toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reyntjens, P.D.; Tiwari, S.; van de Put, M.L.; Sorée, B.; Vandenberghe, W.G. url  doi
openurl 
  Title Ab-initio study of magnetically intercalated platinum diselenide : the impact of platinum vacancies Type A1 Journal article
  Year 2021 Publication (up) Materials Abbreviated Journal Materials  
  Volume 14 Issue 15 Pages 4167  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract We study the magnetic properties of platinum diselenide (PtSe2) intercalated with Ti, V, Cr, and Mn, using first-principle density functional theory (DFT) calculations and Monte Carlo (MC) simulations. First, we present the equilibrium position of intercalants in PtSe2 obtained from the DFT calculations. Next, we present the magnetic groundstates for each of the intercalants in PtSe2 along with their critical temperature. We show that Ti intercalants result in an in-plane AFM and out-of-plane FM groundstate, whereas Mn intercalant results in in-plane FM and out-of-plane AFM. V intercalants result in an FM groundstate both in the in-plane and the out-of-plane direction, whereas Cr results in an AFM groundstate both in the in-plane and the out-of-plane direction. We find a critical temperature of <0.01 K, 111 K, 133 K, and 68 K for Ti, V, Cr, and Mn intercalants at a 7.5% intercalation, respectively. In the presence of Pt vacancies, we obtain critical temperatures of 63 K, 32 K, 221 K, and 45 K for Ti, V, Cr, and Mn-intercalated PtSe2, respectively. We show that Pt vacancies can change the magnetic groundstate as well as the critical temperature of intercalated PtSe2, suggesting that the magnetic groundstate in intercalated PtSe2 can be controlled via defect engineering.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000682047700001 Publication Date 2021-07-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1996-1944 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.654 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.654  
  Call Number UA @ admin @ c:irua:180540 Serial 6966  
Permanent link to this record
 

 
Author Barhoum, A.; Van Assche, G.; Rahier, H.; Fleisch, M.; Bals, S.; Delplancked, M.-P.; Leroux, F.; Bahnemann, D. pdf  doi
openurl 
  Title Sol-gel hot injection synthesis of ZnO nanoparticles into a porous silica matrix and reaction mechanism Type A1 Journal article
  Year 2017 Publication (up) Materials & design Abbreviated Journal Mater Design  
  Volume 119 Issue 119 Pages 270-276  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Despite the enormous interest in the properties and applications of porous silica matrix, only a few attempts have been reported to deposit metal and metal oxide nanoparticles (NPs) inside the porous silica matrix. We report a simple approach (i.e. sol-gel hot injection) for insitu synthesis of ZnO NPs inside a porous silica matrix. Control of the Zn:Si molar ratio, reaction temperature, pH value, and annealing temperature permits formation of ZnO NPs (<= 10 nm) inside a porous silica particles, without additives or organic solvents. Results revealed that a solid state reaction inside the ZnO/SiO2 nanocomposites occurs with increasing the annealing temperature. The reaction of ZnO NPs with SiO2 matrix was insignificant up to approximately 500 degrees C. However, ZnO NPs react strongly with the silica matrix when the nanocomposites are annealed at temperatures above 700 degrees C. Extensive annealing of the ZnO/SiO2 nanocomposite at 900 degrees C yields 3D structures made of 500 nm rod-like, 5-7 pm tube-like and 35 pm needle-like Zn2SiO4 crystals. A possible mechanism for forming ZnO NPs inside porous silica matrix and phase transformation of the ZnO/SiO2 nanocomposites into 3D architectures of Zn2SiO4 are carefully discussed. (C) 2017 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000397360000030 Publication Date 2017-01-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 43 Open Access Not_Open_Access  
  Notes ; A.B. would like to thank FWO – Research Foundation Flanders (grant no. V450315N) and the Strategic Initiative Materials in Flanders (SBO-project no. 130529 – INSITU) for financial support. TEM and TEM-EDX analyses were performed by Dr. F. Leroux (EMAT, Universiteit Antwerpen). XRD and DSC measurements were performed by T. Segato (4MAT, Universite Libre de Bruxelles). Notes: the authors declare no competing for financial interest. ; Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:142394UA @ admin @ c:irua:142394 Serial 4689  
Permanent link to this record
 

 
Author Radi, A.; Khalil-Allafi, J.; Etminanfar, M.R.; Pourbabak, S.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Influence of stress aging process on variants of nano-N4Ti3precipitates and martensitic transformation temperatures in NiTi shape memory alloy Type A1 Journal article
  Year 2018 Publication (up) Materials & design Abbreviated Journal Mater Design  
  Volume 262 Issue 262 Pages 74-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In this study, the effect of a stress aging process on the microstructure and martensitic phase transformation of NiTi shape memory alloy has been investigated. NiTi samples were aged at 450 degrees C for 1 h and 5 h under different levels of external tensile stress of 15, 60 and 150 MPa. Transmission electron microscopy (TEM) was used to characterize different variants and morphology of precipitates. The results show that application of all stress levels restricts the formation of precipitates variants in the microstructure after I h stress aging process. However, all variants can be detected by prolonging aging time to 5 h at 15 MPa stress level and the variants formation is again restricted by increasing the stress level. Moreover, the stress aging process resulted in changing the shape of precipitates in comparison with that of the stress-free aged samples. Coffee-bean shaped morphologies were detected for precipitates in all stress levels. According to the Differential Scanning Calorimetry (DSC) results, the martensite start temperature (M-s) on cooling shifts to higher temperatures with increasing the tensile stress during the aging process. This can be related to the change ofaustenite to martensite interface energy due to the different volume fractions and variants of precipitates. (c) 2018 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2018-01-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.364  
  Call Number UA @ lucian @ c:irua:149854 Serial 4938  
Permanent link to this record
 

 
Author Montero-Sistiaga, M.L.; Pourbabak, S.; Van Humbeeck, J.; Schryvers, D.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microstructure and mechanical properties of Hastelloy X produced by HP-SLM (high power selective laser melting) Type A1 Journal article
  Year 2019 Publication (up) Materials & design Abbreviated Journal Mater Design  
  Volume 165 Issue Pages 107598  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In order to increase the production rate during selective laser melting (SLM), a high power laser with a large beam diameter is used to build fully dense Hastelloy X parts. Compared to SLM with a low power and small diameter beam, the productivity was increased from 6 mm3/s to 16 mm3/s, i.e. 2.6 times faster. Besides the productivity benefit, the influence of the use of a high power laser on the rapid solidification microstructure and concomitant material properties is highlighted. The current paper compares the microstructure and tensile properties of Hastelloy X built with low and high power lasers. The use of a high power laser results in wider and shallower melt pools inducing an enhanced morphological and crystallographic texture along the building direction (BD). In addition, the increased heat input results in coarser sub-grains or high density dislocation walls for samples processed with a high power laser. Additionally, the influence of hot isostatic pressing (HIP) as a post-processing technique was evaluated. After HIP, the tensile fracture strain increased as compared to the strain in the as-built state and helped in obtaining competitive mechanical properties as compared to conventionally processed Hastelloy X parts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000458259300020 Publication Date 2019-01-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.364 Times cited 15 Open Access OpenAccess  
  Notes This research was supported by the ENGIE Research and Technology Division. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine. S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. Approved Most recent IF: 4.364  
  Call Number EMAT @ emat @UA @ admin @ c:irua:157469 Serial 5176  
Permanent link to this record
 

 
Author Bignoli, F.; Rashid, S.; Rossi, E.; Jaddi, S.; Djemia, P.; Terraneo, G.; Li Bassi, A.; Idrissi, H.; Pardoen, T.; Sebastiani, M.; Ghidelli, M. url  doi
openurl 
  Title Effect of annealing on mechanical properties and thermal stability of ZrCu/O nanocomposite amorphous films synthetized by pulsed laser deposition Type A1 Journal article
  Year 2022 Publication (up) Materials & design Abbreviated Journal Mater Design  
  Volume 221 Issue Pages 110972-10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Binary ZrCu nanocomposite amorphous films are synthetized by pulsed laser deposition (PLD) under vac-uum (2 x 10-3 Pa) and 10 Pa He pressure, leading to fully amorphous compact and nanogranular mor-phologies, respectively. Then, post-thermal annealing treatments are carried out to explore thermal stability and crystallization phenomena together with the evolution of mechanical properties. Compact films exhibit larger thermal stability with partial crystallization phenomena starting at 420 degrees C, still to be completed at 550 degrees C, while nanogranular films exhibit early-stage crystallization at 300 degrees C and com-pleted at 485 degrees C. The microstructural differences are related to a distinct evolution of mechanical  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000886072100004 Publication Date 2022-07-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.4 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 8.4  
  Call Number UA @ admin @ c:irua:192194 Serial 7299  
Permanent link to this record
 

 
Author Kashiwar, A.; Arseenko, M.; Simar, A.; Idrissi, H. url  doi
openurl 
  Title On the role of microstructural defects on precipitation, damage, and healing behavior in a novel Al-0.5Mg2Si alloy Type A1 Journal article
  Year 2024 Publication (up) Materials & design Abbreviated Journal  
  Volume 239 Issue Pages 112765-112769  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract A recently developed healable Al-Mg2Si designed by the programmed damage and repair (PDR) strategy is studied considering the role microstructural defects play on precipitation, damage, and healing. The alloy incorporates sacrificial Mg2Si particles that precipitate after friction stir processing (FSP). They act as damage localization sites and are healable based on the solid-state diffusion of Al-matrix. A combination of different transmission electron microscopy (TEM) imaging techniques enabled the visualization and quantification of various crystallographic defects and the spatial distribution of Mg2Si precipitates. Intragrain nucleation is found to be the dominant mechanism for precipitation during FSP whereas grain boundaries and subgrain boundaries mainly lead to coarsening of the precipitates. The statistical and spatial analyses of the damaged particles have shown particle fracture as the dominant damage mechanism which is strongly dependent on the size and aspect ratio of the particles whereas the damage was not found to depend on the location of the precipitates within the matrix. The damaged particles are associated with dislocations accumulated around them. The interplay of these dislocations is directly visualized during healing based on in situ TEM heating which revealed recovery in the matrix as an operative mechanism during the diffusion healing of the PDR alloy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001194110200001 Publication Date 2024-02-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-1275; 1873-4197 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 8.4 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 8.4; 2024 IF: 4.364  
  Call Number UA @ admin @ c:irua:203298 Serial 9068  
Permanent link to this record
 

 
Author Zhou, C.; Ji, G.; Chen, Z.; Wang, M.; Addad, A.; Schryvers, D.; Wang, H. pdf  doi
openurl 
  Title Fabrication, interface characterization and modeling of oriented graphite flakes/Si/Al composites for thermal management applications Type A1 Journal article
  Year 2014 Publication (up) Materials and design Abbreviated Journal Mater Design  
  Volume 63 Issue Pages 719-728  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Highly thermally conductive graphite flakes (Gf)/Si/Al composites have been fabricated using Gf, Si powder and an AlSi7Mg0.3 alloy by an optimized pressure infiltration process for thermal management applications. In the composites, the layers of Gf were spaced apart by Si particles and oriented perpendicular to the pressing direction, which offered the opportunity to tailor the thermal conductivity (TC) and coefficient of thermal expansion (CTE) of the composites. Microstructural characterization revealed that the formation of a clean and tightly-adhered interface at the nanoscale between the side surface of the Gf and Al matrix, devoid of a detrimental Al4C3 phase and a reacted amorphous AlSiOC layer, contributed to excellent thermal performance along the alignment direction. With increasing volume fraction of Gf from 13.7 to 71.1 vol.%, the longitudinal (i.e. parallel to the graphite layers) TC of the composites increased from 179 to 526 W/m K, while the longitudinal CTE decreased from 12.1 to 7.3 ppm/K (matching the values of electronic components). Furthermore, the modified layers-in-parallel model better fitted the longitudinal TC data than the layers-in-parallel model and confirmed that the clean and tightly-adhered interface is favorable for the enhanced longitudinal TC.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Reigate Editor  
  Language Wos 000340949300086 Publication Date 2014-07-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0261-3069; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 61 Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:118124 Serial 1166  
Permanent link to this record
 

 
Author Espinoza Torres, C.; Condó, A.M.; Haberkorn, N.; Zelaya, E.; Schryvers, D.; Guimpel, J.; Lovey, F.C. pdf  url
doi  openurl
  Title Structures in textured Cu-Al-Ni shape memory thin films grown by sputtering Type A1 Journal article
  Year 2014 Publication (up) Materials characterization Abbreviated Journal Mater Charact  
  Volume 96 Issue Pages 256-262  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The structure and texture formation in CuAlNi thin films of different thicknesses (1 μm to 5 μm) grown by DC magnetron sputtering without any intentional heating of the substrate are reported. The as-grown films present grains with an average size of 20 nm. The films with thickness of 1 μm have a single metastable phase with a hexagonal structure and are textured with planes (0002) parallel to the plane of the films. It was observed that thicker films present phase coexistence between metastable hexagonal and body centered cubic structures with a gradual increment of the body centered cubic phase fraction. The films with thickness of 5 μm are textured with planes (0002) and View the MathML source101¯0 in the hexagonal structure, whereas in the body centered cubic structure the films are textured with {110} planes parallel to the plane of the films. This fact can be associated with self-heating of the substrate during the growth of the films and with the relative stability of the metastable phases. Free standing films annealed in a second step (1123 K for 1 h) present austenitic phase with L21 structure and sub-micrometric grains textured with {220}L21 planes parallel to the plane of the films. The martensitic transformation temperature was determined from the analysis of resistance against temperature measurements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000343346400032 Publication Date 2014-08-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes (CONICET PIP 11220090100457) and MINCYT-FWO International Exchange Project FW/09/03 is also acknowledged Approved Most recent IF: 2.714; 2014 IF: 1.845  
  Call Number UA @ lucian @ c:irua:118931 Serial 3321  
Permanent link to this record
 

 
Author Tirry, W.; Bouvier, S.; Benmhenni, N.; Hammami, W.; Habraken, A.M.; Coghe, F.; Schryvers, D.; Rabet, L. pdf  doi
openurl 
  Title Twinning in pure Ti subjected to monotonic simple shear deformation Type A1 Journal article
  Year 2012 Publication (up) Materials characterization Abbreviated Journal Mater Charact  
  Volume 72 Issue Pages 24-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The aim of this paper is to provide a thorough study on the occurrence and importance of deformation twinning in simple shear deformed pure α-Ti. A statistically relevant inspection of the morphology of the deformation twins in relation to the applied strain/deformation is performed. The investigated microstructural aspects are the twin volume fraction, the twin thickness distribution and the resolved shear stress distribution on the twin plane. All these aspects are examined as a function of the twin types and two initial textures. Monotonic simple shear experiments are carried out for three different loading directions with respect to a direction linked to the initial crystallographic texture. EBSD and TEM observations reveal the presence of View the MathML source and View the MathML source twins. The statistical analysis reveals that View the MathML source and View the MathML source twins have a similar average thickness around 1.9 nm, but the View the MathML source twins show a far larger spread on their thickness and can grow to almost the size of the original parent grain. Correlation of the twin fractions with the RSS analysis shows that RSS is an acceptable method explaining the difference in twin fractions for different textures and orientations. A detailed analysis shows that View the MathML source twins occur in average with a smaller volume fraction but with a higher RSS, indicating they are more difficult to nucleate or grow compared to View the MathML source twinning. In general a higher RSS value on the twin plane is not connected to a higher twin thickness; only in the case of View the MathML source twins the highest RSS values show clearly thicker twins.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000309086700004 Publication Date 2012-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 25 Open Access  
  Notes Iap Approved Most recent IF: 2.714; 2012 IF: 1.880  
  Call Number UA @ lucian @ c:irua:101225 Serial 3768  
Permanent link to this record
 

 
Author Li, K.; Idrissi, H.; Sha, G.; Song, M.; Lu, J.; Shi, H.; Wang, W.; Ringer, S.P.; Du, Y.; Schryvers, D. pdf  url
doi  openurl
  Title Quantitative measurement for the microstructural parameters of nano-precipitates in Al-Mg-Si-Cu alloys Type A1 Journal article
  Year 2016 Publication (up) Materials characterization Abbreviated Journal Mater Charact  
  Volume 118 Issue 118 Pages 352-362  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Size, number density and volume fraction of nano-precipitates are important microstructural parameters controlling the strengthening of materials. In this work a widely accessible, convenient, moderately time efficient method with acceptable accuracy and precision has been provided for measurement of volume fraction of nano-precipitates in crystalline materials. The method is based on the traditional but highly accurate technique of measuring foil thickness via convergent beam electron diffraction. A new equation is proposed and verified with the aid of 3-dimensional atom probe (3DAP) analysis, to compensate for the additional error resulted from the hardly distinguishable contrast of too short incomplete precipitates cut by the foil surface. The method can be performed on a regular foil specimen with a modem LaB6 or field-emission-gun transmission electron microscope. Precisions around +/- 16% have been obtained for precipitate volume fractions of needle-like beta ''/C and Q precipitates in an aged Al-Mg-Si-Cu alloy. The measured number density is dose to that directly obtained using 3DAP analysis by a misfit of 45%, and the estimated precision for number density measurement is about +/- 11%. The limitations of the method are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000383292000042 Publication Date 2016-06-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 9 Open Access  
  Notes This work is financially supported by National Natural Science Foundation of China (51501230 and 51531009) and Postdoctoral Science Foundation of Central South University (502042057). H.I. acknowledges the IAP program of the Belgian State Federal Office for Scientific, Technical and Cultural Affairs under Contract No. P7/21 and FWO project G.0576.09N. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @ c:irua:137171 Serial 4334  
Permanent link to this record
 

 
Author Du, C.; Hoefnagels, J.P.M.; Kolling, S.; Geers, M.G.D.; Sietsma, J.; Petrov, R.; Bliznuk, V.; Koenraad, P.M.; Schryvers, D.; Amin-Ahmadi, B. pdf  doi
openurl 
  Title Martensite crystallography and chemistry in dual phase and fully martensitic steels Type A1 Journal article
  Year 2018 Publication (up) Materials characterization Abbreviated Journal Mater Charact  
  Volume 139 Issue Pages 411-420  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Lath martensite is important in industry because it is the key strengthening component in many advanced high strength steels. The study of crystallography and chemistry of lath martensite is extensive in the literature, however, mostly based on fully martensitic steels. In this work, lath martensite in dual phase steels is investigated with a focus on the substructure identification of the martensite islands and microstructural bands using electron backscattered diffraction, and on the influence of the accompanied tempering process during industrial coating process on the distribution of alloying elements using atom probe tomography. Unlike findings for the fully martensitic steels, no martensite islands with all 24 Kurdjumov-Sachs variants have been observed. Almost all martensite islands contain only one main packet with all six variants and minor variants from the remaining three packets of the same prior austenite grain. Similarly, the martensite bands are typically composed of connected domains originating from prior austenite grains, each containing one main packets (mostly with all variants) and few separate variants. The effect of tempering at similar to 450 degrees C (due to the industrial zinc coating process) has also been investigated. The results show a strong carbon partitioning to lath boundaries and Cottrell atmospheres at dislocation core regions due to the thermal process of coating. In contrast, auto-tempering contributes to the carbon redistribution only in a limited manner. The substitutional elements are all homogenously distributed. The phase transformation process has two effects on the material: mechanically, the earlier-formed laths are larger and softer and therefore more ductile (as revealed by nanoindentation); chemically, due to the higher dislocation density inside the later-formed laths, which are generally smaller, carbon Cottrell atmospheres are predominantly observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York Editor  
  Language Wos 000431469300044 Publication Date 2018-03-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.714  
  Call Number UA @ lucian @ c:irua:151554 Serial 5033  
Permanent link to this record
 

 
Author Pourbabak, S.; Montero-Sistiaga, M.L.; Schryvers, D.; Van Humbeeck, J.; Vanmeensel, K. pdf  url
doi  openurl
  Title Microscopic investigation of as built and hot isostatic pressed Hastelloy X processed by Selective Laser Melting Type A1 Journal article
  Year 2019 Publication (up) Materials characterization Abbreviated Journal Mater Charact  
  Volume 153 Issue Pages 366-371  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Microstructural characteristics of Hastelloy X produced by Selective Laser Melting have been investigated by various microscopic techniques in the as built (AB) condition and after hot isostatic pressing (HIP). At sub-grain level the AB material consists of columnar high density dislocation cells while the HIP sample consists of columnar sub-grains with lower dislocation density that originate from the original dislocation cells, contradicting existing models. The sub-grains contain nanoscale precipitates enriched in Al, Ti, Cr and O, located at sub-grain boundaries in the AB condition and within the grains after HIP. At some grain boundaries, micrometer sized chromium carbides are detected after HIP. Micro hardness within the grains was found to decrease after HIP, which was attributed to the decrease in dislocation density due to recovery annealing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000472696900040 Publication Date 2019-05-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited 2 Open Access Not_Open_Access  
  Notes S.P. likes to thank the Flemish Science Foundation FWO for financial support under Project G.0366.15N. The authors acknowledge ENGIE Research and Technology Division for the use of the SLM280HL machine and financial support. This work was also made possible through the AUHA13009 grant “TopSPIN for TEM nanostatistics” of the Flemish HERCULES foundation. Approved Most recent IF: 2.714  
  Call Number EMAT @ emat @UA @ admin @ c:irua:159974 Serial 5178  
Permanent link to this record
 

 
Author Charalampopoulou, E.; Lambrinou, K.; Van der Donck, T.; Paladino, B.; Di Fonzo, F.; Azina, C.; Eklund, P.; Mraz, S.; Schneider, J.M.; Schryvers, D.; Delville, R. pdf  url
doi  openurl
  Title Early stages of dissolution corrosion in 316L and DIN 1.4970 austenitic stainless steels with and without anticorrosion coatings in static liquid lead-bismuth eutectic (LBE) at 500 degrees C Type A1 Journal article
  Year 2021 Publication (up) Materials Characterization Abbreviated Journal Mater Charact  
  Volume 178 Issue Pages 111234  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This work addresses the early stages (<= 1000 h) of the dissolution corrosion behavior of 316L and DIN 1.4970 austenitic stainless steels in contact with oxygen-poor (C-O < 10(-8) mass%), static liquid lead-bismuth eutectic (LBE) at 500 degrees C for 600-1000 h. The objective of this study was to determine the relative early-stage resistance of the uncoated steels to dissolution corrosion and to assess the protectiveness of select candidate coatings (Cr2AlC, Al2O3, V2AlxCy). The simultaneous exposure of steels with intended differences in microstructure and thermomechanical state showed the effects of steel grain size, density of annealing/deformation twins, and secondary precipitates on the steel dissolution corrosion behavior. The findings of this study provide recommendations on steel manufacturing with the aim of using the steels to construct Gen-IV lead-cooled fast reactors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000752582700001 Publication Date 2021-06-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.714 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 2.714  
  Call Number UA @ admin @ c:irua:186509 Serial 7061  
Permanent link to this record
 

 
Author Krishnamurthy, S.C.; Arseenko, M.; Kashiwar, A.; Dufour, P.; Marchal, Y.; Delahaye, J.; Idrissi, H.; Pardoen, T.; Mertens, A.; Simar, A. pdf  url
doi  openurl
  Title Controlled precipitation in a new Al-Mg-Sc alloy for enhanced corrosion behavior while maintaining the mechanical performance Type A1 Journal article
  Year 2023 Publication (up) Materials characterization Abbreviated Journal  
  Volume 200 Issue Pages 112886-11  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The hot working of 5xxx series alloys with Mg ≥3.5 wt% is a concern due to the precipitation of β (Al3Mg2) phase at grain boundaries favoring Inter Granular Corrosion (IGC). The mechanical and corrosion properties of a new 5028-H116 Al-Mg-Sc alloy under various β precipitates distribution is analyzed by imposing different cooling rates from the hot forming temperature (i.e. 325 °C). The mechanical properties are maintained regardless of the heat treatment. However, the different nucleation sites and volume fractions of β precipitates for different cooling rates critically affect IGC. Controlled furnace cooling after the 325 °C heat treatment is ideal in 5028-H116 alloy to reduce susceptibility to IGC after sensitization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000977059100001 Publication Date 2023-04-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1044-5803 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.7 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 4.7; 2023 IF: 2.714  
  Call Number UA @ admin @ c:irua:195598 Serial 7291  
Permanent link to this record
 

 
Author Tit, N.; Al Ezzi, M.M.; Abdullah, H.M.; Yusupov, M.; Kouser, S.; Bahlouli, H.; Yamani, Z.H. pdf  url
doi  openurl
  Title Detection of CO2 using CNT-based sensors: Role of Fe catalyst on sensitivity and selectivity Type A1 Journal article
  Year 2017 Publication (up) Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 186 Issue 186 Pages 353-364  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The adsorption of CO2 on surfaces of graphene and carbon nanotubes (CNTs), decorated with Fe atoms, are investigated using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, neglecting the heat effects. Fe ad-atoms are more stable when they are dispersed on hollow sites. They introduce a large density of states at the Fermi level (N-F); where keeping such density low would help in gas sensing. Furthermore, the Fe ad-atom can weaken the C=O double bonds of the chemisorbed CO2 molecule, paving the way for oxygen atoms to drain more charges from Fe. Consequently, chemisorption of CO2 molecules reduces both N-F and the conductance while it enhances the sensitivity with the increasing gas dose. Conducting armchair CNTs (ac-CNTs) have higher sensitivity than graphene and semiconducting zigzag CNTs (zz-CNT5). Comparative study of sensitivity of ac-CNT-Fe composite towards various gases (e.g., O-2, N-2, H-2, H2O, CO and CO2) has shown high sensitivity and selectivity towards CO, CO2 and H2O gases. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000390621200044 Publication Date 2016-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 17 Open Access Not_Open_Access  
  Notes Approved Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:140333 Serial 4465  
Permanent link to this record
 

 
Author De Dobbelaere, C.; Lourdes Calzada, M.; Bretos, I.; Jimenez, R.; Ricote, J.; Hadermann, J.; Hardy, A.; Van Bael, M.K. doi  openurl
  Title Gaining new insight into low-temperature aqueous photochemical solution deposited ferroelectric PbTiO3 films Type A1 Journal article
  Year 2016 Publication (up) Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 174 Issue Pages 28-40  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The nature of the low-temperature photochemical assisted formation process of ferroelectric lead titanate (PbTiO3) films is studied in the present work. Films are obtained by the deposition of an aqueous solution containing citric acid based (citrato) metal ion complexes with intrinsic UV activity. This UV activity is crucial for the aqueous photochemical solution deposition (aqueous PCSD) route being used. UV irradiation enhances the early decomposition of organics and results in improved electrical properties for the crystalline oxide film, even if the film is crystallized at low temperature. GATR-FTIR shows that UV irradiation promotes the decomposition of organic precursor components, resulting in homogeneous films if applied in the right temperature window during film processing. The organic content, morphology and crystallinity of the irradiated films, achieved at different processing atmospheres and temperatures, is studied and eventually correlated to the functional behavior of the obtained films. This is an important issue, as crystalline films obtained at low temperatures often lack ferroelectric responses. In this work, the film prepared in pure oxygen at the very low temperature of 400 degrees C and after an optimized UV treatment presents a significant remanent polarization value of P-r = 8.8 mu C cm(-2). This value is attributed to the better crystallinity, the larger grain size and the reduced porosity obtained thanks to the early film crystallization effectively achieved through the UV treatment in oxygen. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000373865700005 Publication Date 2016-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.084  
  Call Number UA @ lucian @ c:irua:144729 Serial 4659  
Permanent link to this record
 

 
Author Batuk, D.; de Dobbelaere, C.; Tsirlin, A.A.; Abakumov, A.M.; Hardy, A.; van Bael, M.K.; Greenblatt, M.; Hadermann, J. pdf  doi
openurl 
  Title Crystal structure and magnetic properties of the Cr-doped spiral antiferromagnet BiMnFe2O6 Type A1 Journal article
  Year 2013 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 48 Issue 9 Pages 2993-2997  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report the Cr3+ for Mn3+ substitution in the BiMnFe2O6 structure. The BiCrxMn1-xFe2O6 solid solution is obtained by the solution-gel synthesis technique for the x values up to 0.3. The crystal structure investigation using a combination of X-ray powder diffraction and transmission electron microscopy demonstrates that the compounds retain the parent BiMnFe2O6 structure (for x = 0.3, a = 5.02010(6)angstrom, b = 7.06594(7)angstrom, c = 12.6174(1)angstrom, S.G. Pbcm, R-1 = 0.036, R-p = 0.011) with only a slight decrease in the cell parameters associated with the Cr3+ for Mn3+ substitution. Magnetic susceptibility measurements suggest strong similarities in the magnetic behavior of BiCrxMn1-xFe2O6 (x = 0.2; 0.3) and parent BiMnFe2O6. Only T-N slightly decreases upon Cr doping that indicates a very subtle influence of Cr3+ cations on the magnetic properties at the available substitution rates. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000002 Publication Date 2013-04-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 3 Open Access  
  Notes Fwo Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109755 Serial 561  
Permanent link to this record
 

 
Author Serov, T.V.; Dombrovski, E.N.; Ardashnikova, E.I.; Dolgikh, V.A.; el Omari, M.; el Omari, M.; Abaouz, A.; Senegas, J.; Chaban, N.G.; Abakumov, A.M.; Van Tendeloo, G. pdf  doi
openurl 
  Title Fluorite-like phases in the BaF2-BiF3-Bi2O3 system-synthesis, conductivity and defect clustering Type A1 Journal article
  Year 2005 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 40 Issue 5 Pages 821-830  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000229376500012 Publication Date 2005-03-01  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 4 Open Access  
  Notes Iap V-1 Approved Most recent IF: 2.446; 2005 IF: 1.380  
  Call Number UA @ lucian @ c:irua:54838 Serial 1240  
Permanent link to this record
 

 
Author Hardy, A.; Van Elshocht, S.; De Dobbelaere, C.; Hadermann, J.; Pourtois, G.; De Gendt, S.; Afanas'ev, V.V.; Van Bael, M.K. pdf  doi
openurl 
  Title Properties and thermal stability of solution processed ultrathin, high-k bismuth titanate (Bi2Ti2O7) films Type A1 Journal article
  Year 2012 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 47 Issue 3 Pages 511-517  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Ultrathin bismuth titanate films (Bi2Ti2O7, 5-25 nm) are deposited onto SiO2/Si substrates by aqueous chemical solution deposition and their evolution during annealing is studied. The films crystallize into a preferentially oriented, pure pyrochlore phase between 500 and 700 degrees C, depending on the film thickness and the total thermal budget. Crystallization causes a strong increase of surface roughness compared to amorphous films. An increase of the interfacial layer thickness is observed after anneal at 600 degrees C, together with intermixing of bismuth with the substrate as shown by TEM-EDX. The band gap was determined to be similar to 3 eV from photoconductivity measurements and high dielectric constants between 30 and 130 were determined from capacitance voltage measurements, depending on the processing conditions. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000301994100001 Publication Date 2012-01-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited Open Access  
  Notes Approved Most recent IF: 2.446; 2012 IF: 1.913  
  Call Number UA @ lucian @ c:irua:97797 Serial 2727  
Permanent link to this record
 

 
Author Laffez, P.; Van Tendeloo, G.; Millange, F.; Caignaert, V.; Hervieu, M.; Raveau, B. pdf  doi
openurl 
  Title Structural phase transition at low temperature, corresponding to charge ordering in the CMR perovskites LN0.5A0.5MNO3 Type A1 Journal article
  Year 1996 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 31 Issue 8 Pages 905-911  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The magneto resistive perovskites Nd0.5Sr0.5MnO3 and Pr0.5Sr0.41Ca0.09MnO3 undergo a transition from anti ferromagnetic insulator to ferromagnetic metal as function of temperature. The room temperature phase is orthorhombic with the space group Imma and the cell parameters a approximate to root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p). A structural phase transition related to charge ordering accompanying the transition from ferromagnetic state to antiferromagnetic state has been evidenced by low temperature electron diffraction. This transition is reversible and a new superstructure, with a P-type orthorhombic cell. and lattice parameters parameters a approximate to 2 root 2a(p), b approximate to 2a(p), and c approximate to root 2a(p), is formed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1996UZ37300002 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.288 Times cited 25 Open Access  
  Notes Approved  
  Call Number UA @ lucian @ c:irua:99650 Serial 3246  
Permanent link to this record
 

 
Author Batuk, M.; Tyablikov, O.A.; Tsirlin, A.A.; Kazakov, S.M.; Rozova, M.G.; Pokholok, K.V.; Filimonov, D.S.; Antipov, E.V.; Abakumov, A.M.; Hadermann, J. pdf  doi
openurl 
  Title Structure and magnetic properties of a new anion-deficient perovskite Pb2Ba2BiFe4ScO13 with crystallographic shear structure Type A1 Journal article
  Year 2013 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 48 Issue 9 Pages 3459-3465  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Pb2Ba2BiFe4ScO13, a new n = 5 member of the oxygen-deficient perovskite-based A(n)B(n)O(3n-2) homologous series, was synthesized using a solid-state method. The crystal structure of Pb2Ba2BiFe4ScO13 was investigated by a combination of synchrotron X-ray powder diffraction, electron diffraction, high-angle annular dark-field scanning transmission electron microscopy and Mossbauer spectroscopy. At 900 K, it crystallizes in the Ammm space group with the unit cell parameters a = 5.8459(1) angstrom, b = 4.0426(1) angstrom, and c=27.3435(1) angstrom. In the Pb2Ba2BiFe4ScO13 structure, quasi-two-dimensional perovskite blocks are periodically interleaved with 1/2[1 1 0] ((1) over bar 0 1)(p) crystallographic shear (CS) planes. At the CS planes, the corner-sharing FeO6 octahedra are transformed into chains of edge-sharing FeO5 distorted tetragonal pyramids. B-positions of the perovskite blocks between the CS planes are jointly occupied by Fe3+ and Sc3+. The chains of the FeO5 pyramids and (Fe,Sc)O-6 octahedra delimit six-sided tunnels that are occupied by double columns of cations with a lone electron pair (Pb2+). The remaining A-cations (Bi3+, Ba2+) occupy positions in the perovskite block. According to the magnetic susceptibility measurements, Pb2Ba2BiFe4ScO13 is antiferromagnetically ordered below T-N approximate to 350 K. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000322354000076 Publication Date 2013-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 2 Open Access  
  Notes Approved Most recent IF: 2.446; 2013 IF: 1.968  
  Call Number UA @ lucian @ c:irua:109756 Serial 3282  
Permanent link to this record
 

 
Author Schuddinck, W.; Van Tendeloo, G.; Hervieu, M.; Floros, N.; Raveau, B. doi  openurl
  Title Structure of the hexagonal 16l perovskites Ba4Ca0.9Mn3.1O11.3 and Ba4Ca0.5Mn3Cu0.5O12-\delta by high-resolution electron microscopy Type A1 Journal article
  Year 2001 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 36 Issue 15 Pages 2689-2700  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000172705000014 Publication Date 2002-07-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.446; 2001 IF: 0.715  
  Call Number UA @ lucian @ c:irua:54837 Serial 3314  
Permanent link to this record
 

 
Author Teodorescu, V.S.; Nistor, L.C.; van Landuyt, J.; Dinescu, M. pdf  doi
openurl 
  Title TEM study of laser induced phase transition in iron thin films Type A1 Journal article
  Year 1994 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 29 Issue 1 Pages 63-71  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Laser induced phase transition from b.c.c.(alpha) to f.c.c.(gamma) iron thin films is studied by high resolution TEM. The iron film has been covered on both sides with carbon layers to protect it against oxidation. Single pulse, tau FWHM = 20ns KrF (lambda = 248nm) excimer laser irradiation was performed in air with the film on the substrate. The laser pulse acts like a heat pulse followed by a rapid quenching revealing sequential aspects of the phase transition process. The presence of a fine mixture of the alpha + gamma phases between the alpha and gamma regions of the film has been interpreted as an incomplet transformation. The results are explained by assuming that the transformation took place via a phonon drag mechanism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos A1994ML03000008 Publication Date 2003-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.288 Times cited 2 Open Access  
  Notes Approved no  
  Call Number UA @ lucian @ c:irua:99945 Serial 3488  
Permanent link to this record
 

 
Author Prituzhalov, V.A.; Abakumov, A.M.; Ardashnikova, E.I.; Dolgikh, V.A.; Van Tendeloo, G. doi  openurl
  Title :Ba2.1Bi0.9(O, F)6.8-\delta: a new ordered anion-excess fluorite Type A1 Journal article
  Year 2007 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 42 Issue 5 Pages 861-869  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000245842600010 Publication Date 2006-10-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 4 Open Access  
  Notes Approved Most recent IF: 2.446; 2007 IF: 1.484  
  Call Number UA @ lucian @ c:irua:64724 Serial 3515  
Permanent link to this record
 

 
Author Rozova, M.G.; Grigoriev, V.V.; Tyablikov, O.A.; Filimonov, D.S.; Zakharov, K.V.; Volkova, O.S.; Vasiliev, A.N.; Antipov, E.V.; Abakumov, A.M. pdf  doi
openurl 
  Title Doping of Bi4Fe5O13F with pentagonal Cairo lattice with Cr and Mn: Synthesis, structure and magnetic properties Type A1 Journal article
  Year 2017 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 87 Issue 87 Pages 54-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The substitution of Cr3+ and Mn3+ for Fe3+ in the Bi4Fe6O13F oxyfluoride featuring the magnetically frustrated pentagonal Cairo lattice is reported. Bi4Fe4.1Cr0.9O13F and BiFe4.2Mn0.8O13F have been prepared using a solid state reaction in inert atmosphere. Their crystal structures were studied with transmission electron microscopy, powder X-ray diffraction and Fe-57 Mossbauer spectroscopy (S.G. P4(2)/mbc, a = 8.27836(2)angstrom, c = 18.00330(9) angstrom, R-F = 0.031 (Bi4Fe4.1Cr0.9O13F)), a= 8.29535(3)angstrom, c= 18.0060(1)angstrom, R-F = 0.027 (Bi4Fe4.1Cr0.9O13F)). The structures are formed by infinite rutile-like chains of the edge sharing BO6 octahedra (B transition metal cations) linked by the Fe2O7 groups of two corner-sharing tetrahedra. The"voids in thus formed framework are occupied by the Bi4F tetrahedra. The Fe-57 Mossbauer spectroscopy reveals that Cr3+ and Mn3+ replace Fe3+. exclusively at the octahedral positions. The Mn- and Cr-doped compounds demonstrate antiferromagnetic ordering below T-N =165 K and 120 K, respectively. (C) 2016 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000392681800009 Publication Date 2016-11-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 1 Open Access Not_Open_Access  
  Notes ; The work has been supported by the Russian Science Foundation (grant 14-13-00680). ; Approved Most recent IF: 2.446  
  Call Number UA @ lucian @ c:irua:141535 Serial 4498  
Permanent link to this record
 

 
Author Venturi, F.; Calizzi, M.; Bals, S.; Perkisas, T.; Pasquini, L. pdf  doi
openurl 
  Title Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates Type A1 Journal article
  Year 2015 Publication (up) Materials research express Abbreviated Journal Mater Res Express  
  Volume 2 Issue 2 Pages 015007  
  Keywords A1 Journal article; Engineering Management (ENM); Electron microscopy for materials research (EMAT)  
  Abstract Magnesium nanoparticles (NPs) with initial size in the 10-50 nmrange were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000369978500007 Publication Date 2014-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 14 Open Access Not_Open_Access  
  Notes ; Financial support by COST Action MP1103 'Nanostructured Materials for Solid-State Hydrogen Storage' is gratefully acknowledged. ; Approved Most recent IF: 1.068; 2015 IF: NA  
  Call Number UA @ lucian @ c:irua:132275 Serial 4240  
Permanent link to this record
 

 
Author Gul, A.; Bacaksiz, C.; Unsal, E.; Akbali, B.; Tomak, A.; Zareie, H.M.; Sahin, H. doi  openurl
  Title Theoretical and experimental investigation of conjugation of 1,6-hexanedithiol on MoS2 Type A1 Journal article
  Year 2018 Publication (up) Materials Research Express Abbreviated Journal Mater Res Express  
  Volume 5 Issue 3 Pages 036415  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We report an experimental and theoretical investigation of conjugation of 1,6-Hexaneditihiol (HDT) on MoS2 which is prepared by mixing MoS2 structure and HDT molecules in proper solvent. Raman spectra and the calculated phonon bands reveal that the HDT molecules bind covalently to MoS2. Surface morphology of MoS2/HDTstructure is changed upon conjugation ofHDTon MoS2 and characterized by using Scanning Electron Microscope (SEM). Density Functional Theory (DFT) based calculations show that HOMO-LUMO band gap of HDT is altered after the conjugation and two-S binding (handle-like) configuration is energetically most favorable among three different structures. This study displays that the facile thiol functionalization process of MoS2 is promising strategy for obtaining solution processable MoS2.  
  Address  
  Corporate Author Thesis  
  Publisher IOP Publishing Place of Publication Bristol Editor  
  Language Wos 000428781400003 Publication Date 2018-03-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2053-1591 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.068 Times cited 2 Open Access  
  Notes ; Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). HS acknowledges financial support from the TUBITAK under the project number 116C073. HS acknowledges support from Bilim Akademisi-The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 1.068  
  Call Number UA @ lucian @ c:irua:154607UA @ admin @ c:irua:154607 Serial 5133  
Permanent link to this record
 

 
Author Vishwakarma, M.; Varandani, D.; Hendrickx, M.; Hadermann, J.; Mehta, B.R. url  doi
openurl 
  Title Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy Type A1 Journal article
  Year 2020 Publication (up) Materials Research Express Abbreviated Journal  
  Volume 7 Issue 1 Pages 016418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work, kelvin probe force microscopy (KPFM) technique has been used to study the CZTSe/CuxSe bilayer interface prepared by multi-step deposition and selenization process of metal precursors. Transmission electron microscopy (TEM) confirmed the bilayer configuration of the CZTSe/CuxSe sample. Two configuration modes (surface mode and junction mode) in KPFM have been employed in order to measure the junction voltage under illumination conditions. The results show that CZTSe/CuxSe has small junction voltage of similar to 21 mV and the presence of CuxSe secondary phase in the CZTSe grain boundaries changes the workfunction of the local grain boundaries region. The negligible photovoltage difference between grain and grain boundaries in photovoltage image indicates that CuxSe phase deteriorates the higher photovoltage at grain boundaries normally observed in CZTSe based device. These results can be important for understanding the role of secondary phases in CZTSe based junction devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000520120900001 Publication Date 2019-12-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes ; Authors acknowledges support provided DST in the forms of InSOL and Indo-Swiss projects. We also acknowledge Joke Hadermann EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Belgium for helping in TEM measurements. M V Manoj Vishwakarma acknowledges IIT Delhi for MHRD fellowship. Prof B R Mehta acknowledges the support of the Schlumberger chair professorship. M V also acknowledges the support of DST-FIST Raman facility. ; Approved Most recent IF: NA  
  Call Number UA @ admin @ c:irua:167843 Serial 6567  
Permanent link to this record
 

 
Author Mahr, C.; Müller-Caspary, K.; Graf, M.; Lackmann, A.; Grieb, T.; Schowalter, M.; Krause, F.F.; Mehrtens, T.; Wittstock, A.; Weissmueller, J.; Rosenauer, A. doi  openurl
  Title Measurement of local crystal lattice strain variations in dealloyed nanoporous gold Type A1 Journal article
  Year 2018 Publication (up) Materials research letters Abbreviated Journal Mater Res Lett  
  Volume 6 Issue 1 Pages 84-92  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Reversible macroscopic length changes in nanoporous structures can be achieved by applying electric potentials or by exposing them to different gases or liquids. Thus, these materials are interesting candidates for applications as sensors or actuators. Macroscopic length changes originate from microscopic changes of crystal lattice parameters. In this report, we show spatially resolved measurements of crystal lattice strain in dealloyed nanoporous gold. The results confirm theory by indicating a compression of the lattice along the axis of cylindrically shaped ligaments and an expansion in radial direction. Furthermore, we show that curved npAu surfaces show inward relaxation of the surface layer. [GRAPHICS] .  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Abingdon Editor  
  Language Wos 000428141500013 Publication Date 2017-11-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2166-3831 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.773 Times cited 4 Open Access Not_Open_Access  
  Notes ; This work has been supported by the Deutsche Forschungsgemeinschaft (DFG) under contracts no. RO2057/12-1 (SP 6), WI4497/1-1 (SP 2) and WE1424/17-1 (SP 3) within the research unit FOR2213 (www.nagocat.de). K.M.-C acknowledges support by the DFG under contract no. MU3660/1-1 and T.G. under contract no. RO2057/ 11-1. ; Approved Most recent IF: 4.773  
  Call Number UA @ lucian @ c:irua:150921 Serial 4973  
Permanent link to this record
 

 
Author Mortet, V.; Zhang, L.; Echert, M.; Soltani, A.; d' Haen, J.; Douheret, O.; Moreau, M.; Osswald, S.; Neyts, E.; Troadec, D.; Wagner, P.; Bogaerts, A.; Van Tendeloo, G.; Haenen, K. doi  openurl
  Title Characterization of nano-crystalline diamond films grown under continuous DC bias during plasma enhanced chemical vapor deposition Type A3 Journal article
  Year 2009 Publication (up) Materials Research Society symposium proceedings Abbreviated Journal  
  Volume Issue 1203 Pages  
  Keywords A3 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Nanocrystalline diamond films have generated much interested due to their diamond-like properties and low surface roughness. Several techniques have been used to obtain a high re-nucleation rate, such as hydrogen poor or high methane concentration plasmas. In this work, the properties of nano-diamond films grown on silicon substrates using a continuous DC bias voltage during the complete duration of growth are studied. Subsequently, the layers were characterised by several morphological, structural and optical techniques. Besides a thorough investigation of the surface structure, using SEM and AFM, special attention was paid to the bulk structure of the films. The application of FTIR, XRD, multi wavelength Raman spectroscopy, TEM and EELS yielded a detailed insight in important properties such as the amount of crystallinity, the hydrogen content and grain size. Although these films are smooth, they are under a considerable compressive stress. FTIR spectroscopy points to a high hydrogen content in the films, while Raman and EELS indicate a high concentration of sp2 carbon. TEM and EELS show that these films consist of diamond nano-grains mixed with an amorphous sp2 bonded carbon, these results are consistent with the XRD and UV Raman spectroscopy data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wuhan Editor  
  Language Wos Publication Date 2010-03-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1946-4274; ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:81646 Serial 327  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: