|   | 
Details
   web
Records
Author Lobato, I.; De Backer, A.; Van Aert, S.
Title Real-time simulations of ADF STEM probe position-integrated scattering cross-sections for single element fcc crystals in zone axis orientation using a densely connected neural network Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 251 Issue Pages 113769
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Quantification of annular dark field (ADF) scanning transmission electron microscopy (STEM) images in terms

of composition or thickness often relies on probe-position integrated scattering cross sections (PPISCS). In

order to compare experimental PPISCS with theoretically predicted ones, expensive simulations are needed for

a given specimen, zone axis orientation, and a variety of microscope settings. The computation time of such

simulations can be in the order of hours using a single GPU card. ADF STEM simulations can be efficiently

parallelized using multiple GPUs, as the calculation of each pixel is independent of other pixels. However, most

research groups do not have the necessary hardware, and, in the best-case scenario, the simulation time will

only be reduced proportionally to the number of GPUs used. In this manuscript, we use a learning approach and

present a densely connected neural network that is able to perform real-time ADF STEM PPISCS predictions as

a function of atomic column thickness for most common face-centered cubic (fcc) crystals (i.e., Al, Cu, Pd, Ag,

Pt, Au and Pb) along [100] and [111] zone axis orientations, root-mean-square displacements, and microscope

parameters. The proposed architecture is parameter efficient and yields accurate predictions for the PPISCS

values for a wide range of input parameters that are commonly used for aberration-corrected transmission

electron microscopes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001011617200001 Publication Date 2023-06-01
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N and G0A7723N) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF), Belgium. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:197275 Serial 8812
Permanent link to this record
 

 
Author Denisov, N.; Jannis, D.; Orekhov, A.; Müller-Caspary, K.; Verbeeck, J.
Title Characterization of a Timepix detector for use in SEM acceleration voltage range Type A1 Journal article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 253 Issue Pages 113777
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Hybrid pixel direct electron detectors are gaining popularity in electron microscopy due to their excellent properties. Some commercial cameras based on this technology are relatively affordable which makes them attractive tools for experimentation especially in combination with an SEM setup. To support this, a detector characterization (Modulation Transfer Function, Detective Quantum Efficiency) of an Advacam Minipix and Advacam Advapix detector in the 15–30 keV range was made. In the current work we present images of Point Spread Function, plots of MTF/DQE curves and values of DQE(0) for these detectors. At low beam currents, the silicon detector layer behaviour should be dominant, which could make these findings transferable to any other available detector based on either Medipix2, Timepix or Timepix3 provided the same detector layer is used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001026912700001 Publication Date 2023-06-08
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes The authors acknowledge the financial support of the Research Foundation Flanders (FWO, Belgium) project SBO S000121N. The authors are grateful to Dr. Lobato for productive discussion of methods. Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:198258 Serial 8815
Permanent link to this record
 

 
Author Şentürk, DG.; Yu, CP.; De Backer, A.; Van Aert, S.
Title Atom counting from a combination of two ADF STEM images Type A1 Journal Article
Year 2024 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 255 Issue Pages 113859
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract To understand the structure–property relationship of nanostructures, reliably quantifying parameters, such as the number of atoms along the projection direction, is important. Advanced statistical methodologies have made it possible to count the number of atoms for monotype crystalline nanoparticles from a single ADF STEM image. Recent developments enable one to simultaneously acquire multiple ADF STEM images. Here, we present an extended statistics-based method for atom counting from a combination of multiple statistically independent ADF STEM images reconstructed from non-overlapping annular detector collection regions which improves the accuracy and allows one to retrieve precise atom-counts, especially for images acquired with low electron doses and multiple element structures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001089064200001 Publication Date 2023-09-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G034621N, G0A7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number EMAT @ emat @c:irua:201008 Serial 8964
Permanent link to this record
 

 
Author Van den Broek, W.; Jannis, D.; Verbeeck, J.
Title Convexity constraints on linear background models for electron energy-loss spectra Type A1 Journal Article
Year 2023 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 254 Issue Pages 113830
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper convexity constraints are derived for a background model of electron energy loss spectra (EELS) that is linear in the fitting parameters. The model outperforms a power-law both on experimental and simulated backgrounds, especially for wide energy ranges, and thus improves elemental quantification results. Owing to the model’s linearity, the constraints can be imposed through fitting by quadratic programming. This has important advantages over conventional nonlinear power-law fitting such as high speed and a guaranteed unique solution without need for initial parameters. As such, the need for user input is significantly reduced, which is essential for unsupervised treatment of large datasets. This is demonstrated on a demanding spectrum image of a semiconductor device sample with a high number of elements over a wide energy range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2023-08-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes ECSEL, 875999 ; Horizon 2020; Horizon 2020 Framework Programme; Electronic Components and Systems for European Leadership; Approved Most recent IF: 2.2; 2023 IF: 2.843
Call Number EMAT @ emat @c:irua:200588 Serial 8961
Permanent link to this record
 

 
Author Şentürk, D.G.; De Backer, A.; Van Aert, S.
Title Element specific atom counting for heterogeneous nanostructures: Combining multiple ADF STEM images for simultaneous thickness and composition determination Type A1 Journal Article
Year 2024 Publication (up) Ultramicroscopy Abbreviated Journal Ultramicroscopy
Volume 259 Issue Pages 113941
Keywords A1 Journal Article; Electron Microscopy for Materials Science (EMAT) ;
Abstract In this paper, a methodology is presented to count the number of atoms in heterogeneous nanoparticles based on the combination of multiple annular dark field scanning transmission electron microscopy (ADF STEM) images. The different non-overlapping annular detector collection regions are selected based on the principles of optimal statistical experiment design for the atom-counting problem. To count the number of atoms, the total intensities of scattered electrons for each atomic column, the so-called scattering cross-sections, are simultaneously compared with simulated library values for the different detector regions by minimising the squared differences. The performance of the method is evaluated for simulated Ni@Pt and Au@Ag core-shell nanoparticles. Our approach turns out to be a dose efficient alternative for the investigation of beam-sensitive heterogeneous materials as compared to the combination of ADF STEM and energy dispersive X-ray spectroscopy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos Publication Date 2024-02-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record
Impact Factor 2.2 Times cited Open Access OpenAccess
Notes This work was supported by the European Research Council (Grant 770887 PICOMETRICS to S. Van Aert). The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0346.21N, GOA7723N, and EOS 40007495) and a postdoctoral grant to A. De Backer. S. Van Aert acknowledges funding from the University of Antwerp Research fund (BOF). Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number EMAT @ emat @c:irua:204353 Serial 8996
Permanent link to this record
 

 
Author Gao, C.; Hofer, C.; Pennycook, T.J.
Title On central focusing for contrast optimization in direct electron ptychography of thick samples Type A1 Journal article
Year 2024 Publication (up) Ultramicroscopy Abbreviated Journal
Volume 256 Issue Pages 113879-7
Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
Abstract Ptychography provides high dose efficiency images that can reveal light elements next to heavy atoms. However, despite ptychography having an otherwise single signed contrast transfer function, contrast reversals can occur when the projected potential becomes strong for both direct and iterative inversion ptychography methods. It has recently been shown that these reversals can often be counteracted in direct ptychography methods by adapting the focus. Here we provide an explanation of why the best contrast is often found with the probe focused to the middle of the sample. The phase contribution due to defocus at each sample slice above and below the central plane in this configuration effectively cancels out, which can prevent contrast reversals when dynamical scattering effects are not overly strong. In addition we show that the convergence angle can be an important consideration for removal of contrast reversals in relatively thin samples.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Wos 001112166400001 Publication Date 2023-11-03
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.2 Times cited Open Access Not_Open_Access
Notes Approved Most recent IF: 2.2; 2024 IF: 2.843
Call Number UA @ admin @ c:irua:202029 Serial 9066
Permanent link to this record