|   | 
Details
   web
Records
Author Peeters, F.M.
Title Tuning of energy levels in a superlattice Type P1 Proceeding
Year 1994 Publication (up) Materials Research Society symposium proceedings Abbreviated Journal
Volume 325 Issue Pages 471-480
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Wuhan Editor
Language Wos A1994BA45Z00064 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved COMPUTER SCIENCE, INTERDISCIPLINARY 11/104 Q1 # PHYSICS, MATHEMATICAL 1/53 Q1 #
Call Number UA @ lucian @ c:irua:9381 Serial 3751
Permanent link to this record
 

 
Author Veljkovic, D.; Tadić, M.; Peeters, F.M.
Title Intersublevel absorption in stacked n-type doped self-assembled quantum dots Type A1 Journal article
Year 2005 Publication (up) Materials science forum Abbreviated Journal Mater Sci Forum
Volume 494 Issue Pages 37-42
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The intersublevel absorption in n-doped InAs/GaAs self-assembled quantum-dot molecules composed of three quantum dots is theoretically considered. The transition matrix elements and the transition energies are found to vary considerably with the spacer thickness. For s polarized light, decreasing the thickness of the spacer between the dots brings about crossings between the transition matrix elements, but the overall absorption is not affected by the variation of the spacer thickness. For p-polarized light and thick spacers, there are no available transitions in the single quantum dot, but a few of them emerge as a result of the electron state splitting in the stacks of coupled quantum dots, which leads to a considerable increase of the transition matrix elements, exceeding by an order of magnitude values of the matrix elements for s-polarized light.
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94746 Serial 1715
Permanent link to this record
 

 
Author Partoens, B.; Matulis, A.; Peeters, F.M.
Title Magnetoplasma excitations in vertically coupled quantum dot systems Type A1 Journal article
Year 1999 Publication (up) Materials science forum Abbreviated Journal Mater Sci Forum
Volume 297/298 Issue Pages 225-228
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lausanne Editor
Language Wos 000080081600043 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-5476; 1662-9752 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:24176 Serial 1920
Permanent link to this record
 

 
Author Peeters, F.M.; Schweigert, V.A.; Deo, P.S.
Title Mesoscopic superconducting disks: fluxoids in a box Type A1 Journal article
Year 1999 Publication (up) Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 47 Issue Pages 393-395
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000081403600093 Publication Date 2002-07-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 1 Open Access
Notes Approved Most recent IF: 1.806; 1999 IF: 0.815
Call Number UA @ lucian @ c:irua:27028 Serial 2002
Permanent link to this record
 

 
Author Peeters, F.M.; Reijniers, J.; Badalian, S.M.; Vasilopoulos, P.
Title Snake orbits in hybrid semiconductor/ferromagnetic devices Type A1 Journal article
Year 1999 Publication (up) Microelectronic engineering Abbreviated Journal Microelectron Eng
Volume 47 Issue Pages 405-407
Keywords A1 Journal article; Condensed Matter Theory (CMT); Engineering Management (ENM)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Amsterdam Editor
Language Wos 000081403600096 Publication Date 2002-07-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.806 Times cited 6 Open Access
Notes Approved Most recent IF: 1.806; 1999 IF: 0.815
Call Number UA @ lucian @ c:irua:27030 Serial 3046
Permanent link to this record
 

 
Author Leenaerts, O.; Partoens, B.; Peeters, F.M.
Title Adsorption of small molecules on graphene Type A1 Journal article
Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue 4/5 Pages 860-862
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We investigate the adsorption process of small molecules on graphene through first-principles calculations and show the presence of two main charge transfer mechanisms. Which mechanism is the dominant one depends on the magnetic properties of the adsorbing molecules. We explain these mechanisms through the density of states of the system and the molecular orbitals of the adsorbates, and demonstrate the possible difficulties in calculating the charge transfer from first principles between a graphene sheet and a molecule. Our results are in good agreement with experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200058 Publication Date 2008-12-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 116 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77030 Serial 65
Permanent link to this record
 

 
Author Li, B.; Partoens, B.; Peeters, F.M.; Magnus, W.
Title Dielectric mismatch effect on coupled impurity states in a freestanding nanowire Type A1 Journal article
Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue 3 Pages 446-448
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We studied the coupled impurity states in a freestanding semiconductor nanowire (NW), within the effective mass approximation and including the effect of the dielectric mismatch, by using finite element method. Bonding and anti-bonding states are found and their energies converge with increasing distance di between the two impurities. The dependence of the binding energy on the wire radius R and the distance di between the two impurities is investigated, and we compare it with the result of a freestanding NW that contains a single impurity.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000264694700017 Publication Date 2008-07-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 4 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:76410 Serial 690
Permanent link to this record
 

 
Author Slachmuylders, A.F.; Partoens, B.; Magnus, W.; Peeters, F.M.
Title Neutral shallow donors near a metallic interface Type A1 Journal article
Year 2009 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 40 Issue 4/5 Pages 753-755
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The effect of a metallic gate on the bound states of a shallow donor located near the gate is studied. We calculate the energy spectrum as a function of the distance between the metallic gate and the donor and find an anti-crossing behavior in the energy levels for certain distances. We show how a transverse electric field can tune the average position of the electron with respect to the metallic gate and the impurity.
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000265870200024 Publication Date 2009-02-04
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 1 Open Access
Notes Approved Most recent IF: 1.163; 2009 IF: 0.778
Call Number UA @ lucian @ c:irua:77029 Serial 2296
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title Resonant tunneling in graphene microstructures Type A1 Journal article
Year 2008 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 39 Issue 3-4 Pages 534-536
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000255600600055 Publication Date 2007-08-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 9 Open Access
Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
Call Number UA @ lucian @ c:irua:68850 Serial 2892
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title Theoretical study of InAs/GaAs quantum dots grown on [11k] substrates in the presence of a magnetic field Type A1 Journal article
Year 2006 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 37 Issue 12 Pages 1427-1429
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000242907400002 Publication Date 2006-07-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.163 Times cited Open Access
Notes Approved Most recent IF: 1.163; 2006 IF: 0.651
Call Number UA @ lucian @ c:irua:62325 Serial 3612
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title Tuning of the optical properties of (11k) grown InAs quantum dots by the capping layer Type A1 Journal article
Year 2008 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 39 Issue 3-4 Pages 359-361
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000255600600013 Publication Date 2007-09-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record
Impact Factor 1.163 Times cited Open Access
Notes Approved Most recent IF: 1.163; 2008 IF: 0.859
Call Number UA @ lucian @ c:irua:68849 Serial 3753
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Type II quantum dots in magnetic fields: excitonic behaviour Type A1 Journal article
Year 2003 Publication (up) Microelectronics journal Abbreviated Journal Microelectron J
Volume 34 Issue Pages 347-350
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Luton Editor
Language Wos 000183607400007 Publication Date 2003-04-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0026-2692; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 1.163 Times cited 1 Open Access
Notes Approved Most recent IF: 1.163; 2003 IF: 0.565
Call Number UA @ lucian @ c:irua:62450 Serial 3790
Permanent link to this record
 

 
Author Baelus, B.J.; Peeters, F.M.
Title Multiply connected mesoscopic superconductors Type A1 Journal article
Year 2003 Publication (up) Modern physics letters B T2 – 3rd International Conference on Modern Problems in Superconductivity, SEP 09-14, 2002, YALTA, UKRAINE Abbreviated Journal Mod Phys Lett B
Volume 17 Issue 10-12 Pages 527-536
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Multiply connected mesoscopic: superconductors are considered within the framework of the nonlinear Ginzburg-Landau theory. The two coupled nonlinear equations are solved numerically and we investigated the properties of a superconducting ring, two concentric rings, and an asymmetric ring. We find that (i) for a mesoscopic superconducting ring the flux through the hole is not quantized, (ii) two concentric mesoscopic superconducting rings are magnetically coupled and the interaction energy increases with increasing sample thickness, and (iii) in asymmetric rings, a stationary phase slip state is predicted.
Address
Corporate Author Thesis
Publisher World scientific publ co pte ltd Place of Publication Singapore Editor
Language Wos 000184303900016 Publication Date 2003-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-9849;1793-6640; ISBN Additional Links UA library record; WoS full record
Impact Factor 0.617 Times cited Open Access
Notes Approved Most recent IF: 0.617; 2003 IF: 0.461
Call Number UA @ lucian @ c:irua:103810 Serial 2236
Permanent link to this record
 

 
Author Yan, X.F.; Chen, Q.; Li, L.L.; Guo, H.Z.; Peng, J.Z.; Peeters, F.M.
Title High performance piezotronic spin transistors using molybdenum disulfide nanoribbon Type A1 Journal article
Year 2020 Publication (up) Nano Energy Abbreviated Journal Nano Energy
Volume 75 Issue Pages 104953
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials are promising candidates for atomic-scale piezotronics and piezophototronics. Quantum edge states show fascinating fundamental physics such as nontrivial topological behavior and hold promising practical applications for low-power electronic devices. Here, using the tight-binding approach and quantum transport simulations, we investigate the piezotronic effect on the spin polarization of edge states in a zigzag-terminated monolayer MoS2 nanoribbon. We find that the strain-induced piezoelectric potential induces a phase transition of edge states from metal to semiconductor. However, in the presence of exchange field, edge states become semi-metallic with significant spin splitting and polarization that can be tuned by external strain. We show that quantum transport conductance exhibits a 100% spin polarization over a wide range of strain magnitudes. This effect is used in a propose prototype of piezotronic spin transistor. Our results provide a fundamental understanding of the piezotronic effect on edge states in zigzag monolayer MoS2 nanoribbons and are relevant for designing high-performance piezotronic spin devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000560729200011 Publication Date 2020-05-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211-2855 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 17.6 Times cited 17 Open Access
Notes ; This work was supported by Hunan Provincial Natural Science Foundation of China (Nos. 2015JJ2040, 2018JJ2078), Scientific Research Fund of Hunan Provincial Education Department (19A106), and the Funeral Service Foundation (FWO-VI). ; Approved Most recent IF: 17.6; 2020 IF: 12.343
Call Number UA @ admin @ c:irua:171123 Serial 6535
Permanent link to this record
 

 
Author Zarenia, M.; Pereira, J.M.; Peeters, F.M.; Farias, G.A.
Title Electrostatically confined quantum rings in bilayer graphene Type A1 Journal article
Year 2009 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue 12 Pages 4088-4092
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B0) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B0 ¨ −B0 transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000272395400023 Publication Date 2009-08-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 42 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:80318 Serial 1024
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Formation and segregation energies of B and P doped and BP codoped silicon nanowires Type A1 Journal article
Year 2006 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 6 Issue 12 Pages 2781-2784
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000242786500026 Publication Date 2006-11-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 94 Open Access
Notes Approved Most recent IF: 12.712; 2006 IF: 9.960
Call Number UA @ lucian @ c:irua:62381 Serial 1248
Permanent link to this record
 

 
Author Földi, P.; Kálmán, O.; Benedict, M.G.; Peeters, F.M.
Title Networks of quantum nanorings : programmable spintronic devices Type A1 Journal article
Year 2008 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 8 Issue 8 Pages 2556-2558
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract An array of quantum rings with local (ring by ring) modulation of the spin orbit interaction (SOI) can lead to novel effects in spin state transformation of electrons. It is shown that already small (3 x 3, 5 x 5) networks are remarkably versatile from this point of view: Working in a given network geometry, the input current can be directed to any of the output ports, simply by changing the SOI strengths by external gate voltages. Additionally, the same network with different SOI strengths can be completely analogous to the Stern-Gerlach device, exhibiting spatial-spin entanglement.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000258440700077 Publication Date 2008-07-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 76 Open Access
Notes Approved Most recent IF: 12.712; 2008 IF: 10.371
Call Number UA @ lucian @ c:irua:102609 Serial 2294
Permanent link to this record
 

 
Author Peelaers, H.; Partoens, B.; Peeters, F.M.
Title Phonon band structure of Si nanowires: a stability analysis Type A1 Journal article
Year 2009 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 9 Issue 1 Pages 107-111
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract We present full ab initio calculations of the phonon band structure of thin Si nanowires oriented along the [110] direction. Using these phonon dispersion relations, we investigate the structural stability of these wires. We found that all studied wires were stable also when doped with either B or P, if the unit cell was taken sufficiently large along the wire axis. The evolution of the phonon dispersion relations and of the sound velocities with respect to the wire diameters is discussed. Softening is observed for acoustic modes and hardening for optical phonon modes with increasing wire diameters.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000262519100020 Publication Date 2008-12-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 51 Open Access
Notes Approved Most recent IF: 12.712; 2009 IF: 9.991
Call Number UA @ lucian @ c:irua:76022 Serial 2601
Permanent link to this record
 

 
Author Milton Pereira, J.; Vasilopoulos, P.; Peeters, F.M.
Title Tunable quantum dots in bilayer graphene Type A1 Journal article
Year 2007 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 7 Issue 4 Pages 946-949
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000245600500017 Publication Date 2007-03-13
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 167 Open Access
Notes Approved Most recent IF: 12.712; 2007 IF: 9.627
Call Number UA @ lucian @ c:irua:64118 Serial 3745
Permanent link to this record
 

 
Author Yang, S.; Wang, C.; Sahin, H.; Chen, H.; Li, Y.; Li, S.S.; Suslu, A.; Peeters, F.M.; Liu, Q.; Li, J.; Tongay, S.;
Title Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering Type A1 Journal article
Year 2015 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 15 Issue 15 Pages 1660-1666
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Creating materials with ultimate control over their physical properties is vital for a wide range of applications. From a traditional materials design perspective, this task often requires precise control over the atomic composition and structure. However, owing to their mechanical properties, low-dimensional layered materials can actually withstand a significant amount of strain and thus sustain elastic deformations before fracture. This, in return, presents a unique technique for tuning their physical properties by strain engineering. Here, we find that local strain induced on ReSe2, a new member of the transition metal dichalcogenides family, greatly changes its magnetic, optical, and electrical properties. Local strain induced by generation of wrinkle (1) modulates the optical gap as evidenced by red-shifted photoluminescence peak, (2) enhances light emission, (3) induces magnetism, and (4) modulates the electrical properties. The results not only allow us to create materials with vastly different properties at the nanoscale, but also enable a wide range of applications based on 2D materials, including strain sensors, stretchable electrodes, flexible field-effect transistors, artificial-muscle actuators, solar cells, and other spintronic, electromechanical, piezoelectric, photonic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Washington Editor
Language Wos 000351188000033 Publication Date 2015-02-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 314 Open Access
Notes ; This work is supported by Arizona State University, Research Seeding Program, the National Natural Science Foundation of China (91233120), and the National Basic Research Program of China (2011CB921901). Q., Liu acknowledges the support to this work by NSFC (10974037), NBRPC (2010CB934102), and the CAS Strategy Pilot program (XDA 09020300). S. Yang acknowledges financial support from China Postdoctoral Science Foundation (No. 2013M540127). ; Approved Most recent IF: 12.712; 2015 IF: 13.592
Call Number c:irua:125480 Serial 3758
Permanent link to this record
 

 
Author Su, Y.; Prestat, E.; Hu, C.; Puthiyapura, V.K.; Neek-Amal, M.; Xiao, H.; Huang, K.; Kravets, V.G.; Haigh, S.J.; Hardacre, C.; Peeters, F.M.; Nair, R.R.
Title Self-limiting growth of two-dimensional palladium between graphene oxide layers Type A1 Journal article
Year 2019 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 7 Pages 4678-4683
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The ability of different materials to display self-limiting growth has recently attracted an enormous amount of attention because of the importance of nanoscale materials in applications for catalysis, energy conversion, (opto)-electronics, and so forth. Here, we show that the electrochemical deposition of palladium (Pd) between graphene oxide (GO) sheets result in the self-limiting growth of 5-nm-thick Pd nanosheets. The self-limiting growth is found to be a consequence of the strong interaction of Pd with the confining GO sheets, which results in the bulk growth of Pd being energetically unfavorable for larger thicknesses. Furthermore, we have successfully carried out liquid exfoliation of the resulting Pd-GO laminates to isolate Pd nanosheets and have demonstrated their high efficiency in continuous flow catalysis and electrocatalysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000475533900060 Publication Date 2019-06-07
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes ; This work was supported by the Royal Society, Engineering and Physical Sciences Research Council, U.K. (EP/S019367/1, EP/P025021/1, EP/K016946/1, and EP/ P009050/1), Graphene Flagship, and European Research Council (contract 679689 and EvoluTEM). We thank Dr. Sheng Zheng and Dr. K. S. Vasu at the University of Manchester for assisting us with sample preparation and characterization. The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. V.K.P. and C.H. are grateful for the resources and support provided via membership in the UK Catalysis Hub Consortium and funding by EPSRC (Portfolio grants EP/K014706/2, EP/K014668/1, EP/K014854/1, EP/K014714/1, and EP/I019693/1). F.M.P. and M.N.-A. acknowledge the support from the Flemish Science Foundation (FWO-Vl). ; Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:161245 Serial 5426
Permanent link to this record
 

 
Author Sreepal, V.; Yagmurcukardes, M.; Vasu, K.S.; Kelly, D.J.; Taylor, S.F.R.; Kravets, V.G.; Kudrynskyi, Z.; Kovalyuk, Z.D.; Patane, A.; Grigorenko, A.N.; Haigh, S.J.; Hardacre, C.; Eaves, L.; Sahin, H.; Geim, A.K.; Peeters, F.M.; Nair, R.R.
Title Two-dimensional covalent crystals by chemical conversion of thin van der Waals materials Type A1 Journal article
Year 2019 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 19 Issue 9 Pages 6475-6481
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Most of the studied two-dimensional (2D) materials have been obtained by exfoliation of van der Waals crystals. Recently, there has been growing interest in fabricating synthetic 2D crystals which have no layered bulk analogues. These efforts have been focused mainly on the surface growth of molecules in high vacuum. Here, we report an approach to making 2D crystals of covalent solids by chemical conversion of van der Waals layers. As an example, we used 2D indium selenide (InSe) obtained by exfoliation and converted it by direct fluorination into indium fluoride (InF3), which has a nonlayered, rhombohedral structure and therefore cannot possibly be obtained by exfoliation. The conversion of InSe into InF3 is found to be feasible for thicknesses down to three layers of InSe, and the obtained stable InF3 layers are doped with selenium. We study this new 2D material by optical, electron transport, and Raman measurements and show that it is a semiconductor with a direct bandgap of 2.2 eV, exhibiting high optical transparency across the visible and infrared spectral ranges. We also demonstrate the scalability of our approach by chemical conversion of large-area, thin InSe laminates obtained by liquid exfoliation, into InF3 films. The concept of chemical conversion of cleavable thin van der Waals crystals into covalently bonded noncleavable ones opens exciting prospects for synthesizing a wide variety of novel atomically thin covalent crystals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000486361900083 Publication Date 2019-08-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 32 Open Access
Notes ; This work was supported by the Royal Society, the European Research Council (contract 679689 and EvoluTEM 715502), and Engineering and Physical Sciences Research Council, U.K. (EP/N013670/1), The authors acknowledge the use of the facilities at the Henry Royce Institute for Advanced Materials and associated support services. H.S. acknowledges financial support from the Scientific and Technological Research Council of Turkey (TUBITAK) under Project No. 117F095. M.Y. acknowledges the Flemish Science Foundation (FWO-Vl) for a postdoctoral fellowship. S.J.H. and D.J.K. acknowledge support from EPSRC (EP/P009050/1) and the NowNANO CDT. ; Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:162818 Serial 5431
Permanent link to this record
 

 
Author Andelkovic, M.; Milovanović, S.P.; Covaci, L.; Peeters, F.M.
Title Double moiré with a twist : supermoiré in encapsulated graphene Type A1 Journal article
Year 2020 Publication (up) Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 2 Pages 979
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract A periodic spatial modulation, as created by a moire pattern, has been extensively studied with the view to engineer and tune the properties of graphene. Graphene encapsulated by hexagonal boron nitride (hBN) when slightly misaligned with the top and bottom hBN layers experiences two interfering moire patterns, resulting in a so-called supermoire (SM). This leads to a lattice and electronic spectrum reconstruction. A geometrical construction of the nonrelaxed SM patterns allows us to indicate qualitatively the induced changes in the electronic properties and to locate the SM features in the density of states and in the conductivity. To emphasize the effect of lattice relaxation, we report band gaps at all Dirac-like points in the hole doped part of the reconstructed spectrum, which are expected to be enhanced when including interaction effects. Our result is able to distinguish effects due to lattice relaxation and due to the interfering SM and provides a clear picture on the origin of recently experimentally observed effects in such trilayer heterostuctures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000514255400021 Publication Date 2020-01-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 33 Open Access OpenAccess
Notes ; This work was funded by FLAGERA project TRANS2DTMD and the Flemish Science Foundation (FWO-Vl) through a postdoc fellowship for S.P.M. The authors acknowledge useful discussions with W. Zihao and K. Novoselov. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:168685 Serial 6490
Permanent link to this record
 

 
Author Wang, H.; Su, L.; Yagmurcukardes, M.; Chen, J.; Jiang, Y.; Li, Z.; Quan, A.; Peeters, F.M.; Wang, C.; Geim, A.K.; Hu, S.
Title Blue energy conversion from holey-graphene-like membranes with a high density of subnanometer pores Type A1 Journal article
Year 2020 Publication (up) Nano Letters Abbreviated Journal Nano Lett
Volume 20 Issue 12 Pages 8634-8639
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Blue energy converts the chemical potential difference from salinity gradients into electricity via reverse electrodialysis and provides a renewable source of clean energy. To achieve high energy conversion efficiency and power density, nanoporous membrane materials with both high ionic conductivity and ion selectivity are required. Here, we report ion transport through a network of holey-graphene-like sheets made by bottom-up polymerization. The resulting ultrathin membranes provide controlled pores of <10 angstrom in diameter with an estimated density of about 10(12) cm(-2). The pores' interior contains NH2 groups that become electrically charged with varying pH and allow tunable ion selectivity. Using the holey-graphene-like membranes, we demonstrate power outputs reaching hundreds of watts per square meter. The work shows a viable route toward creating membranes with high-density angstrom-scale pores, which can be used for energy generation, ion separation, and related technologies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000599507100032 Publication Date 2020-11-12
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 29 Open Access
Notes ; The authors acknowledge supported from National Key Research and Development Program of China (2019YFA0705400, 2018YFA0209500), and National Natural Science Foundation of China (21972121, 21671162). M. Y. acknowledges the Flemish Science Foundation (FWO-Vl) postdoctoral fellowship. ; Approved Most recent IF: 10.8; 2020 IF: 12.712
Call Number UA @ admin @ c:irua:175048 Serial 6685
Permanent link to this record
 

 
Author Villarreal, R.; Lin, P.-C.; Faraji, F.; Hassani, N.; Bana, H.; Zarkua, Z.; Nair, M.N.; Tsai, H.-C.; Auge, M.; Junge, F.; Hofsaess, H.C.; De Gendt, S.; De Feyter, S.; Brems, S.; Ahlgren, E.H.; Neyts, E.C.; Covaci, L.; Peeters, F.M.; Neek-Amal, M.; Pereira, L.M.C.
Title Breakdown of universal scaling for nanometer-sized bubbles in graphene Type A1 Journal article
Year 2021 Publication (up) Nano Letters Abbreviated Journal Nano Lett
Volume 21 Issue 19 Pages 8103-8110
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract We report the formation of nanobubbles on graphene with a radius of the order of 1 nm, using ultralow energy implantation of noble gas ions (He, Ne, Ar) into graphene grown on a Pt(111) surface. We show that the universal scaling of the aspect ratio, which has previously been established for larger bubbles, breaks down when the bubble radius approaches 1 nm, resulting in much larger aspect ratios. Moreover, we observe that the bubble stability and aspect ratio depend on the substrate onto which the graphene is grown (bubbles are stable for Pt but not for Cu) and trapped element. We interpret these dependencies in terms of the atomic compressibility of the noble gas as well as of the adhesion energies between graphene, the substrate, and trapped atoms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000709549100026 Publication Date 2021-09-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access OpenAccess
Notes Approved Most recent IF: 12.712
Call Number UA @ admin @ c:irua:184137 Serial 6857
Permanent link to this record
 

 
Author Achari, A.; Bekaert, J.; Sreepal, V.; Orekhov, A.; Kumaravadivel, P.; Kim, M.; Gauquelin, N.; Pillai, P.B.; Verbeeck, J.; Peeters, F.M.; Geim, A.K.; Milošević, M.V.; Nair, R.R.
Title Alternating superconducting and charge density wave monolayers within bulk 6R-TaS₂ Type A1 Journal article
Year 2022 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 15 Pages 6268-6275
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Condensed Matter Theory (CMT)
Abstract Van der Waals (vdW) heterostructures continue to attract intense interest as a route of designing materials with novel properties that cannot be found in nature. Unfortunately, this approach is currently limited to only a few layers that can be stacked on top of each other. Here, we report a bulk vdW material consisting of superconducting 1H TaS2 monolayers interlayered with 1T TaS2 monolayers displaying charge density waves (CDW). This bulk vdW heterostructure is created by phase transition of 1T-TaS2 to 6R at 800 degrees C in an inert atmosphere. Its superconducting transition (T-c) is found at 2.6 K, exceeding the T-c of the bulk 2H phase. Using first-principles calculations, we argue that the coexistence of superconductivity and CDW within 6R-TaS2 stems from amalgamation of the properties of adjacent 1H and 1T monolayers, where the former dominates the superconducting state and the latter the CDW behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000831832100001 Publication Date 2022-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited 8 Open Access OpenAccess
Notes This work was supported by the Royal Society, the Leverhulme Trust (PLP-2018-220), the Engineering and Physical Sciences Research Council (EP/N005082/1), and European Research Council (contract 679689). The authors acknowledge the use of the facilities at the Henry Royce Institute and associated support services. J.B. is a postdoctoral fellow of Research Foundation-Flanders (FWO-Vlaanderen). Computational resources were provided by the VSC (Flemish Supercomputer Center), funded by the FWO and the Flemish Governmentdepartment EWI. This work was also performed under a transnational access provision funded by the European Union under the Horizon 2020 programme within a contract for Integrating Activities for Advanced Communities No 823717 − ESTEEM3; esteem3reported; esteem3jra Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:189495 Serial 7077
Permanent link to this record
 

 
Author Cai, J.; Griffin, E.; Guarochico-Moreira, V.; Barry, D.; Xin, B.; Huang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M.
Title Photoaccelerated water dissociation across one-atom-thick electrodes Type A1 Journal article
Year 2022 Publication (up) Nano letters Abbreviated Journal Nano Lett
Volume 22 Issue 23 Pages 9566-9570
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Recent experiments demonstrated that interfacial water dissociation (H2O ⇆ H+ + OH-) could be accelerated exponentially by an electric field applied to graphene electrodes, a phenomenon related to the Wien effect. Here we report an order-of-magnitude acceleration of the interfacial water dissociation reaction under visible-light illumination. This process is accompanied by spatial separation of protons and hydroxide ions across one-atom-thick graphene and enhanced by strong interfacial electric fields. The found photoeffect is attributed to the combination of graphene's perfect selectivity with respect to protons, which prevents proton-hydroxide recombination, and to proton transport acceleration by the Wien effect, which occurs in synchrony with the water dissociation reaction. Our findings provide fundamental insights into ion dynamics near atomically thin proton-selective interfaces and suggest that strong interfacial fields can enhance and tune very fast ionic processes, which is of relevance for applications in photocatalysis and designing reconfigurable materials.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 000892112200001 Publication Date 2022-11-30
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 10.8 Times cited Open Access OpenAccess
Notes Approved Most recent IF: 10.8
Call Number UA @ admin @ c:irua:192759 Serial 7330
Permanent link to this record
 

 
Author Xiang, F.; Gupta, A.; Chaves, A.; Krix, Z.E.; Watanabe, K.; Taniguchi, T.; Fuhrer, M.S.; Peeters, F.M.; Neilson, D.; Milošević, M.V.; Hamilton, A.R.
Title Intra-zero-energy Landau level crossings in bilayer graphene at high electric fields Type A1 Journal article
Year 2023 Publication (up) Nano letters Abbreviated Journal
Volume 23 Issue 21 Pages 9683-9689
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The highly tunable band structure of the zero-energy Landau level (zLL) of bilayer graphene makes it an ideal platform for engineering novel quantum states. However, the zero-energy Landau level at high electric fields has remained largely unexplored. Here we present magnetotransport measurements of bilayer graphene in high transverse electric fields. We observe previously undetected Landau level crossings at filling factors nu = -2, 1, and 3 at high electric fields. These crossings provide constraints for theoretical models of the zero-energy Landau level and show that the orbital, valley, and spin character of the quantum Hall states at high electric fields is very different from low electric fields. At high E, new transitions between states at nu = -2 with different orbital and spin polarization can be controlled by the gate bias, while the transitions between nu = 0 -> 1 and nu = 2 -> 3 show anomalous behavior.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001102148900001 Publication Date 2023-10-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access
Notes Approved Most recent IF: 10.8; 2023 IF: 12.712
Call Number UA @ admin @ c:irua:201200 Serial 9052
Permanent link to this record
 

 
Author Faraji, F.; Neyts, E.C.; Milošević, M.V.; Peeters, F.M.
Title Capillary Condensation of Water in Graphene Nanocapillaries Type A1 Journal Article
Year 2024 Publication (up) Nano Letters Abbreviated Journal Nano Lett.
Volume 24 Issue 18 Pages 5625-5630
Keywords A1 Journal Article; CMT
Abstract Recent experiments have revealed that the macroscopic Kelvin equation remains surprisingly accurate even for nanoscale capillaries. This phenomenon was so far explained by the oscillatory behavior of the solid−liquid interfacial free energy. We here demonstrate thermodynamic and capillarity inconsistencies with this explanation. After revising the Kelvin equation, we ascribe its validity at nanoscale confinement to the effect of disjoining pressure.

To substantiate our hypothesis, we employed molecular dynamics simulations to evaluate interfacial heat transfer and wetting properties. Our assessments unveil a breakdown in a previously established proportionality between the work of adhesion and the Kapitza conductance at capillary heights below 1.3 nm, where the dominance of the work of adhesion shifts primarily from energy to entropy. Alternatively, the peak density of the initial water layer can effectively probe the work of adhesion. Unlike under bulk conditions, high confinement renders the work of adhesion entropically unfavorable.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-05-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links
Impact Factor 10.8 Times cited Open Access
Notes This work was supported by Research Foundation-Flanders (FWO, project No. G099219N). The computational resources used in this work were provided by the HPC core facility CalcUA of the University of Antwerp, and the Flemish Supercomputer Center (VSC), funded by FWO and the Flemish Government. Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ lucian @ Serial 9123
Permanent link to this record
 

 
Author Li, C.; Lyu, Y.-Y.; Yue, W.-C.; Huang, P.; Li, H.; Li, T.; Wang, C.-G.; Yuan, Z.; Dong, Y.; Ma, X.; Tu, X.; Tao, T.; Dong, S.; He, L.; Jia, X.; Sun, G.; Kang, L.; Wang, H.; Peeters, F.M.; Milošević, M.V.; Wu, P.; Wang, Y.-L.
Title Unconventional superconducting diode effects via antisymmetry and antisymmetry breaking Type A1 Journal article
Year 2024 Publication (up) Nano letters Abbreviated Journal
Volume 24 Issue 14 Pages 4108-4116
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Symmetry breaking plays a pivotal role in unlocking intriguing properties and functionalities in material systems. For example, the breaking of spatial and temporal symmetries leads to a fascinating phenomenon: the superconducting diode effect. However, generating and precisely controlling the superconducting diode effect pose significant challenges. Here, we take a novel route with the deliberate manipulation of magnetic charge potentials to realize unconventional superconducting flux-quantum diode effects. We achieve this through suitably tailored nanoengineered arrays of nanobar magnets on top of a superconducting thin film. We demonstrate the vital roles of inversion antisymmetry and its breaking in evoking unconventional superconducting effects, namely a magnetically symmetric diode effect and an odd-parity magnetotransport effect. These effects are nonvolatilely controllable through in situ magnetization switching of the nanobar magnets. Our findings promote the use of antisymmetry (breaking) for initiating unconventional superconducting properties, paving the way for exciting prospects and innovative functionalities in superconducting electronics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001193010700001 Publication Date 2024-03-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record
Impact Factor 10.8 Times cited Open Access
Notes Approved Most recent IF: 10.8; 2024 IF: 12.712
Call Number UA @ admin @ c:irua:205553 Serial 9180
Permanent link to this record