, K.; Nielsen, P.; Quaghebeur, M.
Title In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags Type A1 Journal article
Year 2016 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 303 Issue Pages 359-368
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A novel heap leaching method was investigated for selective removal of chromium (Cr) and-vanadium (V) from ferrochromium (FeCr) and stainless steel (SS) slags. In particular, alkaline oxidative heap leaching was simulated on lab-scale by batch and column leaching tests. The results show a selective leaching of Cr (11-19%) and V (7.0-7.5%) after 64 days of column leaching, with a very low dissolution (<2.2% (FeCr slag) and <0.15% (SS slag)) of matrix elements (e.g. Al, Fe, Si, Mg, Ca), when NaOCl is applied as oxidation agent and NaOH as alkaline agent. Furthermore, the used leaching liquor is reactive for a longer period of time, indicating that circulation of leaching liquor could be possible. Finally, the experimental results were fed into a first-order model which predicts that Cr will continue to leach from the tested slags for 4-5 years at a chosen infiltration rate of 73,000 l/(y m(2)). (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000383522800036 Publication Date 2016-05-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:137104 Serial 8074
Permanent link to this record
 

 
Author Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Vrancken, K.C.; Quaghebeur, M.
Title New method for selective Cr recovery from stainless steel slag by NaOCl assisted alkaline leaching and consecutive BaCrO4 precipitation Type A1 Journal article
Year 2016 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 295 Issue Pages 542-551
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract A new hydrometallurgical method was investigated for selective leaching of chromium from stainless steel slag (SS slag) consisting of temperature controlled extraction with NaOH in the presence of NaOCl, followed by water leaching. After parameter optimization of the NaOCl-NaOH extraction step, a selective Cr leaching of 68% was reached, while dissolution of matrix materials was low (Al 0.3%, Ca 2.0%, Si 0.4%). The optimum conditions for the investigated system are: 105 degrees C, 6 h, SS slag particle size <63 mu m, mass ratio of NaOH to SS slag 0.13, and 3.3 mmol NaOCl to 1 g SS slag. The described oxidative alkaline leaching process by hypochlorite enables selective recovery of Cr at a significantly lower temperature and required amount of alkaline agent than molten salt or alkaline roasting processes. BaCrO4 was precipitated to purify and concentrate Cr from the leachate in which also minor amounts of Mn and V were present. This method allowed for a 99.9% Cr recovery rate. The obtained leaching residue shows no alterations of the SS slag's mineralogy with respect to untreated material. Therefore, a known carbonation treatment of the slag can be applied to prepare novel construction materials with a lowered Cr content. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000375507300059 Publication Date 2016-03-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:133632 Serial 8302
Permanent link to this record
 

 
Author Ma, Z.; Perreault, P.; Pelegrin, D.C.; Boffito, D.C.; Patience, G.S.
Title Thermodynamically unconstrained forced concentration cycling of methane catalytic partial oxidation over CeO2FeCralloy catalysts Type A1 Journal article
Year 2020 Publication (down) Chemical Engineering Journal Abbreviated Journal Chem Eng J
Volume 380 Issue Pages 122470-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Converting waste associated natural gas from oil fields is uneconomic with current gas-to-liquid technology. Micro Gas-to-Liquids technology ( GtL) combines process intensification and numbering up economics to reduce capital costs to convert flared and vented natural gas to value-added synthetic fuel: Milli-second contact times in the catalytic partial oxidation of methane (CPOX) integrated with a tandem Fischer-Tropsch (FT) step meets the economic constraints together with remote process control. FeCralloy knitted fibres with high thermal conductivity and low pressure drop, resist thermal and mechanical stresses in the high pressure CPOX step. The FeCralloy catalysts are free of pre-reduction treatments. We deposited Pt and/or CeO2 over the fibre surface via solution combustion synthesis. Methane conversion was higher at ambient pressure compared to 2 MPa while the Pt/CeO2 FeCralloy was relatively inert from 0.1 MPa to 2 MPa. However, both catalysts demonstrated high activity in quasi-chemical looping partial oxidation of methane: during the reduction step while feeding methane, an on-line mass spectrometer only detected H2 while in the oxidation step it detected predominantly CO. Kinetic modeling of the oxidation-reduction cycles suggests that the reaction follows a direct mechanism to produce CO and H2 rather than an indirect mechanism that first produces CO2 and H2O followed by reforming.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2019-08-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes Approved Most recent IF: 15.1; 2020 IF: 6.216
Call Number UA @ admin @ c:irua:162119 Serial 8665
Permanent link to this record
 

 
Author Chen, Y.; Wu, Y.; Wang, D.; Li, H.; Wang, Q.; Liu, Y.; Peng, L.; Yang, Q.; Li, X.; Zeng, G.; Chen, Y.
Title Understanding the mechanisms of how poly aluminium chloride inhibits short-chain fatty acids production from anaerobic fermentation of waste activated sludge Type A1 Journal article
Year 2018 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 334 Issue Pages 1351-1360
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Poly aluminum chloride (PAC) is accumulated in waste activated sludge at high levels. However, details of how PAC affects short-chain fatty acids (SCFA) production from anaerobic sludge fermentation has not been documented. This work therefore aims to fill this knowledge gap by analyzing the impact of PAC on the aggregate of sludge flocs, disruption of extracellular polymeric substances (EPS), and the bio-processes of hydrolysis, acid-ogenesis, and methanogenesis. The relationship between SCFA production and different aluminum species (i.e., Ala, Alb, and Alc) was also identified by controlling different OH/Al ratio and pH in different fermentation systems. Experimental results showed that with the increase of PAC addition from 0 to 40 mg Al per gram of total suspended solids, SCFA yield decreased from 212.2 to 138.4 mg COD/g volatile suspended solids. Mechanism exploration revealed that PAC benefited the aggregates of sludge flocs and caused more loosely-and tightly-bound extracellular polymeric substances remained in sludge cells. Besides, it was found that the hydrolysis, acidiogenesis, and methanogenesis processes were all inhibited by PAC. Although three types of Al species, i.e., Ala (Al monomers, dimer, and trimer), Alb (Al-13(AlO4Al12(OH)(24)(H2O) 7+ 12), and Alc (Al polymer molecular weight normally larger than 3000 Da), were co-existed in fermentation systems, their impacts on SCFA production were different. No correlation was found between SCFA and Ala, whereas SCFA production decreased with the contents of Alb and Alc. Compared with Alb, Alc was the major contributor to the decreased SCFA production ( R-2 = 0.5132 vs R-2 = 0.98). This is the first report revealing the underlying mechanism of how PAC affects SCFA production and identifying the contribution of different Al species to SCFA inhibition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000418533400135 Publication Date 2017-11-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ admin @ c:irua:148413 Serial 8708
Permanent link to this record
 

 
Author Ag, K.R.; Minja, A.C.; Ninakanti, R.; Van Hal, M.; Dingenen, F.; Borah, R.; Verbruggen, S.W.
Title Impact of soot deposits on waste gas-to-electricity conversion in a TiO₂/WO₃-based photofuel cell Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 470 Issue Pages 144390-13
Keywords A1 Journal article; Engineering sciences. Technology
Abstract An unbiased photo-fuel cell (PFC) is a device that integrates the functions of a photoanode and a cathode to achieve simultaneous light-driven oxidation and dark reduction reactions. As such, it generates electricity while degrading pollutants like volatile organic compounds (VOCs). The photoanode is excited by light to generate electron-hole pairs, which give rise to a photocurrent, and are utilized to oxidise organic pollutants simultaneously. Here we have systematically studied various TiO2/WO3 photoanodes towards their photocatalytic soot degradation performance, PFC performance in the presence of VOCs, and the combination of both. The latter thus mimics an urban environment where VOCs and soot are present simultaneously. The formation of a type-II heterojunction after the addition of a thin TiO2 top layer over a dense WO3 bottom layer, improved both soot oxidation efficiency as well as photocurrent generation, thus paving the way towards low-cost PFC technology for energy recovery from real polluted air.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001030456200001 Publication Date 2023-06-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 29.12.2023
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:197222 Serial 8882
Permanent link to this record
 

 
Author Zhang, K.; Wang, J.; Ninakanti, R.; Verbruggen, S.W.
Title Solvothermal synthesis of mesoporous TiO2 with tunable surface area, crystal size and surface hydroxylation for efficient photocatalytic acetaldehyde degradation Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 474 Issue Pages 145188-14
Keywords A1 Journal article; Engineering sciences. Technology; Laboratory of adsorption and catalysis (LADCA)
Abstract Photocatalytic acetaldehyde degradation exhibits satisfactory performance only at relatively low acetaldehyde flow rates, predominately below 10 × 10-3 mL/min, leaving ample room for improvement. Therefore, it is necessary to prepare more efficient photocatalysts for acetaldehyde degradation. Moreover, the impact of the interaction strength between the titania surface and surface water on the photocatalytic acetaldehyde efficiency is poorly understood. To address these issues, in this work a series of (0 0 1)-faceted anatase titania samples with various surface properties and structures were synthesized via a solvothermal method and tested at high acetaldehyde flow rates under UV light irradiation. With increasing solvothermal time, the pore volume, surface area, and the abundance of surface OH groups all increased, while the crystallite size decreased. These were all identified to be beneficial to promote the degradation performance. When the solvothermal temperature was 180 ℃ and the reaction time was 5 h, the prepared sample displayed the most efficient performance at 19.25× 10-3 mL/min of acetaldehyde (conversion of (74 ± 1)% versus (29 ± 1)% for P25), and achieved a 100 % conversion at 16 × 10-3 mL/min. A weaker interaction strength between surface water and the titania surface was found to improve the acetaldehyde adsorption capacity, thereby promoting the acetaldehyde degradation efficiency. The stability of the best performing sample was tested over 48 h, demonstrating a highly stable performance with no signs of deactivation. Even at a relative humidity of 30 %, the acetaldehyde conversion retains 82% of its efficiency in a dry atmosphere, highlighting its potential in practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001144928800001 Publication Date 2023-08-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 15.1 Times cited Open Access Not_Open_Access: Available from 06.02.2024
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:198652 Serial 8933
Permanent link to this record
 

 
Author Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E.
Title Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach Type A1 Journal article
Year 2023 Publication (down) Chemical engineering journal Abbreviated Journal
Volume 477 Issue Pages 146984-14
Keywords A1 Journal article; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Resource-efficient nitrogen management is of high environmental and economic interest, and manure represents the major nutrient flow in livestock-intensive regions. Ammonia stripping/scrubbing (SS) is an appealing nitrogen recovery route from manure, yet its real-life implementation has been limited thus far. In nutrient surplus regions like Flanders, treatment of the liquid fraction (LF) of (co–)digested manure typically consists of nitrification/denitrification (NDN) removing most N as nitrogen gas. Integrating SS before NDN in existing plants would expand treatment capacity and recover N while maintaining low N effluent values, yet cost estimations of this novel approach after process optimisation are not yet available. A programming model was developed and calibrated to minimise the treatment costs of this approach and find the balance between N recovery versus N removal. Four crucial operational parameters (CO2 stripping time, NH3 stripping time, temperature and NaOH addition) were optimised for 18 scenarios which were different in terms of technical set-up, influent characteristics and scrubber acid. The model shows that SS before NDN can decrease the costs by 1 to 56% under optimal conditions compared to treatment with NDN only, with 1 to 8% reduction for the LF of manure (22–29% recovered of N treated), and 11 to 56% reduction for the LF of co-digested manure (42–67% recovered of N treated), primarily dependent on resource pricing. This study shows the power of modelling for minimum-cost design and operation of manure treatment yielding savings while producing useful N recovery products with SS followed by NDN.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001108935900001 Publication Date 2023-10-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947; 1873-3212 ISBN Additional Links UA library record; WoS full record
Impact Factor 15.1 Times cited Open Access
Notes Approved Most recent IF: 15.1; 2023 IF: 6.216
Call Number UA @ admin @ c:irua:200649 Serial 9003
Permanent link to this record
 

 
Author De Meyer, R.; Gorbanev, Y.; Ciocarlan, R.-G.; Cool, P.; Bals, S.; Bogaerts, A.
Title Importance of plasma discharge characteristics in plasma catalysis: Dry reforming of methane vs. ammonia synthesis Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 488 Issue Pages 150838
Keywords A1 Journal Article; Gas conversion Dry reforming of methane Ammonia Microdischarges Dielectric barrier discharge; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract Plasma catalysis is a rapidly growing field, often employing a packed-bed dielectric barrier discharge plasma reactor. Such dielectric barrier discharges are complex, especially when a packing material (e.g., a catalyst) is introduced in the discharge volume. Catalysts are known to affect the plasma discharge, though the underlying mechanisms influencing the plasma physics are not fully understood. Moreover, the effect of the catalysts on the plasma discharge and its subsequent effect on the overall performance is often overlooked. In this work, we deliberately design and synthesize catalysts to affect the plasma discharge in different ways. These Ni or Co alumina-based catalysts are used in plasma-catalytic dry reforming of methane and ammonia synthesis. Our work shows that introducing a metal to the dielectric packing can affect the plasma discharge, and that the distribution of the metal is crucial in this regard. Further, the altered discharge can greatly influence the overall performance. In an atmospheric pressure dielectric barrier discharge reactor, this apparently more uniform plasma yields a significantly better performance for ammonia synthesis compared to the more conventional filamentary discharge, while it underperforms in dry reforming of methane. This study stresses the importance of analyzing the plasma discharge in plasma catalysis experiments. We hope this work encourages a more critical view on the plasma discharge characteristics when studying various catalysts in a plasma reactor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-03-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links UA library record
Impact Factor 15.1 Times cited Open Access
Notes This research was supported through long-term structural funding (Methusalem FFB15001C) and by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with grant agreement No 810182 (SCOPE ERC Synergy project) and with grant agreement No 815128 (REALNANO). We acknowledge the practical contribution of Senne Van Doorslaer. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @c:irua:205154 Serial 9115
Permanent link to this record
 

 
Author Maerivoet, S.; Tsonev, I.; Slaets, J.; Reniers, F.; Bogaerts, A.
Title Coupled multi-dimensional modelling of warm plasmas: Application and validation for an atmospheric pressure glow discharge in CO2/CH4/O2 Type A1 Journal Article
Year 2024 Publication (down) Chemical Engineering Journal Abbreviated Journal Chemical Engineering Journal
Volume 492 Issue Pages 152006
Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;
Abstract To support experimental research into gas conversion by warm plasmas, models should be developed to explain the experimental observations. These models need to describe all physical and chemical plasma properties in a coupled way. In this paper, we present a modelling approach to solve the complete set of assumed relevant equations, including gas flow, heat balance and species transport, coupled with a rather extensive chemistry set, consisting of 21 species, obtained by reduction of a more detailed chemistry set, consisting of 41 species. We apply this model to study the combined CO2 and CH4 conversion in the presence of O2, in a direct current atmospheric pressure glow discharge. Our model can predict the experimental trends, and can explain why higher O2 fractions result in higher CH4 conversion, namely due to the higher gas temperature, rather than just by additional chemical reactions. Indeed, our model predicts that when more O2 is added, the energy required to reach any set temperature (i.e., the enthalpy) drops, allowing the system to reach higher temperatures with similar amounts of energy. This is in turn related to the higher H2O fraction and lower H2 fraction formed in the plasma, as demonstrated by our model. Altogether, our new self-consistent model can capture the main physics and chemistry occurring in this warm plasma, which is an important step towards predictive modelling for plasma-based gas conversion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-8947 ISBN Additional Links
Impact Factor 15.1 Times cited Open Access
Notes This research was supported by the Excellence of Science FWO-FNRS project (FWO grant ID G0I1822N; EOS ID 40007511) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 810182–SCOPE ERC Synergy project, and grant agreement No. 101081162–PREPARE ERC Proof of Concept project). computational resources and services used in this work were provided by the HPC core facility CalcUA of the Universiteit Antwerpen, and VSC (Flemish Supercomputer Center), funded by the Research Foundation – Flanders (FWO) and the Flemish Government. Approved Most recent IF: 15.1; 2024 IF: 6.216
Call Number PLASMANT @ plasmant @ Serial 9132
Permanent link to this record
 

 
Author Gonzalez-Quiroga, A.; Shtern, V.; Perreault, P.; Vandewalle, L.; Marin, G.B.; Van Geem, K.M.
Title Intensifying mass and heat transfer using a high-g stator-rotor vortex chamber Type A1 Journal article
Year 2021 Publication (down) Chemical Engineering And Processing Abbreviated Journal Chem Eng Process
Volume 169 Issue Pages 108638-11
Keywords A1 Journal article; Engineering sciences. Technology; Sustainable Energy, Air and Water Technology (DuEL)
Abstract Vortex reactors take advantage of the synergy between enhanced heat and mass transfer rates and multifunctional phenomena at different temporal and spatial scales. Proof-of-concept experiments with our novel and innovative STAtor-Rotor VOrtex Chamber (STARVOC) confirm its advantageous features for the sustainable production of chemicals and fuels. STARVOC is a high-g contactor that uses carrier flow (gas or liquid) tangential injection to drive a rotor attached to low-friction bearings. The vortex chamber inside the rotor contains a secondary phase or phases, such as a solids bed, a liquid layer, or a suspension. Carrier fluid passes through the perforated rotor wall and contacts a densely and uniformly distributed secondary phase with enhanced slip velocities. Experiments focused on pressure profiles, rotor angular velocity, and solids azimuthal velocity. With air as the carrier fluid and different solid particle beds as the secondary phase, STARVOC reached bed azimuthal velocities up to four-fold compared to those reached in Gas-Solid Vortex Units with fully static geometry. These results show its potential to improve interfacial heat and mass transfer rates and take advantage of flow energy and angular momentum. Due to its process intensification capabilities, STARVOC is a promising alternative for the state-of-the-art chemical industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000704946900008 Publication Date 2021-09-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.234 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.234
Call Number UA @ admin @ c:irua:181062 Serial 8111
Permanent link to this record
 

 
Author Bampouli, A.; Goris, Q.; Hussain, M.N.; Louisnard, O.; Stefanidis, G.D.; Van Gerven, T.
Title Importance of design and operating parameters in a sonication system for viscous solutions : effects of input power, horn tip diameter and reactor capacity Type A1 Journal article
Year 2024 Publication (down) Chemical engineering and processing Abbreviated Journal
Volume 198 Issue Pages 109715-12
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract This study investigates the distribution of ultrasound (US) energy in a batch system for solutions with viscosity ranging from 1 to approximately 3000 mPas. Sonication was performed using horn type configurations operating at 20-30 kHz and rated power capacity of 50 or 200 W. Two different tip diameters (3 or 7 mm) and two insertion depths (35 or 25 mm) within vessels of different sizes ( approximate to 60 or 130 ml) were utilized. Additionally, a special conical tip design was employed. For each experimental setup, the calorimetric efficiency was estimated, the cavitationally active regions were visualized using the sonochemiluminescence (SCL) method and bubble cluster formation inside the vessel was macroscopically observed using a high speed camera (HSC). In the viscosity range tested, the calorimetry results showed that the efficiency and continuous operation of the device depend on both the rated power and the horn tip diameter. The ratio between electrical and calorimetric power input remained consistently around 40 to 50% across the different configurations for water, but for the 123.2 mPas solution exhibited significant variation ranging from 40 to 85%. Moreover, the power density in the smaller reactor was found to be nearly double compared to the larger one. The SCL analysis showed multiple cavitationally active zones in all setups, and the zones intensity decreased considerably with increase of the solutions viscosity. The results for the cone tip were not conclusive, but can be used as the basis for further investigation. The current research highlights the importance of thoroughly understanding the impact of each design parameter, and of establishing characterization methodologies to assist in the future development of scaled-up, commercial applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001218630800001 Publication Date 2024-02-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-2701 ISBN Additional Links UA library record; WoS full record
Impact Factor 4.3 Times cited Open Access
Notes Approved Most recent IF: 4.3; 2024 IF: 2.234
Call Number UA @ admin @ c:irua:206003 Serial 9154
Permanent link to this record
 

 
Author Colomer, J.-F.; Henrard, L.; Launois, P.; Van Tendeloo, G.; Lucas, A.A.; Lambin, P.
Title Bundles of identical double-walled carbon nanotubes Type A1 Journal article
Year 2004 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume Issue 22 Pages 2592-2593
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000225375100035 Publication Date 2004-09-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 13 Open Access
Notes Approved Most recent IF: 6.319; 2004 IF: 3.997
Call Number UA @ lucian @ c:irua:54875 Serial 263
Permanent link to this record
 

 
Author Yalcin, A.O.; Goris, B.; van Dijk-Moes, R.J.A.; Fan, Z.; Erdamar, A.K.; Tichelaar, F.D.; Vlugt, T.J.H.; Van Tendeloo, G.; Bals, S.; Vanmaekelbergh, D.; Zandbergen, H.W.; van Huis, M.A.;
Title Heat-induced transformation of CdSe-CdS-ZnS coremultishell quantum dots by Zn diffusion into inner layers Type A1 Journal article
Year 2015 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 51 Issue 51 Pages 3320-3323
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract In this work, we investigate the thermal evolution of CdSeCdSZnS coremultishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1−xSeCdyZn1−yS coreshell QDs are obtained.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000349325000004 Publication Date 2014-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 21 Open Access OpenAccess
Notes 262348 Esmi; Fwo; 246791 Countatoms; 335078 Colouratom; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2015 IF: 6.834
Call Number c:irua:132582 Serial 1412
Permanent link to this record
 

 
Author Kalidindi, S.B.; Wiktor, C.; Ramakrishnan, A.; Weßing, J.; Schneemann, A.; Van Tendeloo, G.; Fischer, R.A.
Title Lewis base mediated efficient synthesis and solvation-like host-guest chemistry of covalent organic framework-1 Type A1 Journal article
Year 2013 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 49 Issue 5 Pages 463-465
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract N-Lewis base mediated room temperature synthesis of covalent organic frameworks (COFs) starting from a solution of building blocks instead of partially soluble building blocks was developed. This protocol shifts COF synthetic chemistry from sealed tubes to open beakers. Non-conventional inclusion compounds of COF-1 were obtained by vapor phase infiltration of ferrocene and azobenzene, and solvation like effects were established.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000312193100007 Publication Date 2012-11-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 17 Open Access
Notes 262348 Esmi Approved Most recent IF: 6.319; 2013 IF: 6.718
Call Number UA @ lucian @ c:irua:105953 Serial 1815
Permanent link to this record
 

 
Author de Clippel, F.; Harkiolakis, A.; Ke, X.; Vosch, T.; Van Tendeloo, G.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; Sels, B.F.
Title Molecular sieve properties of mesoporous silica with intraporous nanocarbon Type A1 Journal article
Year 2010 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 46 Issue 6 Pages 928-930
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Biporous carbonsilica materials (CSM) with molecular sieve properties and high sorption capacity were developed by synthesizing nano-sized carbon crystallites in the mesopores of Al-MCM-41.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000274070800024 Publication Date 2009-12-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 21 Open Access
Notes Fwo; Iap Approved Most recent IF: 6.319; 2010 IF: 5.787
Call Number UA @ lucian @ c:irua:80994 Serial 2182
Permanent link to this record
 

 
Author Yin, S.; Tian, H.; Ren, Z.; Wei, X.; Chao, C.; Pei, J.; Li, X.; Xu, G.; Shen, G.; Han, G.
Title Octahedral-shaped perovskite nanocrystals and their visible-light photocatalytic activity Type A1 Journal article
Year 2014 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 45 Pages 6027-6030
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Octahedral-shaped perovskite PbTiO3 nanocrystals (PT OCT) with well-defined {111} facets exposed have been successfully synthesized via a facile hydrothermal method by using LiNO3 as an ion surfactant. The Li-O bond on the surface of PT OCT nanocrystals is essential to the stability of such nanocrystals and also results in a dramatic high visible-light photocatalytic activity.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000335984700022 Publication Date 2014-04-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 19 Open Access
Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:117690 Serial 2428
Permanent link to this record
 

 
Author Hadad, C.; Ke, X.; Carraro, M.; Sartorel, A.; Bittencourt, C.; Van Tendeloo, G.; Bonchio, M.; Quintana, M.; Prato, M.
Title Positive graphene by chemical design : tuning supramolecular strategies for functional surfaces Type A1 Journal article
Year 2014 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 7 Pages 885-887
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract A diazonium based-arylation reaction was efficiently used for the covalent addition of 4-amino-N,N,N-trimethylbenzene ammonium to stable dispersions of few layer graphene (FLG) yielding an innovative FLG platform with positive charges to immobilize inorganic polyanions.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000328884500036 Publication Date 2013-11-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 19 Open Access
Notes Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:113733 Serial 2678
Permanent link to this record
 

 
Author Meynen, V.; Beyers, E.; Cool, P.; Vansant, E.F.; Mertens, M.; Weyten, H.; Lebedev, O.I.; Van Tendeloo, G.
Title Post-synthesis deposition of V-Zeolitic nanoparticles in SBA-15 Type A1 Journal article
Year 2004 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume Issue Pages 898-890
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000221124300084 Publication Date 2004-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 22 Open Access
Notes Approved Most recent IF: 6.319; 2004 IF: 3.997
Call Number UA @ lucian @ c:irua:44934 Serial 2684
Permanent link to this record
 

 
Author Quintana, M.; Grzelczak, M.; Spyrou, K.; Kooi, B.; Bals, S.; Van Tendeloo, G.; Rudolf, P.; Prato, M.
Title Production of large graphene sheets by exfoliation of graphite under high power ultrasound in the presence of tiopronin Type A1 Journal article
Year 2012 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 48 Issue 100 Pages 12159-12161
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Under ultrasonication, the production of high quality graphene layers by exfoliation of graphite was achieved via addition of tiopronin as an antioxidant.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000311411100003 Publication Date 2012-10-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 39 Open Access
Notes This work was financially supported by the University of Trieste, INSTM, Italian Ministry of Education MIUR (cofin Prot. 20085M27SS) and by the "Graphene-based electronics'' research program of the Foundation for Fundamental Research on Matter (FOM). Part of this work was supported by funding from the ERC grant No 246791COUNTATOMS. MQ acknowledges the financial support from CONACyT CB-2011-01-166914 and FAI-UASLP. Approved Most recent IF: 6.319; 2012 IF: 6.378
Call Number UA @ lucian @ c:irua:105230 Serial 2724
Permanent link to this record
 

 
Author Rodríguez-Fernández, D.; Altantzis, T.; Heidari, H.; Bals, S.; Liz-Marzan, L.M.
Title A protecting group approach toward synthesis of Au-silica Janus nanostars Type A1 Journal article
Year 2014 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 50 Issue 1 Pages 79-81
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract The concept of protecting groups, widely used in organic chemistry, has been applied for the synthesis of Au-silica Janus stars, in which gold branches protrude from one half of Au-silica Janus spheres. This configuration opens up new possibilities to apply the plasmonic properties of gold nanostars, as well as a variety of chemical functionalizations on the silica component.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000327606000017 Publication Date 2013-10-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 26 Open Access OpenAccess
Notes 262348 Esmi; 335078 Colouratom; 267867 Plasmaquo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 6.319; 2014 IF: 6.834
Call Number UA @ lucian @ c:irua:112774 Serial 2732
Permanent link to this record
 

 
Author Quintana, M.; Montellano, A.; Esau del Rio Castillo, A.; Van Tendeloo, G.; Bittencourt, C.; Prato, M.
Title Selective organic functionalization of graphene bulk or graphene edges Type A1 Journal article
Year 2011 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume 47 Issue 33 Pages 9330-9332
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Graphene sheets have been functionalized with a PAMAM dendron, finding that graphene can be efficiently functionalized all over the surface, or only at the edges, depending on the reactions used in the functionalization process.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000293648200010 Publication Date 2011-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 84 Open Access
Notes Approved Most recent IF: 6.319; 2011 IF: 6.169
Call Number UA @ lucian @ c:irua:91892 Serial 2968
Permanent link to this record
 

 
Author Verlooy, P.; Aerts, A.; Lebedev, O.I.; Van Tendeloo, G.; Kirschhock, C.; Martens, J.A.
Title Synthesis of highly stable pure-silica thin-walled hexagonally ordered mesoporous material Type A1 Journal article
Year 2009 Publication (down) Chemical communications Abbreviated Journal Chem Commun
Volume Issue 28 Pages 4287-4289
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hexagonally ordered mesoporous silica with a very narrow mesopore size distribution and exceptionally high stability paired with unusually thin pore walls was prepared using piperidine and cetyltrimethylammonium bromide.
Address
Corporate Author Thesis
Publisher Place of Publication London Editor
Language Wos 000267808000040 Publication Date 2009-06-09
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-7345;1364-548X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 6.319 Times cited 17 Open Access
Notes Approved Most recent IF: 6.319; 2009 IF: 5.504
Call Number UA @ lucian @ c:irua:77684 Serial 3457
Permanent link to this record