|   | 
Details
   web
Records
Author Van Gaens, W.; Bruggeman, P.J.; Bogaerts, A.
Title Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet Type A1 Journal article
Year 2014 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 16 Issue Pages 063054
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this paper we study two cold atmospheric pressure plasma jets, operating in Ar + 2% air, with a different electrode geometry but with the same power dissipated in the plasma. The density profiles of the biomedically active NO and O species throughout the plasma jet, previously obtained by laser diagnostics, are calculated by means of a zero-dimensional semi-empirical reaction kinetics model. A good agreement between the calculated and measured data is demonstrated. Furthermore, the most probable spatial power distribution in an RF driven plasma jet is obtained for the first time by comparing measured and calculated species density profiles. This was possible due to the strong effect of the power distribution on the NO and O density profiles. In addition the dominant reaction pathways for both the NO and the O species are identified. The model allows us to obtain key information on the reactive species production inside the jet, which is difficult to access by laser diagnostics in a coaxial geometry. Finally, we demonstrate that water impurities in the order of 100 ppm in the gas feed can have a significant effect on the spatial distribution of the NO and O density.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000339081400006 Publication Date 2014-06-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 34 Open Access
Notes Approved Most recent IF: 3.786; 2014 IF: 3.558
Call Number UA @ lucian @ c:irua:117946 Serial 2392
Permanent link to this record
 

 
Author Jiang, W.; Zhang, Y.; Bogaerts, A.
Title Numerical characterization of local electrical breakdown in sub-micrometer metallized film capacitors Type A1 Journal article
Year 2014 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 16 Issue Pages 113036
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In metallized film capacitors, there exists an air gap of about 0.2 μm between the films, with a pressure ranging generally from 130 atm. Because of the created potential difference between the two films, a microdischarge is formed in this gap. In this paper, we use an implicit particle-in-cell Monte Carlo collision simulation method to study the discharge properties in this direct-current microdischarge with 0.2 μm gap in a range of different voltages and pressures. The discharge process is significantly different from a conventional high pressure discharge. Indeed, the high electric field due to the small gap sustains the discharge by field emission. At low applied voltage (~15 V), only the electrons are generated by field emission, while both electrons and ions are generated as a stable glow discharge at medium applied voltage (~50 V). At still higher applied voltage (~100 V), the number of electrons and ions rapidly multiplies, the electric field reverses, and the discharge changes from a glow to an arc regime.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000346763400006 Publication Date 2014-11-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited Open Access
Notes Approved Most recent IF: 3.786; 2014 IF: 3.558
Call Number UA @ lucian @ c:irua:120455 Serial 2393
Permanent link to this record
 

 
Author Bultinck, E.; Bogaerts, A.
Title Particle-in-cell/Monte Carlo collisions treatment of an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx films Type A1 Journal article
Year 2009 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 11 Issue Pages 103010-103010,24
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The physical processes in an Ar/O2 magnetron discharge used for the reactive sputter deposition of TiOx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. The plasma species taken into account are electrons, Ar+ ions, fast Arf atoms, metastable Arm* atoms, Ti+ ions, Ti atoms, O+ ions, O2+ ions, O− ions and O atoms. This model accounts for plasmatarget interactions, such as secondary electron emission and target sputtering, and the effects of target poisoning. Furthermore, the deposition process is described by an analytical surface model. The influence of the O2/Ar gas ratio on the plasma potential and on the species densities and fluxes is investigated. Among others, it is shown that a higher O2 pressure causes the region of positive plasma potential and the O− density to be more spread, and the latter to decrease. On the other hand, the deposition rates of Ti and O are not much affected by the O2/Ar proportion. Indeed, the predicted stoichiometry of the deposited TiOx film approaches x=2 for nearly all the investigated O2/Ar proportions.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000270820900001 Publication Date 2009-10-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 24 Open Access
Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
Call Number UA @ lucian @ c:irua:78326 Serial 2559
Permanent link to this record
 

 
Author Bultinck, E.; Mahieu, S.; Depla, D.; Bogaerts, A.
Title Reactive sputter deposition of TiNx films, simulated with a particle-in-cell/Monte Carlo collisions model Type A1 Journal article
Year 2009 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 11 Issue Pages 023039,1-023039,24
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The physical processes in an Ar/N2 magnetron discharge used for the reactive sputter deposition of TiNx thin films were simulated with a 2d3v particle-in-cell/Monte Carlo collisions (PIC/MCC) model. Cathode currents and voltages were calculated self-consistently and compared with experiments. Also, ion fractions were calculated and validated with mass spectrometric measurements. With this PIC/MCC model, the influence of N2/Ar gas ratio on the particle densities and fluxes was investigated, taking into account the effect of the poisoned state of the target.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000263744100001 Publication Date 2009-02-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 23 Open Access
Notes Approved Most recent IF: 3.786; 2009 IF: 3.312
Call Number UA @ lucian @ c:irua:73150 Serial 2825
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Neyts, E.C.; Jacob, T.; Fantauzzi, D.; Golkaram, M.; Shin, Y.-K.; van Duin, A.C.T.; Bogaerts, A.
Title Atomic-scale insight into the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field Type A1 Journal article
Year 2015 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages 103005
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric pressure plasmas have proven to provide an alternative treatment of cancer by targeting tumorous cells while leaving their healthy counterparts unharmed. However, the underlying mechanisms of the plasma–cell interactions are not yet fully understood. Reactive oxygen species, and in particular hydroxyl radicals (OH), are known to play a crucial role in plasma driven apoptosis of

malignant cells. In this paper we investigate the interaction of OH radicals, as well as H2O2 molecules and HO2 radicals, with DNA by means of reactive molecular dynamics simulations using the ReaxFF force field. Our results provide atomic-scale insight into the dynamics of oxidative stress on DNA caused by the OH radicals, while H2O2 molecules appear not reactive within the considered timescale. Among the observed processes are the formation of 8-OH-adduct radicals, forming the first stages towards the formation of 8-oxoGua and 8-oxoAde, H-abstraction reactions of the amines, and the partial opening of loose DNA ends in aqueous solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000367328100001 Publication Date 2015-10-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 18 Open Access
Notes CCWV,ECN and AB acknowledge the contribution of J Van Beeck who is investigating the interaction between H2O2 andDNAusingrMDsimulations. Furthermore, they acknowledge financial support from the Fund for Scientific Research—Flanders (project number G012413N). The calculations were performed using the Turing HPCinfrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI) and the Universiteit Antwerpen. TJ and DF gratefully acknowledge support from the European Research Council through the ERC-Starting GrantTHEOFUN(Grant Agreement No. 259608). Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:129178 Serial 3955
Permanent link to this record
 

 
Author Yusupov, M.; Saraiva, M.; Depla, D.; Bogaerts, A.
Title Sputter deposition of MgxAlyOz thin films in a dual-magnetron device : a multi-species Monte Carlo model Type A1 Journal article
Year 2012 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 14 Issue 7 Pages 073043
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A multi-species Monte Carlo (MC) model, combined with an analytical surface model, has been developed in order to investigate the general plasma processes occurring during the sputter deposition of complex oxide films in a dual-magnetron sputter deposition system. The important plasma species, such as electrons, Ar+ ions, fast Ar atoms and sputtered metal atoms (i.e. Mg and Al atoms) are described with the so-called multi-species MC model, whereas the deposition of MgxAlyOz films is treated by an analytical surface model. Targetsubstrate distances for both magnetrons in the dual-magnetron setup are varied for the purpose of growing stoichiometric complex oxide thin films. The metal atoms are sputtered from pure metallic targets, whereas the oxygen flux is only directed toward the substrate and is high enough to obtain fully oxidized thin films but low enough to avoid target poisoning. The calculations correspond to typical experimental conditions applied to grow these complex oxide films. In this paper, some calculation results are shown, such as the densities of various plasma species, their fluxes toward the targets and substrate, the deposition rates, as well as the film stoichiometry. Moreover, some results of the combined model are compared with experimental observations. Note that this is the first complete model, which can be applied for large and complicated magnetron reactor geometries, such as dual-magnetron configurations. With this model, we are able to describe all important plasma species as well as the deposition process. It can also be used to predict film stoichiometries of complex oxide films on the substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000307072500003 Publication Date 2012-07-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 2 Open Access
Notes Approved Most recent IF: 3.786; 2012 IF: 4.063
Call Number UA @ lucian @ c:irua:100100 Serial 3111
Permanent link to this record
 

 
Author Zhang, Y.; Wang, H.-yu; Jiang, W.; Bogaerts, A.
Title Two-dimensional particle-in cell/Monte Carlo simulations of a packed-bed dielectric barrier discharge in air at atmospheric pressure Type A1 Journal article
Year 2015 Publication (up) New journal of physics Abbreviated Journal New J Phys
Volume 17 Issue 17 Pages 083056
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The plasma behavior in a parallel-plate dielectric barrier discharge (DBD) is simulated by a two-dimensional particle-in-cell/Monte Carlo collision model, comparing for the first time an unpacked (empty) DBD with a packed bed DBD, i.e., a DBD filled with dielectric spheres in the gas gap. The calculations are performed in air, at atmospheric pressure. The discharge is powered by a pulse with a voltage amplitude of −20 kV. When comparing the packed and unpacked DBD reactors with the same dielectric barriers, it is clear that the presence of the dielectric packing leads to a transition in discharge behavior from a combination of negative streamers and unlimited surface streamers on the bottom dielectric surface to a combination of predominant positive streamers and limited surface discharges on the dielectric surfaces of the beads and plates. Furthermore, in the packed bed DBD, the electric field is locally enhanced inside the dielectric material, near the contact points between the beads and the plates, and therefore also in the plasma between the packing beads and between a bead and the dielectric wall, leading to values of $4\times {10}
Address
Corporate Author Thesis
Publisher Place of Publication Bristol Editor
Language Wos 000360957800003 Publication Date 2015-08-28
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1367-2630; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.786 Times cited 22 Open Access
Notes Approved Most recent IF: 3.786; 2015 IF: 3.558
Call Number c:irua:127650 Serial 3777
Permanent link to this record
 

 
Author Chen, Z.Y.; Bogaerts, A.; Depla, D.; Ignatova, V.
Title Dynamic Monte Carlo simulation for reactive sputtering of aluminium Type A1 Journal article
Year 2003 Publication (up) Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B
Volume 207 Issue Pages 415-423
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000184051300006 Publication Date 2003-03-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 20 Open Access
Notes Approved Most recent IF: 1.109; 2003 IF: 1.041
Call Number UA @ lucian @ c:irua:44016 Serial 762
Permanent link to this record
 

 
Author Neyts, E.; Yan, M.; Bogaerts, A.; Gijbels, R.
Title PIC-MC simulation of an RF capacitively coupled Ar/H2 discharge Type A1 Journal article
Year 2003 Publication (up) Nuclear instruments and methods in physics research: B Abbreviated Journal Nucl Instrum Meth B
Volume 202 Issue Pages 300-304
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000182122500048 Publication Date 2003-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 8 Open Access
Notes Approved Most recent IF: 1.109; 2003 IF: 1.041
Call Number UA @ lucian @ c:irua:44015 Serial 2620
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.; Gijbels, R.; Benedikt, J.; van de Sanden, M.C.M.
Title Molecular dynamics simulation of the impact behaviour of various hydrocarbon species on DLC Type A1 Journal article
Year 2005 Publication (up) Nuclear instruments and methods in physics research: B: beam interactions with materials and atoms Abbreviated Journal Nucl Instrum Meth B
Volume 228 Issue Pages 315-318
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000226669800052 Publication Date 2004-12-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-583X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.109 Times cited 19 Open Access
Notes Approved Most recent IF: 1.109; 2005 IF: 1.181
Call Number UA @ lucian @ c:irua:49873 Serial 2172
Permanent link to this record
 

 
Author Vanmeert, M.; Razzokov, J.; Mirza, M.U.; Weeks, S.D.; Schepers, G.; Bogaerts, A.; Rozenski, J.; Froeyen, M.; Herdewijn, P.; Pinheiro, V.B.; Lescrinier, E.
Title Rational design of an XNA ligase through docking of unbound nucleic acids to toroidal proteins Type A1 Journal article
Year 2019 Publication (up) Nucleic acids research Abbreviated Journal Nucleic Acids Res
Volume 47 Issue 13 Pages 7130-7142
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Xenobiotic nucleic acids (XNA) are nucleic acid analogues not present in nature that can be used for the storage of genetic information. In vivo XNA applications could be developed into novel biocontainment strategies, but are currently limited by the challenge of developing XNA processing enzymes such as polymerases, ligases and nucleases. Here, we present a structure-guided modelling-based strategy for the rational design of those enzymes essential for the development of XNA molecular biology. Docking of protein domains to unbound double-stranded nucleic acids is used to generate a first approximation of the extensive interaction of nucleic acid processing enzymes with their substrate. Molecular dynamics is used to optimise that prediction allowing, for the first time, the accurate prediction of how proteins that form toroidal complexes with nucleic acids interact with their substrate. Using the Chlorella virus DNA ligase as a proof of principle, we recapitulate the ligase's substrate specificity and successfully predict how to convert it into an XNA-templated XNA ligase.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000490556600047 Publication Date 2019-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0305-1048 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.162 Times cited 1 Open Access
Notes European Research Council, FP7/2007-2013 ERC-2012-ADG 20120216/320683 ; KU Leuven, OT/14/128 ; Biotechnology and Biosciences Research Council, BB/N01023X/1 BB/N010221/1 ; Authors are grateful to Prof. Dr A.M.J.J. (Alexandre) Bonvin from the University of Utrecht and the WeNMR institute for his expert contribution. We have greatly benefited from discussions and help from numerous postdocs over the years (in particular, Dr E. Groaz, Dr E. Eremeeva, Dr J. Masschelein, Dr S. Xiaoping and Dr M. Renders) as well as graduate student D. Kestemont and undergraduate student M. Abdel Fattah Ismail. We express our gratitude to L. Margamuljana for helpful discussions and excellent technical assistance on in vitro experiments. Approved Most recent IF: 10.162
Call Number PLASMANT @ plasmant @c:irua:162105 Serial 5359
Permanent link to this record
 

 
Author Zaryouh, H.; Verswyvel, H.; Bauwens, M.; Van Haesendonck, G.; Deben, C.; Lin, A.; De Waele, J.; Vermorken, J.B.; Koljenovic, S.; Bogaerts, A.; Lardon, F.; Smits, E.; Wouters, A.
Title De belofte van hoofdhalskankerorganoïden in kankeronderzoek : een blik op de toekomst Type A2 Journal article
Year 2023 Publication (up) Onco-hemato : multidisciplinair tijdschrift voor oncologie Abbreviated Journal
Volume 17 Issue 7 Pages 54-58
Keywords A2 Journal article; Center for Oncological Research (CORE); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Hoofd-halskanker vormt een aanzienlijke uitdaging met bijna 900.000 nieuwe diagnoses per jaar, waarbij de jaarlijkse incidentie blijft stijgen. Vaak wordt de diagnose pas in een laat stadium gesteld, wat complexe behandelingen noodzakelijk maakt. Terugval van patiënten is helaas een veelvoorkomend probleem. De gemiddelde overlevingsduur is beperkt tot enkele maanden. Daarom is er een dringende behoefte om nieuwe, veelbelovende behandelingen te ontwikkelen voor patiënten met hoofd-halskanker. Voor het bereiken van deze vooruitgang spelen innovatieve studiemodellen een cruciale rol. Het ontwikkelen van deze nieuwe behandelingen start met laboratoriumonderzoek, waarbij traditionele tweedimensionale celculturen hun beperkingen hebben. Daarom verschuiven onderzoekers hun aandacht meer en meer naar geavanceerdere driedimensionale modellen, met hoofd-halskankerorganoïden als beloftevol nieuw model. Dit model behoudt immers zowel het genetische profiel als de morfologische kenmerken van de originele tumor van de hoofd-halskankerpatiënt. Hoofdhalskankerorganoïden bieden daarom de mogelijkheid om innovatieve behandelingen te testen en kunnen mogelijk zelfs de respons van een patiënt op bepaalde therapieën voorspellen. Hoewel tumororganoïden als ‘patiënt-in-het-lab’ veelbelovend zijn, zijn er uitdagingen te overwinnen, zoals de ontwikkelingstijd en de toepasbaarheid bij alle tumortypes, evenals het ontbreken van immuuncellen en andere micro-omgevingscomponenten. Er is daarom een grote behoefte aan gestandaardiseerde protocollen voor de ontwikkeling van organoïden en verkorting van de ontwikkelingstijd. Concluderend bieden driedimensionale hoofd-halskankerorganoïden een veelbelovend perspectief voor de toekomst van kankerbehandelingen. Ze hebben het potentieel om bij te dragen aan de ontwikkeling van gepersonaliseerde behandelingen en zo de overlevingskansen van kankerpatiënten te verbeteren. Het is echter belangrijk om hun voorspellend vermogen en toepassingsmogelijkheden verder te onderzoeken, voordat ze op grote schaal worden geïmplementeerd.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2030-2738 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ admin @ c:irua:202271 Serial 9004
Permanent link to this record
 

 
Author Yusupov, M.; Razzokov, J.; Cordeiro, R.M.; Bogaerts, A.
Title Transport of Reactive Oxygen and Nitrogen Species across Aquaporin: A Molecular Level Picture Type A1 Journal article
Year 2019 Publication (up) Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Aquaporins (AQPs) are transmembrane proteins that conduct not only water molecules across the cell membrane but also other solutes, such as reactive oxygen and nitrogen species (RONS), produced (among others) by cold atmospheric plasma (CAP). These RONS may induce oxidative stress in the cell interior, which plays a role in cancer treatment. The underlying mechanisms of the transport of RONS across AQPs, however, still remain obscure. We apply molecular dynamics simulations to investigate the permeation of both hydrophilic (H<sub>2</sub>O<sub>2</sub>and OH) and hydrophobic (NO<sub>2</sub>and NO) RONS through AQP1. Our simulations show that these RONS can all penetrate across the pores of AQP1. The permeation free energy barrier of OH and NO is lower than that of H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>, indicating that these radicals may have easier access to the pore interior and interact with the amino acid residues of AQP1. We also study the effect of RONS-induced oxidation of both the phospholipids and AQP1 (i.e., sulfenylation of Cys<sub>191</sub>) on the transport of the above-mentioned RONS across AQP1. Both lipid and protein oxidation seem to slightly increase the free energy barrier for H<sub>2</sub>O<sub>2</sub>and NO<sub>2</sub>permeation, while for OH and NO, we do not observe a strong effect of oxidation. The simulation results help to gain insight in the underlying mechanisms of the noticeable rise of CAP-induced RONS in cancer cells, thereby improving our understanding on the role of AQPs in the selective anticancer capacity of CAP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000492999000001 Publication Date 2019-06-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited 5 Open Access OpenAccess
Notes The authors acknowledge the Turing HPC infrastructure at the CalcUA core facility of the University of Antwerp (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA, where all computational work was performed. M.Y. gratefully acknowledges Dr. U. Khalilov for the fruitful discussions. This work was financially supported by the Research Foundation Flanders (FWO) (grant number 1200219N). Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:160118 Serial 5180
Permanent link to this record
 

 
Author Privat-Maldonado, A.; Schmidt, A.; Lin, A.; Weltmann, K.-D.; Wende, K.; Bogaerts, A.; Bekeschus, S.
Title ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy Type A1 Journal article
Year 2019 Publication (up) Oxidative medicine and cellular longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2019 Issue Pages 1-29
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Physical plasmas generate unique mixes of reactive oxygen and nitrogen species (RONS or ROS). Only a bit more than a decade ago, these plasmas, operating at body temperature, started to be considered for medical therapy with considerably little mechanistic redox chemistry or biomedical research existing on that topic at that time. Today, a vast body of evidence is available on physical plasma-derived ROS, from their spatiotemporal resolution in the plasma gas phase to sophisticated chemical and biochemical analysis of these species once dissolved in liquids. Data from<italic>in silico</italic>analysis dissected potential reaction pathways of plasma-derived reactive species with biological membranes, and<italic>in vitro</italic>and<italic>in vivo</italic>experiments in cell and animal disease models identified molecular mechanisms and potential therapeutic benefits of physical plasmas. In 2013, the first medical plasma systems entered the European market as class IIa devices and have proven to be a valuable resource in dermatology, especially for supporting the healing of chronic wounds. The first results in cancer patients treated with plasma are promising, too. Due to the many potentials of this blooming new field ahead, there is a need to highlight the main concepts distilled from plasma research in chemistry and biology that serve as a mechanistic link between plasma physics (how and which plasma-derived ROS are produced) and therapy (what is the medical benefit). This inevitably puts cellular membranes in focus, as these are the natural interphase between ROS produced by plasmas and translation of their chemical reactivity into distinct biological responses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000493001000003 Publication Date 2019-10-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited Open Access
Notes KW and SB acknowledge funding by the German Federal Ministry of Education and Research (grant numbers 03Z22DN11 and 03Z22DN12). The work of SB is further supported by the European Social Fund (grant number ESF/14-BM-A55-0006). APM and AB acknowledge funding by the Methusalem Project. AL acknowledges funding from the Research Foundation Flanders (grant number 12S9218N). APM thanks Yury Gorbanev for his assistance with the preparation of this review. Approved Most recent IF: 4.593
Call Number PLASMANT @ plasmant @c:irua:163476 Serial 5373
Permanent link to this record
 

 
Author Lin, A.; Biscop, E.; Breen, C.; Butler, S.J.; Smits, E.; Bogaerts, A.; Jakovljevic, V.
Title Critical Evaluation of the Interaction of Reactive Oxygen and Nitrogen Species with Blood to Inform the Clinical Translation of Nonthermal Plasma Therapy Type A1 Journal article
Year 2020 Publication (up) Oxidative Medicine And Cellular Longevity Abbreviated Journal Oxid Med Cell Longev
Volume 2020 Issue Pages 1-10
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)
Abstract Non-thermal plasma (NTP), an ionized gas generated at ambient pressure and temperature, has been an emerging technology for medical applications. Through controlled delivery of reactive oxygen and nitrogen species (ROS/RNS), NTP can elicit hormetic cellular responses, thus stimulating broad therapeutic effects. To enable clinical translation of the promising preclinical research into NTP therapy, a deeper understanding of NTP interactions with clinical substrates is profoundly needed. Since NTP-generated ROS/RNS will inevitably interact with blood in several clinical contexts, understanding their stability in this system is crucial. In this study, two medically relevant NTP delivery modalities were used to assess the stability of NTP-generated ROS/RNS in three aqueous solutions with increasing organic complexities: phosphate-buffered saline (PBS), blood plasma (BP), and processed whole blood. NTP-generated RNS collectively (NO2−, ONOO−), H2O2, and ONOO− exclusively were analyzed over time. We demonstrated that NTP-generated RNS and H2O2 were stable in PBS but scavenged by different components of the blood. While RNS remained stable in BP after initial scavenging effects, it was completely reduced in processed whole blood. On the other hand, H2O2 was completely scavenged in both liquids over time. Our previously developed luminescent probe europium(III) was used for precision measurement of ONOO− concentration. NTP-generated ONOO− was detected in all three liquids for up to at least 30 seconds, thus highlighting its therapeutic potential. Based on our results, we discussed the necessary considerations to choose the most optimal NTP modality for delivery of ROS/RNS to and via blood in the clinical context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000600343500001 Publication Date 2020-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1942-0900 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.593 Times cited Open Access
Notes This work was supported in part by the Research Foundation Flanders grant 12S9218N (A.L.) ,12S9221N (A.L) and G044420N (A.B. and A.L). This work was also supported by the Methusalem grant (A.B.). Approved Most recent IF: NA
Call Number PLASMANT @ plasmant @c:irua:174000 Serial 6658
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.; Grozeva, M.; Sabotinov, N.
Title Investigation of laser output power saturation in the He-Cu+ IR hollow cathode discharge laser by experiments and numerical modeling Type A1 Journal article
Year 2003 Publication (up) Physica scripta Abbreviated Journal Phys Scripta
Volume T105 Issue Pages 90-97
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Stockholm Editor
Language Wos 000184344900014 Publication Date 2003-07-31
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-8949; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.28 Times cited Open Access
Notes Approved Most recent IF: 1.28; 2003 IF: 0.688
Call Number UA @ lucian @ c:irua:44019 Serial 1733
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Eckert, M.; D'Haen, J.; Soltani, A.; Moreau, M.; Troadec, D.; Neyts, E.; De Jaeger, J.C.; Verbeeck, J.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K.; Wagner, P.
Title Grain size tuning of nanocrystalline chemical vapor deposited diamond by continuous electrical bias growth : experimental and theoretical study Type A1 Journal article
Year 2012 Publication (up) Physica status solidi : A : applications and materials science Abbreviated Journal Phys Status Solidi A
Volume 209 Issue 9 Pages 1675-1682
Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this work, a detailed structural and spectroscopic study of nanocrystalline diamond (NCD) thin films grown by a continuous bias assisted CVD growth technique is reported. This technique allows the tuning of grain size and phase purity in the deposited material. The crystalline properties of the films are characterized by SEM, TEM, EELS, and Raman spectroscopy. A clear improvement of the crystalline structure of the nanograined diamond film is observed for low negative bias voltages, while high bias voltages lead to thin films consisting of diamond grains of only ∼10 nm nanometer in size, showing remarkable similarities with so-called ultrananocrystalline diamond. These layers arecharacterized by an increasing amount of sp2-bonded carbon content of the matrix in which the diamond grains are embedded. Classical molecular dynamics simulations support the observed experimental data, giving insight in the underlying mechanism for the observed increase in deposition rate with bias voltage. Furthermore, a high atomic concentration of hydrogen has been determined in these films. Finally, Raman scattering analyses confirm that the Raman line observed at ∼1150 cm−1 cannot be attributed to trans-poly-acetylene, which continues to be reported in literature, reassigning it to a deformation mode of CHx bonds in NCD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000308942100009 Publication Date 2012-09-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1862-6300; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.775 Times cited 31 Open Access
Notes M.E. and E.N. acknowledge financial support from, respectively, the Institute for Promotion of Innovation through Science and Technology in Flanders (IWT), and the Research Foundation-Flanders (FWO). J.V. gratefully acknowledges financial support from the GOA project “XANES meets ELNES” of the research fund of the University of Antwerp. Calculation support was provided by the University of Antwerp through the core facility CALCUA. G.V.T. acknowledges the ERC grant COUNTATOMS. The work was also financially supported by the joint UAUHasseltMethusalem “NANO” network, the Research Programs G.0068.07 and G.0555.10N of the Research Foundation-Flanders (FWO), the IAP-P6/42 project “Quantum Effects in Clusters and Nanowires”, and by the EU FP7 through the Integrated Infrastructure Initiative “ESMI” (No. 262348), the Marie Curie ITN “MATCON” (PITN-GA-2009-238201), and the Collaborative Project “DINAMO” (No. 245122). Approved Most recent IF: 1.775; 2012 IF: 1.469
Call Number UA @ lucian @ c:irua:101516UA @ admin @ c:irua:101516 Serial 1364
Permanent link to this record
 

 
Author Bogaerts, R.; van Esch, A.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Allen, S.J.
Title Experimental study of the energy band structure of Sc1-xErxAs layers in pulsed magnetic fields Type A1 Journal article
Year 1993 Publication (up) Physica: B : condensed matter Abbreviated Journal Physica B
Volume 184 Issue Pages 232-235
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1993KU62100047 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 9 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5791 Serial 1143
Permanent link to this record
 

 
Author Bogaerts, R.; van Bockstal, L.; Herlach, F.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Allen, S.J.
Title Magnetotransport measurements on thin Ga1-xErxAs epitaxial films in pulsed magnetic fields Type A1 Journal article
Year 1992 Publication (up) Physica: B : condensed matter Abbreviated Journal Physica B
Volume 177 Issue Pages 425-429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Magnet0transport measurements in pulsed fields up to 46 T and at temperatures between 1.4 and 210 K have been performed on thin semimetallic epitaxial layers of Sc1-xErxAs buried inside insulating GaAs. A consistent description is obtained of the magnetic field dependence of the Hall resistance and the different frequencies of the Shubnikov-de Hass oscillations.
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1992HP25000089 Publication Date 2002-10-17
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 12 Open Access
Notes Approved PHYSICS, APPLIED 47/145 Q2 #
Call Number UA @ lucian @ c:irua:3025 Serial 1935
Permanent link to this record
 

 
Author de Keyser, A.; Bogaerts, R.; van Bockstal, L.; Hoeks, W.; Herlach, F.; Karavolas, V.C.; Peeters, F.M.; van de Graaf, W.; Borghs, G.
Title Magnetotransport properties of Si-δ-doped InSb layers grown on GaAs Type A1 Journal article
Year 1995 Publication (up) Physica: B : condensed matter Abbreviated Journal Physica B
Volume 211 Issue Pages 455-457
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos A1995RD54400118 Publication Date 2003-05-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4526; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.319 Times cited 2 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:12210 Serial 1936
Permanent link to this record
 

 
Author Neyts, E.; Bogaerts, A.
Title Influence of internal energy and impact angle on the sticking behaviour of reactive radicals in thin a-C:H film growth: a molecular dynamics study Type A1 Journal article
Year 2006 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 8 Issue 17 Pages 2066-2071
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge Editor
Language Wos 000236970300011 Publication Date 2006-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123; 2006 IF: 2.892
Call Number UA @ lucian @ c:irua:57353 Serial 1625
Permanent link to this record
 

 
Author Shirazi, M.; Bogaerts, A.; Neyts, E.C.
Title A DFT study of H-dissolution into the bulk of a crystalline Ni(111) surface: a chemical identifier for the reaction kinetics Type A1 Journal article
Year 2017 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 19 Issue 19 Pages 19150-19158
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract In this study, we investigated the diffusion of H-atoms to the subsurface and their further diffusion into the bulk of a Ni(111) crystal by means of density functional theory calculations in the context of thermal and plasma-assisted catalysis. The H-atoms at the surface can originate from the dissociative adsorption of H2 or CH4 molecules, determining the surface H-coverage. When a threshold H-coverage is passed, corresponding to 1.00 ML for the crystalline Ni(111) surface, the surface-bound H-atoms start to diffuse to the subsurface. A similar threshold coverage is observed for the interstitial H-coverage. Once the interstitial sites are filled up with a coverage above 1.00 ML of H, dissolution of interstitial H-atoms to the layer below the interstitial sites will be initiated. Hence, by applying a high pressure or inducing a reactive plasma and high temperature, increasing the H-flux to the surface, a large amount of hydrogen can diffuse in a crystalline metal like Ni and can be absorbed. The formation of metal hydride may modify the entire reaction kinetics of the system. Equivalently, the H-atoms in the bulk can easily go back to the surface and release a large amount of heat. In a plasma process, H-atoms are formed in the plasma, and therefore the energy barrier for dissociative adsorption is dismissed, thus allowing achievement of the threshold coverage without applying a high pressure as in a thermal process. As a result, depending on the crystal plane and type of metal, a large number of H-atoms can be dissolved (absorbed) in the metal catalyst, explaining the high efficiency of plasma-assisted catalytic reactions. Here, the mechanism of H-dissolution is established as a chemical identifier for the investigation of the reaction kinetics of a chemical process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000406334300034 Publication Date 2017-06-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 10 Open Access OpenAccess
Notes Financial support from the Reactive Atmospheric Plasma processIng – eDucation (RAPID) network, through the EU 7th Framework Programme (grant agreement no. 606889), is gratefully acknowledged. The calculations were performed using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen, a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government department (EWI) and the Universiteit Antwerpen. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @ c:irua:144794 Serial 4633
Permanent link to this record
 

 
Author Gorbanev, Y.; Verlackt, C.C.W.; Tinck, S.; Tuenter, E.; Foubert, K.; Cos, P.; Bogaerts, A.
Title Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet Type A1 Journal article
Year 2018 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 4 Pages 2797-2808
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The vast biomedical potential of cold atmospheric pressure plasmas (CAPs) is governed by the formation of reactive species. These biologically active species are formed upon the interaction of CAPs with the surroundings. In biological milieu, water plays an essential role. The development of biomedical CAPs thus requires understanding of the sources of the reactive species in aqueous media exposed to the plasma. This is especially important in case of the COST RF plasma jet, which is developed as a reference microplasma system. In this work, we investigated the formation of the OH radicals, H atoms and H2O2 in aqueous solutions exposed to the COST plasma jet. This was done by combining experimental and modelling approaches. The liquid phase species were analysed using UV-Vis spectroscopy and spin trapping with hydrogen isotopes and electron paramagnetic resonance (EPR) spectroscopy. The discrimination between the species formed from the liquid phase and the gas phase molecules was performed by EPR and 1H-NMR analyses of the liquid samples. The concentrations of the reactive species in the gas phase plasma were obtained using a zero-dimensional (0D) chemical kinetics computational model. A three-dimensional (3D) fluid dynamics model was developed to provide information on the induced humidity in the plasma effluent. The comparison of the experimentally obtained trends for the formation of the species as a function of the feed gas and effluent humidity with the modelling results suggest that all reactive species detected in our system are mostly formed in the gas phase plasma inside the COST jet, with minor amounts arising from the plasma effluent humidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000423505500066 Publication Date 2018-01-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 23 Open Access OpenAccess
Notes We are grateful to Volker Schulz-von der Gathen (Experimental Physics II: Application Oriented Plasma Physics, Ruhr-Universita¨t Bochum, Germany) for providing the COST RF plasma jet. We thank our colleagues at the University of Antwerp: Gilles Van Loon (Mechanical Workshop), Karen Leyssens (Research group PLASMANT), and Sylvia Dewilde (Department of Biomedical Sciences) for their help with the equipment. This work was funded by the European Marie Sklodowska-Curie Individual Fellowship ‘LTPAM’ within Horizon2020 (grant no. 657304). Stefan Tinck thanks the Fund for Scientific Research – Flanders (FWO) for supporting his work (grant no. 0880.212.840). Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:148365 Serial 4808
Permanent link to this record
 

 
Author Verlackt, C.C.W.; Van Boxem, W.; Bogaerts, A.
Title Transport and accumulation of plasma generated species in aqueous solution Type A1 Journal article
Year 2018 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 20 Issue 10 Pages 6845-6859
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The interaction between cold atmospheric pressure plasma and liquids is receiving increasing attention for various applications. In particular, the use of plasma-treated liquids (PTL) for biomedical applications is of growing importance, in particular for sterilization and cancer treatment. However, insight into the

underlying mechanisms of plasma–liquid interactions is still scarce. Here, we present a 2D fluid dynamics model for the interaction between a plasma jet and liquid water. Our results indicate that the formed reactive species originate from either the gas phase (with further solvation) or are formed at the liquid interface. A clear increase in the aqueous density of H2O2, HNO2/NO2- and NO3-

is observed as a function of time, while the densities of O3, HO2/O2- and ONOOH/ONOO- are found to quickly reach a maximum due to chemical reactions in solution. The trends observed in our model correlate well with experimental observations from the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000429286100009 Publication Date 2018-02-06
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 35 Open Access OpenAccess
Notes The authors thank Petr Luke`s (Institute of Plasma Physics AS CR, Czech Republic) and Yury Gorbanev (UAntwerp, group PLASMANT) for the fruitful discussions regarding the chemistry in the model and the plasma–liquid interactions. Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @c:irua:149557 Serial 4908
Permanent link to this record
 

 
Author Gorbanev, Y.; Van der Paal, J.; Van Boxem, W.; Dewilde, S.; Bogaerts, A.
Title Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Type A1 Journal article
Year 2019 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 8 Pages 4117-4121
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Cold atmospheric plasma in contact with solutions has many applications, but its chemistry contains many unknowns such as the undescribed reactions with solutes. By combining experiments and modelling, we report the first direct demonstration of the reaction of chloride with oxygen atoms in aqueous solutions exposed to cold plasma.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000461722500001 Publication Date 2019-01-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 4 Open Access Not_Open_Access: Available from 31.01.2020
Notes H2020 Marie Skłodowska-Curie Actions, 743151 ; Fonds Wetenschappelijk Onderzoek, 11U5416N ; Approved Most recent IF: 4.123
Call Number PLASMANT @ plasmant @UA @ admin @ c:irua:157688 Serial 5167
Permanent link to this record
 

 
Author Van der Paal, J.; Hong, S.-H.; Yusupov, M.; Gaur, N.; Oh, J.-S.; Short, R.D.; Szili, E.J.; Bogaerts, A.
Title How membrane lipids influence plasma delivery of reactive oxygen species into cells and subsequent DNA damage : an experimental and computational study Type A1 Journal article
Year 2019 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 35 Pages 19327-19341
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486175400045 Publication Date 2019-08-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 1 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:162782 Serial 6303
Permanent link to this record
 

 
Author Heirman, P.; Van Boxem, W.; Bogaerts, A.
Title Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study Type A1 Journal article
Year 2019 Publication (up) Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 21 Issue 24 Pages 12881-12894
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract Plasma-treated liquids have great potential for biomedical applications. However, insight into the underlying mechanisms and the exact chemistry is still scarce. In this study, we present the combination of a 0D chemical kinetics and a 2D fluid dynamics model to investigate the plasma treatment of a buffered water solution with the kINPen (R) plasma jet. Using this model, we calculated the gas and liquid flow profiles and the transport and chemistry of all species in the gas and the liquid phase. Moreover, we evaluated the stability of the reactive oxygen and nitrogen species after plasma treatment. We found that of all species, only H2O2, HNO2/NO2-, and HNO3/NO3- are stable in the buffered solution after plasma treatment. This is because both their production and loss processes in the liquid phase are dependent on short-lived radicals (e.g. OH, NO, and NO2). Apart from some discrepancy in the absolute values of the concentrations, which can be explained by the model, all general trends and observations in our model are in qualitative agreement with experimental data and literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000472214000012 Publication Date 2019-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076; 1463-9084 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes Approved Most recent IF: 4.123
Call Number UA @ admin @ c:irua:161314 Serial 6320
Permanent link to this record
 

 
Author Bogaerts, A.; Gijbels, R.
Title Modeling of metastable argon atoms in a direct current glow discharge Type A1 Journal article
Year 1995 Publication (up) Physical review : A : atomic, molecular and optical physics Abbreviated Journal Phys Rev A
Volume 52 Issue Pages 3743-3751
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1995TE17300053 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1050-2947;1094-1622; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.808 Times cited 98 Open Access
Notes Approved MATERIALS SCIENCE, MULTIDISCIPLINARY 96/271 Q2 #
Call Number UA @ lucian @ c:irua:12263 Serial 2129
Permanent link to this record
 

 
Author Bogaerts, R.; Herlach, F.; de Keyser, A.; Peeters, F.M.; DeRosa, F.; Palmstrøm, C.J.; Brehmer, D.; Allen, S.J.
Title Experimental determination of the Fermi surface of thin Sc1-xErxAs epitaxial layers in pulsed magnetic fields Type A1 Journal article
Year 1996 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 53 Issue Pages 15951-15963
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos A1996UT77000086 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.736 Times cited 9 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:15794 Serial 1137
Permanent link to this record
 

 
Author Hayne, M.; Jones, C.L.; Bogaerts, R.; Riva, C.; Usher, A.; Peeters, F.M.; Herlach, F.; Moshchalkov, V.V.; Henini, M.
Title Photoluminescence of negatively charged excitons in high magnetic fields Type A1 Journal article
Year 1999 Publication (up) Physical review : B : condensed matter and materials physics Abbreviated Journal Phys Rev B
Volume 59 Issue Pages 2927-2931
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lancaster, Pa Editor
Language Wos 000078463100064 Publication Date 2002-07-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829;1095-3795; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 86 Open Access
Notes Approved Most recent IF: 3.836; 1999 IF: NA
Call Number UA @ lucian @ c:irua:24158 Serial 2614
Permanent link to this record