toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Van Dael, M.; Marquez, N.; Reumerman, P.; Pelkmans, L.; Kuppens, T.; Van Passel, S. doi  openurl
  Title Development and techno-economic evaluation of a biorefinery based on biomass (waste) streams : case study in the Netherlands Type A1 Journal article
  Year 2014 Publication (up) Biofuels Bioproducts & Biorefining-Biofpr Abbreviated Journal Biofuel Bioprod Bior  
  Volume 8 Issue 5 Pages 635-644  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract In this paper, the technical and economic advantages of combining conversion technologies into a multi-dimensional plant primarily using regional biomass residues are investigated. The main objective is to show how locally available biomass can be used more efficiently as a source for renewable energy and bio-based products. Therefore, not only is the theoretical perspective considered, but also a reality check for the local situation is taken into account. Although industrial attitude toward biorefineries is positive, the efficient production of a portfolio of bio-based products has not yet been implemented. A biorefinery concept for Moerdijk (the Netherlands) was developed, focusing on grass refining, production of pyrolysis oil, biodiesel production, and bio-LNG production. Grass refining is the most experimental technique of all proposed conversion techniques. In terms of development, pyrolysis oil and bio-LNG production are in the demonstration phase. Anaerobic digestion and biodiesel production are proven techniques. It is shown that this concept allows for synergies with regard to the utilization of residue flows from internal processes. Furthermore, it is demonstrated that by integrating different conversion technologies, an economically feasible concept can be developed in which technologies, currently residing in a demonstration phase, can also be brought to the market. (c) 2013 Society of Chemical Industry and John Wiley & Sons, Ltd  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000342662200015 Publication Date 2013-11-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-104x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.694 Times cited 18 Open Access  
  Notes ; We would like to thank the editor and the anonymous referees for their helpful suggestions and insightful comments that have significantly improved the paper. The Energy Conversion Parks (ECP) project is funded by the Interreg IVa – Flanders-Netherlands program from the European Fund for Regional Development that stimulates cross-border projects. Also the Dutch Ministry of Economic Affairs, the Flemish Government, the Provinces of Noord-Brabant (NL), Zeeland (NL), Limburg (BE) and the partners (VITO, Avans University of Applied Sciences, Wageningen University and Research, Hasselt University, and Zeeland University of Applied Sciences) themselves are co-financing the project. We also would like to express our gratitude toward the organization of the 2nd Iberoamerican Congress on Biorefineries in Jaen (Spain) for giving us the opportunity to present and thereby fine-tune our work. ; Approved Most recent IF: 3.694; 2014 IF: 4.214  
  Call Number UA @ admin @ c:irua:127541 Serial 6180  
Permanent link to this record
 

 
Author Gios, E.; Verbruggen, E.; Audet, J.; Burns, R.; Butterbach-Bahl, K.; Espenberg, M.; Fritz, C.; Glatzel, S.; Jurasinski, G.; Larmola, T.; Mander, U.; Nielsen, C.; Rodriguez, A.F.; Scheer, C.; Zak, D.; Silvennoinen, H.M. url  doi
openurl 
  Title Unraveling microbial processes involved in carbon and nitrogen cycling and greenhouse gas emissions in rewetted peatlands by molecular biology Type A1 Journal article
  Year 2024 Publication (up) Biogeochemistry Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change  
  Abstract Restoration of drained peatlands through rewetting has recently emerged as a prevailing strategy to mitigate excessive greenhouse gas emissions and re-establish the vital carbon sequestration capacity of peatlands. Rewetting can help to restore vegetation communities and biodiversity, while still allowing for extensive agricultural management such as paludiculture. Belowground processes governing carbon fluxes and greenhouse gas dynamics are mediated by a complex network of microbial communities and processes. Our understanding of this complexity and its multi-factorial controls in rewetted peatlands is limited. Here, we summarize the research regarding the role of soil microbial communities and functions in driving carbon and nutrient cycling in rewetted peatlands including the use of molecular biology techniques in understanding biogeochemical processes linked to greenhouse gas fluxes. We emphasize that rapidly advancing molecular biology approaches, such as high-throughput sequencing, are powerful tools helping to elucidate the dynamics of key biogeochemical processes when combined with isotope tracing and greenhouse gas measuring techniques. Insights gained from the gathered studies can help inform efficient monitoring practices for rewetted peatlands and the development of climate-smart restoration and management strategies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001185747700001 Publication Date 2024-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-2563; 1573-515x ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:204875 Serial 9239  
Permanent link to this record
 

 
Author Roland, M.; Serrano-Ortiz, P.; Kowalski, A.S.; Van Grieken, R.; Janssens, I.A.; et al. url  doi
openurl 
  Title Atmospheric turbulence triggers pronounced diel pattern in karst carbonate geochemistry Type A1 Journal article
  Year 2013 Publication (up) Biogeosciences Abbreviated Journal  
  Volume 10 Issue 7 Pages 5009-5017  
  Keywords A1 Journal article; Plant and Ecosystems (PLECO) – Ecology in a time of change; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract CO2 exchange between terrestrial ecosystems and the atmosphere is key to understanding the feedbacks between climate change and the land surface. In regions with carbonaceous parent material, CO2 exchange patterns occur that cannot be explained by biological processes, such as disproportionate outgassing during the daytime or night-time CO2 uptake during periods when all vegetation is senescent. Neither of these phenomena can be attributed to carbonate weathering reactions, since their CO2 exchange rates are too small. Soil ventilation induced by high atmospheric turbulence is found to explain atypical CO2 exchange between carbonaceous systems and the atmosphere. However, by strongly altering subsurface CO2 concentrations, ventilation can be expected to influence carbonate weathering rates. By imposing ventilation-driven CO2 outgassing in a carbonate weathering model, we show here that carbonate geochemistry is accelerated and does play a surprisingly large role in the observed CO2 exchange pattern of a semi-arid ecosystem. We found that by rapidly depleting soil CO2 during the daytime, ventilation disturbs soil carbonate equilibria and therefore strongly magnifies daytime carbonate precipitation and associated CO2 production. At night, ventilation ceases and the depleted CO2 concentrations increase steadily. Dissolution of carbonate is now enhanced, which consumes CO2 and largely compensates for the enhanced daytime carbonate precipitation. This is why only a relatively small effect on global carbonate weathering rates is to be expected. On the short term, however, ventilation has a drastic effect on synoptic carbonate weathering rates, resulting in a pronounced diel pattern that exacerbates the non-biological behavior of soil-atmosphere CO2 exchanges in dry regions with carbonate soils.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000322242700039 Publication Date 2013-07-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1726-4170; 1726-4189 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:109862 Serial 7533  
Permanent link to this record
 

 
Author Khosravian, N.; Bogaerts, A.; Huygh, S.; Yusupov, M.; Neyts, E.C. url  doi
openurl 
  Title How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations Type A1 Journal article
  Year 2015 Publication (up) Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages 029501  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The application of nonthermal atmospheric pressure plasma is emerging as an alternative and efficient technique for the inactivation of bacterial biofilms. In this study, reactive molecular dynamics simulations were used to examine the reaction mechanisms of hydroxyl radicals, as key reactive oxygen plasma species in biological systems, with several organic molecules (i.e., alkane, alcohol, carboxylic acid, and amine), as prototypical components of biomolecules in the biofilm. Our results demonstrate that organic molecules containing hydroxyl and carboxyl groups may act as trapping agents for the OH radicals. Moreover, the impact of OH radicals on N-acetyl-glucosamine, as constituent component of staphylococcus epidermidis biofilms, was investigated. The results show how impacts of OH radicals lead to hydrogen abstraction and subsequent molecular damage. This study thus provides new data on the reaction mechanisms of plasma species, and particularly the OH radicals, with fundamental components of bacterial biofilms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600019 Publication Date 2014-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 10 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:121371 Serial 1492  
Permanent link to this record
 

 
Author Wende, K.; Williams, P.; Dalluge, J.; Van Gaens, W.; Aboubakr, H.; Bischof, J.; von Woedtke, T.; Goyal, S.M.; Weltmann, K.D.; Bogaerts, A.; Masur, K.; Bruggeman, P.J.; url  doi
openurl 
  Title Identification of the biologically active liquid chemistry induced by a nonthermal atmospheric pressure plasma jet Type A1 Journal article
  Year 2015 Publication (up) Biointerphases Abbreviated Journal Biointerphases  
  Volume 10 Issue 10 Pages 029518  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The mechanism of interaction of cold nonequilibrium plasma jets with mammalian cells in physiologic liquid is reported. The major biological active species produced by an argon RF plasma jet responsible for cell viability reduction are analyzed by experimental results obtained through physical, biological, and chemical diagnostics. This is complemented with chemical kinetics modeling of the plasma source to assess the dominant reactive gas phase species. Different plasma chemistries are obtained by changing the feed gas composition of the cold argon based RF plasma jet from argon, humidified argon (0.27%), to argon/oxygen (1%) and argon/air (1%) at constant power. A minimal consensus physiologic liquid was used, providing isotonic and isohydric conditions and nutrients but is devoid of scavengers or serum constituents. While argon and humidified argon plasma led to the creation of hydrogen peroxide dominated action on the mammalian cells, argonoxygen and argonair plasma created a very different biological action and was characterized by trace amounts of hydrogen peroxide only. In particular, for the argonoxygen (1%), the authors observed a strong negative effect on mammalian cell proliferation and metabolism. This effect was distance dependent and showed a half life time of 30 min in a scavenger free physiologic buffer. Neither catalase and mannitol nor superoxide dismutase could rescue the cell proliferation rate. The strong distance dependency of the effect as well as the low water solubility rules out a major role for ozone and singlet oxygen but suggests a dominant role of atomic oxygen. Experimental results suggest that O reacts with chloride, yielding Cl2 − or ClO−. These chlorine species have a limited lifetime under physiologic conditions and therefore show a strong time dependent biological activity. The outcomes are compared with an argon MHz plasma jet (kinpen) to assess the differences between these (at least seemingly) similar plasma sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000357195600036 Publication Date 2015-05-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1934-8630;1559-4106; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.603 Times cited 137 Open Access  
  Notes Approved Most recent IF: 2.603; 2015 IF: 3.374  
  Call Number c:irua:126774 Serial 1549  
Permanent link to this record
 

 
Author Verbueken, A.H.; Van Grieken, R.E.; Verpooten, G.A.; de Broe, M.E.; Wedeen, R.P. doi  openurl
  Title Laser microprobe mass spectrometric identification of cyclosporine-induced intrarenal microliths in rat Type A1 Journal article
  Year 1992 Publication (up) Biological mass spectrometry Abbreviated Journal  
  Volume 21 Issue Pages 590-596  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1992JU83000010 Publication Date 2005-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1052-9306 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:2842 Serial 8162  
Permanent link to this record
 

 
Author Robberecht, H.; Deelstra, H.; Van Grieken, R. doi  openurl
  Title Determination of selenium in blood components by X-ray emission spectrometry Type A1 Journal article
  Year 1990 Publication (up) Biological trace element research Abbreviated Journal  
  Volume 25 Issue 3 Pages 149-185  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Sampling, storing, sample pretreatment, and experimental conditions for selenium (Se) determination in human serum, plasma, and whole blood by X-ray emission spectrometric (XRS) methods are described. Concentration levels in these biological fluids, found by this technique, are discussed and compared to values found by other techniques for the same healthy population group in the same area. XRS analysis of blood from patients with various pathological conditions is reviewed, with special attention to the relation of Se with the concentration level of other essential or nonessential trace elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1990DT88700001 Publication Date 2008-11-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-4984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116798 Serial 7788  
Permanent link to this record
 

 
Author Vandeputte, D.F.; Ameloot, P.C.; Cleymaet, R.; Coomans, D.; Van Grieken, R.E. doi  openurl
  Title Localization of lead and fluoride in cultured tooth germs by laser microprobe mass analysis Type A1 Journal article
  Year 1990 Publication (up) Biological trace element research Abbreviated Journal  
  Volume 23 Issue Pages 133-144  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Trace elements can influence dental health, possibly by altering tooth resistance during preeruptive development. Therefore, it was investigated whether lead and fluoride would be incorporated into the calcifying matrices or the cellular parts of tooth germs in vitro. Using laser microprobe mass analysis, the localization of lead and fluoride was studied in the different layers or tooth germs that had been cultured in a medium to which PbCl2 of NaF had been added in different concentrations. Both elements could only be detected in the dentine layer. Hence, the enamel organ in the secretory stage of tooth development excludes lead and fluoride from the enamel, even when enamel formation by the ameloblasts is visibly disturbed. Furthermore, there seemed to be a process of saturation in the accumulation of lead and fluoride in the dentine.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2008-06-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-4984 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116797 Serial 8182  
Permanent link to this record
 

 
Author Verbueken, A.H.; van de Vijver, F.L.; Visser, W.J.; Roels, F.; Van Grieken, R.; de Broe, M.E. doi  openurl
  Title Use of laser microprobe mass analysis (LAMMA) for localizing multiple elements in soft and hard tissues Type A1 Journal article
  Year 1987 Publication (up) Biological trace element research Abbreviated Journal  
  Volume 13 Issue Pages 397-416  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract The potential of laser microprobe mass analysis (LAMMA) as a sensitive microanalytical technique was explored in applications relevant to nephrology. Aluminum and associated elements, such as iron, were localized in fresh tissue biopsies obtained from uremic patients treatment by chronic hemodialysis. The LAMMA was applied to serum, liver, bone, and parathyroid glands of such patients. In addition, we used LAMMA to evaluate the specificity and sensitivity of routine histochemistry, in particular on human bone sections stained by the aluminon method. The high, multielemental sensitivity and molecular microprobe potential of LAMMA established important advantages over other microchemical methods forin situ analysis at the micron level in histological sections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos A1987L016000036 Publication Date 2007-12-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-4984 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116796 Serial 8721  
Permanent link to this record
 

 
Author Tomasi, N.; Mimmo, T.; Terzano, R.; Alfeld, M.; Janssens, K.; Zanin, L.; Pinton, R.; Varanini, Z.; Cesco, S. pdf  doi
openurl 
  Title Nutrient accumulation in leaves of Fe-deficient cucumber plants treated with natural Fe complexes Type A1 Journal article
  Year 2014 Publication (up) Biology and fertility of soils Abbreviated Journal Biol Fert Soils  
  Volume 50 Issue 6 Pages 973-982  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Plants mainly rely on a mixture of Fe complexes with different organic ligands, like carboxylates and soluble fractions of water-extractable humic substances (WEHSs), to sustain the supply of this micronutrient. It has been demonstrated that the Fe-WEHS complex is more efficiently acquired by plant roots as it enhances functionality of the mechanisms involved in Fe acquisition at the root and leaf levels, allowing a faster recovery of the Fe-deficiency symptoms. The aim of this work is to verify whether this recovery involves also the allocation and accumulation of nutrients other than Fe to and within the leaf tissues. Iron-deficient plants treated with Fe-WEHS recovered more quickly the functionality both to uptake nitrate at the root level and to fixate CO2 in the leaves than those supplied with Fe-citrate. Concomitantly, Fe-WEHS-treated plants also accumulated other cationic nutrients faster and at a higher extent. Synchrotron 2D-scanning μ-X-ray fluorescence analyses of the leaves revealed that the recovery promotes a change in the allocation of these nutrients from the vascular system (K, Cu, and Zn) or trichomes (Ca and Mn) to the entire leaf blade. Fe-WEHS treatment efficiently promotes the recovery from Fe-deficiency-induced chlorosis with an enhanced allocation of other nutrients into the leaves and promoting their distribution into the entire leaf blade.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000339880800010 Publication Date 2014-04-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0178-2762 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.683 Times cited 25 Open Access  
  Notes ; Research was supported by grants from Italian MIUR (FIRB-Programma “Futuro in Ricerca”) and Free University of Bolzano (TN5056). Synchrotron experiments at HASYLAB were financially supported by the European Community-Research Infrastructure Action under the FP6 “Structuring the European Research Area” Program I (Integrating Activity on Synchrotron and Free Electron Laser Science; project: contract RII3-CT-2004-506008). The authors acknowledge support from the Hercules fund, Brussels (grant A11/0387), and from FWO (Brussels) via grant G.0C12.13. ; Approved Most recent IF: 3.683; 2014 IF: 3.398  
  Call Number UA @ admin @ c:irua:116597 Serial 5753  
Permanent link to this record
 

 
Author Fuoco, T.; Cuartero, M.; Parrilla, M.; García-Guzmán, J.J.; Crespo, G.A.; Finne-Wistrand, A. url  doi
openurl 
  Title Capturing the real-time hydrolytic degradation of a library of biomedical polymers by combining traditional assessment and electrochemical sensors Type A1 Journal article
  Year 2021 Publication (up) Biomacromolecules Abbreviated Journal Biomacromolecules  
  Volume 22 Issue 2 Pages 949-960  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens’ resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material’s evaluation aiming at reducing animal tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2021-01-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links UA library record  
  Impact Factor 5.246 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 5.246  
  Call Number UA @ admin @ c:irua:175296 Serial 7575  
Permanent link to this record
 

 
Author Van de Walle, E.; Van Nieuwenhove, I.; Vanderleyden, E.; Declercq, H.; Gellynck, K.; Schaubroeck, D.; Ottevaere, H.; Thienpont, H.; De Vos, W.H.; Cornelissen, M.; Van Vlierberghe, S.; Dubruel, P. pdf  doi
openurl 
  Title Polydopamine-gelatin as universal cell-interactive coating for methacrylate-based medical device packaging materials : when surface chemistry overrules substrate bulk properties Type A1 Journal article
  Year 2016 Publication (up) Biomacromolecules Abbreviated Journal  
  Volume 17 Issue 1 Pages 56-68  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Despite its widespread application in the fields of ophthalmology, orthopedics and dentistry and the stringent need for polymer packagings that induce in vivo tissue integration, the full potential of poly(methyl methacrylate) (PMMA) and its derivatives as medical device packaging material has not been explored yet. We therefore elaborated on the development of a universal coating for methacrylate-based materials which ideally should reveal cell-interactivity irrespective of the polymer substrate bulk properties. Within this perspective, the present work reports on the UV-induced synthesis of PMMA and its more flexible poly(ethyleneglycol) (PEG)-based derivative (PMMAPEG) and its subsequent surface decoration using polydopamine (PDA) as well as PDA combined with gelatin B (Gel B). Successful application of both layers was confirmed by multiple surface characterization techniques. The cell interactivity of the materials was studied by performing live-dead assays and immunostainings of the cytoskeletal components of fibroblasts. It can be concluded that only the combination of PDA and Gel B yields materials posessing similar cell interactivities, irrespective of the physicochemical properties of the underlying substrate. The proposed coating outperforms both the PDA functionalized and the pristine polymer surfaces. A universal cell-interactive coating for methacrylate-based medical device packaging materials has thus been realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000368047800007 Publication Date 2015-11-15  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-7797 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:129159 Serial 8393  
Permanent link to this record
 

 
Author Witters, N.; Mendelsohn, R.; Van Passel, S.; Van Slycken, S.; Weyens, N.; Schreurs, E.; Meers, E.; Tack, F.; Vanheusden, B.; Vangronsveld, J. doi  openurl
  Title Phytoremediation, a sustainable remediation technology? 2 : economic assessment of CO2 abatement through the use of phytoremediation crops for renewable energy production Type A1 Journal article
  Year 2012 Publication (up) Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 39 Issue Pages 470-477  
  Keywords A1 Journal article; Economics; Engineering Management (ENM)  
  Abstract Phytoremediation could be a sustainable remediation alternative for conventional remediation technologies. However, its implementation on a commercial scale remains disappointing. To emphasize its sustainability, this paper examines whether and how the potential economic benefit of CO2 abatement for different crops used for phytoremediation or sustainable land management purposes could promote phytotechnologies. Our analysis is based on a case study in the Campine region, where agricultural soils are contaminated with mainly cadmium. We use Life Cycle Analysis to show for the most relevant crops (willow (Salix spp), energy maize (Zea mays), and rapeseed (Brassica napus)), that phytoremediation, used for renewable energy production, could abate CO2. Converting this in economic numbers through the Marginal Abatement Cost of CO2 ( 20 ton−1) we can integrate this in the economic analysis to compare phytoremediation crops among each other, and phytoremediation with conventional technologies. The external benefit of CO2 abatement when using phytoremediation crops for land management ranges between 55 and 501 per hectare. The purpose of these calculations is not to calculate a subsidy for phytoremediation. There is no reason why one would prefer phytoremediation crops for renewable energy production over normal biomass. Moreover, subsidies for renewable energy already exist. Therefore, we should not integrate these numbers in the economic analysis again. However, these numbers could contribute to making explicit the competitive advantage of phytoremediation compared to conventional remediation technologies, but also add to a more sustainably funded decision on which crop should be grown on contaminated land.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000302829900054 Publication Date 2011-12-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 38 Open Access  
  Notes ; ; Approved Most recent IF: 3.219; 2012 IF: 2.975  
  Call Number UA @ admin @ c:irua:129863 Serial 6236  
Permanent link to this record
 

 
Author Maes, D.; Van Passel, S. pdf  doi
openurl 
  Title Effective bioeconomy policies for the uptake of innovative technologies under resource constraints Type A1 Journal article
  Year 2019 Publication (up) Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 120 Issue 120 Pages 91-106  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract The bioeconomy is a shared vision for a future European industry entirely based on organic matter. Authorities support this technological development with subsidies and policies stimulating R&D. One major limitation for the bioeconomy is that R&D and industrial growth require the continuous availability of biomass as a primary resource. This resource dependence is already present during the formative years of new biobased innovations and influences the pilot and demonstration phase of the development. Traditionally, it is assumed that public support for pilot and demonstration initiatives may overcome this hurdle. In this paper, we investigate how this resource constraint limits the effectiveness of bioeconomy policies. The future development of the biobased sector is simulated including the inherent dependence of industrial activity on biomass. We simulate the future growth and technological diversity of an emerging biotechnological sector: the sector of manure transformation in Belgium. The paper reports the evolutions for three policy scenarios. The model explicitly accounts for endogenous innovation and knowledge transfer mechanisms. The results show that policies may have an important impact on the sector structure in the long run, but the sector growth remains ultimately constrained by the availability of inputs. So bioeconomy policies to promote innovation will be less effective, unless mechanisms are included to alleviate the resource constraint.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000454887700011 Publication Date 2018-11-22  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 3 Open Access  
  Notes ; ; Approved Most recent IF: 3.219  
  Call Number UA @ admin @ c:irua:156757 Serial 6191  
Permanent link to this record
 

 
Author Van Dael, M.; Van Passel, S.; Pelkmans, L.; Guisson, R.; Swinnen, G.; Schreurs, E. doi  openurl
  Title Determining potential locations for biomass valorization using a macro screening approach Type A1 Journal article
  Year 2012 Publication (up) Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 45 Issue Pages 175-186  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract European policy states that by 2020 at least 20% of final energy consumption should come from renewable energy sources. Biomass as a renewable energy source cannot be disregarded in order to attain this target. In this study a macro screening approach is developed to determine potential locations for biomass valorization in a specified region. The approach consists of five steps: (1) criteria determination, (2) data gathering, (3) weight assignment, (4) final score, (5) spatial representation. The resulting outcome provides a first well balanced scan of the possibilities for energy production using regional biomass. This way policy makers and investors can be supported and motivated to study the possibilities of building energy production plants at specific locations in more detail, which can be described as a 'micro-screening'. In our case study the approach is applied to determine the potentially interesting locations to establish a biomass project. The region has been limited to the forty-four communities in the province of Limburg (Belgium). The macro screening approach has shown to be very effective since the amount of interesting locations has been reduced drastically. (c) 2012 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000308384500019 Publication Date 2012-06-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.219 Times cited 23 Open Access  
  Notes ; The authors gratefully acknowledge the financial support from INTERREG and the province of Limburg. Special thanks to our colleague Thomas Voets for his effort in making the GIS maps. Moreover, the authors would like to thank the two anonymous reviewers for their valuable comments. ; Approved Most recent IF: 3.219; 2012 IF: 2.975  
  Call Number UA @ admin @ c:irua:127554 Serial 6178  
Permanent link to this record
 

 
Author Martinez-Villarreal, S.; Breitenstein, A.; Nimmegeers, P.; Perez Saura, P.; Hai, B.; Asomaning, J.; Eslami, A.A.; Billen, P.; Van Passel, S.; Bressler, D.C.; Debecker, D.P.; Remacle, C.; Richel, A. pdf  doi
openurl 
  Title Drop-in biofuels production from microalgae to hydrocarbons : microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation Type A1 Journal article
  Year 2022 Publication (up) Biomass & Bioenergy Abbreviated Journal Biomass Bioenerg  
  Volume 165 Issue Pages 106555-22  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM); Intelligence in PRocesses, Advanced Catalysts and Solvents (iPRACS)  
  Abstract In the last few years, governments all around the world have agreed upon migrating towards carbon-neutral economies as a strategy for restraining the effects of climate change. A major obstacle limiting this achievement is greenhouse gases emissions, for which the aviation sector is a key contributor because of its dependence on fossil fuels. As an alternative, biofuels with similar characteristics to current fossil-fuels and fully compatible with the existing petroleum infrastructure (i.e., drop-in biofuels) are being developed. In this regard, microalgae are a promising feedstock thanks to, among other aspects, their potential for lipid accumulation. This review outlines the development status, opportunities, and challenges of different technologies that are capable of or applicable to transform microalgae into aviation fuels. To this effect, a baseline of the existing jet fuels and the requirements for potential aviation biofuels is initially presented. Then, microalgae production and valorization techniques are discussed with an emphasis on the thermochemical pathways. Finally, an assessment of the present techno-economic feasibility of microalgae-derived aviation fuels is discussed, along with the authors’ point of view on the suitability of these techniques. Further developments are needed to reduce the costs of cultivation and harvesting of microalgae, and a biorefinery approach might improve the economics of the overall process. In addition, while each of the conversion routes described has its advantages and drawbacks, they converge upon the need of optimizing the deoxygenation techniques and the proportion of the suitable type of hydrocarbons that match fuel requirements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000861095400001 Publication Date 2022-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6 Times cited Open Access OpenAccess  
  Notes Approved Most recent IF: 6  
  Call Number UA @ admin @ c:irua:189953 Serial 7354  
Permanent link to this record
 

 
Author Shabalovskaya, S.A.; Tian, H.; Anderegg, J.W.; Schryvers, D.U.; Carroll, W.U.; van Humbeeck, J. pdf  doi
openurl 
  Title The influence of surface oxides on the distribution and release of nickel from Nitinol wires Type A1 Journal article
  Year 2009 Publication (up) Biomaterials Abbreviated Journal Biomaterials  
  Volume 30 Issue 4 Pages 468-477  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The patterns of Ni release from Nitinol vary depending on the type of material (NiTi alloys with low or no processing versus commercial wires or sheets). A thick TiO2 layer generated on the wire surface during processing is often considered as a reliable barrier against Ni release. The present study of Nitinol wires with surface oxides resulting from production was conducted to identify the sources of Ni release and its distribution in the surface sublayers. The chemistry and topography of the surfaces of Nitinol wires drawn using different techniques were studied with XPS and SEM. The distribution of Ni into surface depth and the surface oxide thickness were evaluated using Auger spectroscopy, TEM with FIB and ELNES. Ni release was estimated using either ICPA or AAS. Potentiodynamic potential polarization of selected wires was performed in as-received state with no strain and in treated strained samples. Wire samples in the as-received state showed low breakdown potentials (200 mV); the improved corrosion resistance of these wires after treatment was not affected by strain. It is shown how processing techniques affect surface topography, chemistry and also Ni release. Nitinol wires with the thickest surface oxide TiO2 (up to 720 nm) showed the highest Ni release, attributed to the presence of particles of essentially pure Ni whose number and size increased while approaching the interface between the surface and the bulk. The biological implications of high and lasting Ni release are also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000262065500006 Publication Date 2008-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited 102 Open Access  
  Notes Fwo; G.0465.05 Approved Most recent IF: 8.402; 2009 IF: 7.365  
  Call Number UA @ lucian @ c:irua:72320 Serial 1641  
Permanent link to this record
 

 
Author Suffian, I.F.B.M.; Wang, J.T.-W.; Hodgins, N.O.; Klippstein, R.; Garcia-Maya, M.; Brown, P.; Nishimura, Y.; Heidari, H.; Bals, S.; Sosabowski, J.K.; Ogino, C.; Kondo, A.; Al-Jamal, K.T. url  doi
openurl 
  Title Engineering hepatitis B virus core particles for targeting HER2 receptors in vitro and in vivo Type A1 Journal article
  Year 2017 Publication (up) Biomaterials Abbreviated Journal Biomaterials  
  Volume 120 Issue 120 Pages 126-138  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Hepatitis B Virus core (HBc) particles have been studied for their potential as drug delivery vehicles for cancer therapy. HBc particles are hollow nano-particles of 30-34 nm diameter and 7 nm thick envelopes, consisting of 180-240 units of 21 kDa core monomers. They have the capacity to assemble/dis-assemble in a controlled manner allowing encapsulation of various drugs and other biomolecules. Moreover, other functional motifs, i.e. receptors, receptor binding sequences, peptides and proteins can be expressed. This study focuses on the development of genetically modified HBc particles to specifically recognise and target human epidermal growth factor receptor-2 (HER2)-expressing cancer cells, in vitro and in vivo, for future cancer therapy. The non-specific binding capacity of wild type HBc particles was reduced by genetic deletion of the sequence encoding arginine-rich domains. A specific HER2-targeting was achieved by expressing the ZHER2 affibodies on the HBc particles surface. In vitro studies showed specific uptake of ZHER2-AHBc particles in HER2 expressing cancer cells. In vivo studies confirmed positive uptake of ZHER2-ABBc particles in HER2-expressing tumours, compared to non-targeted AHBc particles in intraperitoneal tumour-bearing mice models. The present results highlight the potential of these nanocarriers in targeting HER2-positive metastatic abdominal cancer following intra-peritoneal administration. (C) 2016 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Guildford Editor  
  Language Wos 000394398900012 Publication Date 2016-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0142-9612 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 8.402 Times cited 20 Open Access OpenAccess  
  Notes ; The authors would like to thank Dr. Rafael T. M. de Rosales (King's College London) for useful discussion on the radiolabelling technique and Mr William Luckhurst (King's College London) on the technical help of AFM measurements. IFBMS would like to thank Public Service Department, Government of Malaysia for the Excellence Student Programme studentship. We acknowledge funding from Biotechnology and Biological Sciences Research Council (BBSRC; (BB/J008656/1)) and the EU FP7-ITN Marie-Curie Network programme RADDEL (290023). NH is a recipient of Graduate School King's Health Partner's scholarship. RIC is a Marie Curie Fellow. S.B. acknowledges funding from the European Research Council under the 7th Framework Program (FP7), ERC Starting Grant No. 335078 COLOURATOMS, and the Integrated Infrastructure Initiative No. 262348 European Soft Matter Infrastructure, ESMI. The authors declare that they have no competing interests. ; ecas_Sara Approved Most recent IF: 8.402  
  Call Number UA @ lucian @ c:irua:141984UA @ admin @ c:irua:141984 Serial 4654  
Permanent link to this record
 

 
Author Tampieri, F.; Espona-Noguera, A.; Labay, C.; Ginebra, M.-P.; Yusupov, M.; Bogaerts, A.; Canal, C. pdf  url
doi  openurl
  Title Does non-thermal plasma modify biopolymers in solution? A chemical and mechanistic study for alginate Type A1 Journal Article
  Year 2023 Publication (up) Biomaterials Science Abbreviated Journal  
  Volume Issue Pages  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract In the last decades, non-thermal plasma has been extensively investigated as a relevant tool for various biomedical applications, ranging from tissue decontamination to regeneration and from skin treatment to tumor therapies. This high versatility is due to the different kinds and amount of reactive oxygen and nitrogen species that can be generated during a plasma treatment and put in contact with the biological target. Some recent studies report that solutions of biopolymers with the ability to generate hydrogels, when treated with plasma, can enhance the generation of reactive species and influence their stability, resulting thus in the ideal media for indirect treatments of biological targets. The direct effects of the plasma treatment on the structure of biopolymers in water solution, as well as the chemical mechanisms responsible for the enhanced generation of RONS, are not yet fully understood. In this study, we aim at filling this gap by investigating, on the one hand, the nature and extent of the modifications induced by plasma treatment in alginate solutions, and, on the other hand, at using this information to explain the mechanisms responsible for the enhanced generation of reactive species as a consequence of the treatment. The approach we use is twofold: (i) investigating the effects of plasma treatment on alginate solutions, by size exclusion chromatography, rheology and scanning electron microscopy and (ii) study of a molecular model (glucuronate) sharing its chemical structure, by chromatography coupled with mass spectrometry and by molecular dynamics simulations. Our results point out the active role of the biopolymer chemistry during direct plasma treatment. Short-lived reactive species, such as OH radicals and O atoms, can modify the polymer structure, affecting its functional groups and causing partial fragmentation. Some of these chemical modifications, like the generation of organic peroxide, are likely responsible for the secondary generation of long-lived reactive species such as hydrogen peroxide and nitrite ions. This is relevant in view of using biocompatible hydrogels as vehicles for storage and delivery reactive species for targeted therapies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000973699000001 Publication Date 2023-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-4830 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.6 Times cited Open Access Not_Open_Access  
  Notes Agència de Gestió d’Ajuts Universitaris i de Recerca, SGR2022-1368 ; H2020 European Research Council, 714793 ; European Cooperation in Science and Technology, CA19110 CA20114 ; Secretaría de Estado de Investigación, Desarrollo e Innovación, PID2019-103892RB-I00/AEI/10.13039/501100011033 ; We thank Gonzalo Rodríguez Cañada and Xavier Solé-Martí (Universitat Politècnica de Catalunya) for help in collecting some of the experimental data and for the useful discussions. This work has been primarily funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 714793). The authors acknowledge MINECO for PID2019103892RB-I00/AEI/10.13039/501100011033 project (CC). The authors belong to SGR2022-1368 (FT, AEN, CL, MPG, CC) and acknowledge Generalitat de Catalunya for the ICREA Academia Award for Excellence in Research of CC. We thank also COST Actions CA20114 (Therapeutical Applications of Cold Plasmas) and CA19110 (Plasma Applications for Smart and Sustainable Agriculture) for the stimulating environment provided. Approved Most recent IF: 6.6; 2023 IF: 4.21  
  Call Number PLASMANT @ plasmant @c:irua:196773 Serial 8794  
Permanent link to this record
 

 
Author Vandeputte, D.F.; Van Grieken, R.E.; Foets, B.J.J.; Misotten, L. doi  openurl
  Title Characterization of the spheroliths present in primary atypical bandkeratopathy using laser microprobe mass analysis Type A1 Journal article
  Year 1989 Publication (up) Biomedical and environmental mass spectrometry Abbreviated Journal  
  Volume 18 Issue 9 Pages 753-756  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract Laser microprobe mass analysis was applied to study the chemical composition of spheroliths in the Bowman's membrane of patients suffering from primary atypical bandkeratopathy. The inclusions appear to consist mainly of calcium phosphate.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2005-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0887-6134 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116824 Serial 7635  
Permanent link to this record
 

 
Author Vandeputte, D.; Van Grieken, R.E.; Jacob, W.A.; Savory, J.; Bertholf, R.L.; Wills, M.R. doi  openurl
  Title Ultrastructural localization of aluminium in liver of aluminium maltol-treated rabbits by laser microprobe mass analysis Type A1 Journal article
  Year 1989 Publication (up) Biomedical and environmental mass spectrometry Abbreviated Journal  
  Volume 18 Issue 8 Pages 598-602  
  Keywords A1 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract By means of laser microprobe mass analysis (LAMMA), we have studied the ultrastructural localization of aluminium in livers of aluminium maltol-treated rabbits. This animal model was developed to study long-term aluminium toxicity using systemic (intravenous) administration of aluminium. We could only detect aluminium in electron-dense inclusion bodies found in large, sometimes multinucleated cells. These results prove that the actual observation of aluminium deposits in liver with LAMMA gives more information than bulk analysis and can be very useful to explore mechanisms of toxicity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2005-05-29  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0887-6134 ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116817 Serial 8702  
Permanent link to this record
 

 
Author Daems, D.; van Nuijs, A.L.N.; Covaci, A.; Hamidi-Asl, E.; Van Camp, G.; Nagels, L.J. pdf  doi
openurl 
  Title Potentiometric detection in UPLC as an easy alternative to determine cocaine in biological samples Type A1 Journal article
  Year 2015 Publication (up) Biomedical chromatography Abbreviated Journal  
  Volume 29 Issue 7 Pages 1124-1129  
  Keywords A1 Journal article; Pharmacology. Therapy; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Toxicological Centre  
  Abstract The analytical methods which are often used for the determination of cocaine in complex biological matrices are a prescreening immunoassay and confirmation by chromatography combined with mass spectrometry. We suggest an ultra-high-pressure liquid chromatography combined with a potentiometric detector, as a fast and practical method to detect and quantify cocaine in biological samples. An adsorption/desorption model was used to investigate the usefulness of the potentiometric detector to determine cocaine in complex matrices. Detection limits of 6.3ngmL(-1) were obtained in plasma and urine, which is below the maximum residue limit (MRL) of 25ngmL(-1). A set of seven plasma samples and 10 urine samples were classified identically by both methods as exceeding the MRL or being inferior to it. The results obtained with the UPLC/potentiometric detection method were compared with the results obtained with the UPLC/MS method for samples spiked with varying cocaine concentrations. The intraclass correlation coefficient was 0.997 for serum (n =7) and 0.977 for urine (n =8). As liquid chromatography is an established technique, and as potentiometry is very simple and cost-effective in terms of equipment, we believe that this method is potentially easy, inexpensive, fast and reliable. Copyright (c) 2014 John Wiley & Sons, Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000356694000020 Publication Date 2014-12-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-3879 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:127069 Serial 8396  
Permanent link to this record
 

 
Author Verbueken, A.H.; Bruynseels, F.J.; Van Grieken, R.E. doi  openurl
  Title Laser microprobe mass analysis : a review of applications in the life sciences Type A3 Journal article
  Year 1985 Publication (up) Biomedical mass spectrometry Abbreviated Journal  
  Volume 12 Issue 9 Pages 438-463  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)  
  Abstract The characteristics and analytical utility of laser microprobe mass analysis (LAMMA) are described and evaluated, and a short history of this recent microanalytical technique is presented. A review of the areas of application of LAMMA and related laser microprobes is presented with special emphasis on applications in the life sciences.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2005-05-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-042x ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116722 Serial 8153  
Permanent link to this record
 

 
Author Verbueken, A.H.; Van Grieken, R.E.; Paulus, G.J.; Verpooten, G.A.; de Broe, M.E. doi  openurl
  Title Laser microprobe mass spectrometry of platinum in dog kidney after cisplatin adminstration Type A3 Journal article
  Year 1984 Publication (up) Biomedical mass spectrometry Abbreviated Journal  
  Volume 11 Issue 4 Pages 159-163  
  Keywords A3 Journal article; AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation); Laboratory Experimental Medicine and Pediatrics (LEMP)  
  Abstract By means of laser microprobe mass analysis (LAMMA) platinum was detected in the renal proximal tubular cells of a dog that had been intravenously adminstered the antitumor drug cisplatin (5 mg per kg body weight). No definite subcellular localization of the heavy metal was obtained. Sample prparation and analytical features are examined to increase spatial resolution of analysis while maintaining sufficient detection efficiency. The LAMMA method is destructive, but the amount and type of evaporated material can readily be determined when using LAMMA in combination with transmission electron microscopy. Instrumental optimization and standardization of mass signals is possible by using platinum-loaded, ion chelating resin beads embedded and sectioned with the tissue.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos Publication Date 2005-05-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-042x ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved no  
  Call Number UA @ admin @ c:irua:116712 Serial 8165  
Permanent link to this record
 

 
Author Shaw, P.; Kumar, N.; Sahun, M.; Smits, E.; Bogaerts, A.; Privat-Maldonado, A. url  doi
openurl 
  Title Modulating the Antioxidant Response for Better Oxidative Stress-Inducing Therapies: How to Take Advantage of Two Sides of the Same Medal? Type A1 Journal article
  Year 2022 Publication (up) Biomedicines Abbreviated Journal Biomedicines  
  Volume 10 Issue 4 Pages 823  
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT); Center for Oncological Research (CORE)  
  Abstract Oxidative stress-inducing therapies are characterized as a specific treatment that involves the production of reactive oxygen and nitrogen species (RONS) by external or internal sources. To protect cells against oxidative stress, cells have evolved a strong antioxidant defense system to either prevent RONS formation or scavenge them. The maintenance of the redox balance ensures signal transduction, development, cell proliferation, regulation of the mechanisms of cell death, among others. Oxidative stress can beneficially be used to treat several diseases such as neurodegenerative disorders, heart disease, cancer, and other diseases by regulating the antioxidant system. Understanding the mechanisms of various endogenous antioxidant systems can increase the therapeutic efficacy of oxidative stress-based therapies, leading to clinical success in medical treatment. This review deals with the recent novel findings of various cellular endogenous antioxidant responses behind oxidative stress, highlighting their implication in various human diseases, such as ulcers, skin pathologies, oncology, and viral infections such as SARS-CoV-2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000785420400001 Publication Date 2022-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2227-9059 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access OpenAccess  
  Notes Science and Engineering Research Board (SERB), Core Research Grant, Department of Science and Technology, India., (CRG/2021/001935) ; Department of Biotechnology, BT/RLF/Re-entry/27/2019 ; We are grateful to Charlotta Bengtson for her valuable input. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:187931 Serial 7051  
Permanent link to this record
 

 
Author Marimuthu, P.; Razzokov, J.; Singaravelu, K.; Bogaerts, A. pdf  url
doi  openurl
  Title Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide—Mcl1 Complexes Type A1 Journal article
  Year 2020 Publication (up) Biomolecules Abbreviated Journal Biomolecules  
  Volume 10 Issue 8 Pages 1114  
  Keywords A1 Journal article; Engineering sciences. Technology; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Mcl1 is a primary member of the Bcl–2 family—anti–apoptotic proteins (AAP)—that is overexpressed in several cancer pathologies. The apoptotic regulation is mediated through the binding of pro-apoptotic peptides (PAPs) (e.g., Bak and Bid) at the canonical hydrophobic binding groove (CBG) of Mcl1. Although all PAPs form amphipathic α-helices, their amino acid sequences vary to different degree. This sequence variation exhibits a central role in the binding partner selectivity towards different AAPs. Thus, constructing a novel peptide or small organic molecule with the ability to mimic the natural regulatory process of PAP is essential to inhibit various AAPs. Previously reported experimental binding free energies (BFEs) were utilized in the current investigation aimed to understand the mechanistic basis of different PAPs targeted to mMcl1. Molecular dynamics (MD) simulations used to estimate BFEs between mMcl1—PAP complexes using Molecular Mechanics-Generalized Born Solvent Accessible (MMGBSA) approach with multiple parameters. Predicted BFE values showed an excellent agreement with the experiment (R2 = 0.92). The van–der Waals (ΔGvdw) and electrostatic (ΔGele) energy terms found to be the main energy components that drive heterodimerization of mMcl1—PAP complexes. Finally, the dynamic network analysis predicted the allosteric signal transmission pathway involves more favorable energy contributing residues. In total, the results obtained from the current investigation may provide valuable insights for the synthesis of a novel peptide or small organic inhibitor targeting Mcl1.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000578895600001 Publication Date 2020-07-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access  
  Notes P.M. gratefully acknowledges the use of the bioinformatics infrastructure facility supported by Biocenter Finland and the CSC-IT Center for Science (Project: 2000461) for the computational facility; Jukka Lehtonen for the IT support; Mark Johnson (SBL) Åbo Akademi University for providing the lab support and Outi Salo-Ahen (Pharmacy) Åbo Akademi University and Olli T. Pentikäinen (Institute of Biomedicine) University of Turku, for their valuable support and discussion. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:170486 Serial 6396  
Permanent link to this record
 

 
Author Abduvokhidov, D.; Yusupov, M.; Shahzad, A.; Attri, P.; Shiratani, M.; Oliveira, M.C.; Razzokov, J. url  doi
openurl 
  Title Unraveling the Transport Properties of RONS across Nitro-Oxidized Membranes Type A1 Journal Article
  Year 2023 Publication (up) Biomolecules Abbreviated Journal Biomolecules  
  Volume 13 Issue 7 Pages 1043  
  Keywords A1 Journal Article; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract The potential of cold atmospheric plasma (CAP) in biomedical applications has received significant interest, due to its ability to generate reactive oxygen and nitrogen species (RONS). Upon exposure to living cells, CAP triggers alterations in various cellular components, such as the cell membrane. However, the permeation of RONS across nitrated and oxidized membranes remains understudied. To address this gap, we conducted molecular dynamics simulations, to investigate the permeation capabilities of RONS across modified cell membranes. This computational study investigated the translocation processes of less hydrophilic and hydrophilic RONS across the phospholipid bilayer (PLB), with various degrees of oxidation and nitration, and elucidated the impact of RONS on PLB permeability. The simulation results showed that less hydrophilic species, i.e., NO, NO2, N2O4, and O3, have a higher penetration ability through nitro-oxidized PLB compared to hydrophilic RONS, i.e., HNO3, s-cis-HONO, s-trans-HONO, H2O2, HO2, and OH. In particular, nitro-oxidation of PLB, induced by, e.g., cold atmospheric plasma, has minimal impact on the penetration of free energy barriers of less hydrophilic species, while it lowers these barriers for hydrophilic RONS, thereby enhancing their translocation across nitro-oxidized PLB. This research contributes to a better understanding of the translocation abilities of RONS in the field of plasma biomedical applications and highlights the need for further analysis of their role in intracellular signaling pathways.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001035160000001 Publication Date 2023-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This research was funded by the Innovative Development Agency of the Republic of Uzbekistan, grant number FZ-2020092817. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:198154 Serial 8803  
Permanent link to this record
 

 
Author Ghasemitarei, M.; Ghorbi, T.; Yusupov, M.; Zhang, Y.; Zhao, T.; Shali, P.; Bogaerts, A. url  doi
openurl 
  Title Effects of Nitro-Oxidative Stress on Biomolecules: Part 1—Non-Reactive Molecular Dynamics Simulations Type A1 Journal Article
  Year 2023 Publication (up) Biomolecules Abbreviated Journal Biomolecules  
  Volume 13 Issue 9 Pages 1371  
  Keywords A1 Journal Article; plasma medicine; reactive oxygen and; Plasma, laser ablation and surface modeling Antwerp (PLASMANT) ;  
  Abstract Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 001071356400001 Publication Date 2023-09-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2218-273X ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited Open Access Not_Open_Access  
  Notes This research received no external funding. Approved Most recent IF: NA  
  Call Number PLASMANT @ plasmant @c:irua:200380 Serial 8958  
Permanent link to this record
 

 
Author Oliveira, M.C.; Yusupov, M.; Bogaerts, A.; Cordeiro, R.M. pdf  url
doi  openurl
  Title Molecular dynamics simulations of mechanical stress on oxidized membranes Type A1 Journal article
  Year 2019 Publication (up) Biophysical chemistry Abbreviated Journal Biophys Chem  
  Volume 254 Issue Pages 106266  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract Biomembranes are under constant attack of free radicals that may lead to lipid oxidation in conditions of oxidative stress. The products generated during lipid oxidation are responsible for structural and dynamical changes which may jeopardize the membrane function. For instance, the local rearrangements of oxidized lipid molecules may induce membrane rupture. In this study, we investigated the effects of mechanical stress on oxidized phospholipid bilayers (PLBs). Model bilayers were stretched until pore formation (or poration) using nonequilibrium molecular dynamics simulations. We studied single-component homogeneous membranes composed of lipid oxidation products, as well as two-component heterogeneous membranes with coexisting native and oxidized domains. In homogeneous membranes, the oxidation products with —OH and —OOH groups reduced the areal strain required for pore formation, whereas the oxidation product with ]O group behaved similarly to the native membrane. In heterogeneous membranes composed of oxidized and non-oxidized domains, we tested the hypothesis according to which poration may be facilitated at the domain interface region. However, results were inconclusive due to their large statistical variance and sensitivity to simulation setup parameters. We pointed out important technical issues that need to be considered in future simulations of mechanically-induced poration of heterogeneous membranes. This research is of interest for photodynamic therapy and plasma medicine, because ruptured and intact plasma membranes are experimentally considered hallmarks of necrotic and apoptotic cell death.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000502890900015 Publication Date 2019-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4622 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.402 Times cited Open Access  
  Notes São Paulo Research Foundation, 2012/50680-5 ; National Counsel of Technological and Scientific Development, 459270/2014-1 ; We are thankful for the financial support received from the São Paulo Research Foundation (FAPESP) (grant no. 2012/50680-5) and from the National Counsel of Technological and Scientific Development (CNPq) (grant no. 459270/2014-1). MCO acknowledges UFABC for the Master's scholarship granted. Approved Most recent IF: 2.402  
  Call Number PLASMANT @ plasmant @c:irua:163477 Serial 5374  
Permanent link to this record
 

 
Author Thomassen, G.; Van Dael, M.; Van Passel, S. pdf  url
doi  openurl
  Title The potential of microalgae biorefineries in Belgium and India : an environmental techno-economic assessment Type A1 Journal article
  Year 2018 Publication (up) Bioresource Technology Abbreviated Journal Bioresource Technol  
  Volume 267 Issue 267 Pages 271-280  
  Keywords A1 Journal article; Engineering sciences. Technology; Engineering Management (ENM)  
  Abstract This study performs an environmental techno-economic assessment (ETEA) for multiple microalgae biorefinery concepts at different locations, those being Belgium and India. The ETEA methodology, which integrates aspects of the TEA and LCA methodologies and provides a clear framework for an integrated assessment model, has been proposed and discussed. The scenario in India has a higher profitability with a NPV of (sic)40 million over a period of 10 years, while the environmental impact in Belgium is lower. The inclusion of a medium recycling step provides the best scenario from both perspectives. The crucial parameters for feasibility are the beta-caroteneprice and content, the upstream environmental impact of electricity and the maximum biomass concentration during cultivation. The identification of these parameters by the ETEA guides future technology developments and shortens the time-to-market for microalgal-based biorefineries.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000441876100034 Publication Date 2018-07-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-8524 ISBN Additional Links UA library record; WoS full record; WoS citing articles; WoS full record; WoS citing articles  
  Impact Factor 5.651 Times cited 8 Open Access  
  Notes ; ; Approved Most recent IF: 5.651  
  Call Number UA @ admin @ c:irua:153599 Serial 6270  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: