toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Abakumov, A.M.; Shpanchenko, R.V.; Antipov, E.V.; Kopnin, E.M.; Capponi, J.J.; Marezio, M.; Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S. pdf  doi
openurl 
  Title Synthesis and structural study of Pb2Re2O7-x pyrochlores Type A1 Journal article
  Year 1998 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 138 Issue Pages 220-225  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000075369600005 Publication Date 2002-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 5 Open Access  
  Notes Approved Most recent IF: 2.299; 1998 IF: 1.432  
  Call Number UA @ lucian @ c:irua:25665 Serial 3439  
Permanent link to this record
 

 
Author Abakumov, A.M.; Rozova, M.G.; Pavlyuk, B.P.; Lobanov, M.V.; Antipov, E.V.; Lebedev, O.I.; Van Tendeloo, G.; Ignatchik, O.L.; Ovtchenkov, E.A.; Koksharov, Y.A.; Vasil'ev, A.N. pdf  doi
openurl 
  Title Synthesis, crystal structure, and magnetic properties of a novel layered manganese oxide Sr2MnGaO5+\delta Type A1 Journal article
  Year 2001 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 160 Issue 2 Pages 353-361  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000171215100010 Publication Date 2002-09-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 46 Open Access  
  Notes Approved Most recent IF: 2.299; 2001 IF: 1.614  
  Call Number UA @ lucian @ c:irua:54708 Serial 3447  
Permanent link to this record
 

 
Author Morozov, V.A.; Arakcheeva, A.V.; Konovalova, V.V.; Pattison, P.; Chapuis, G.; Lebedev, O.I.; Fomichev, V.V.; Van Tendeloo, G. pdf  doi
openurl 
  Title LiZnNb4O11.5 : a novel oxygen deficient compound in the Nb-rich part of the Li2O-ZnO-Nb2O5 system Type A1 Journal article
  Year 2010 Publication (up) Journal of solid state chemistry Abbreviated Journal J Solid State Chem  
  Volume 183 Issue 2 Pages 408-418  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A novel lithium zinc niobium oxide LiZnNb(4)O(11.5) (LZNO) has been found in the Nb-rich part of Li(2)O-ZnO-Nb(2)O(5) system. LZNO, with an original alpha-PbO(2) related structure, has been synthesized by the routine ceramic technique and characterized by X-ray diffraction and transmission electron microscopy (TEM). Reflections belonging to the LZNO phase, observed in X-ray powder diffraction (XRPD) and electron diffraction, have been indexed as monoclinic with unit cell parameters a=17.8358(9)angstrom, b=15.2924(7)angstrom, c=5.0363(3)angstrom and gamma=96.607(5)degrees or as alpha-PbO(2)-like with lattice constants a=4.72420(3)angstrom, b=5.72780(3)angstrom, c=5.03320(3)angstrom, gamma=90.048(16)degrees and modulation vector q=0.3a*+1.1b* indicating a commensurately modulated alpha-PbO(2) related structure. The monoclinic cell is a supercell related to the latter. Using synchrotron powder diffraction data, the structure has been solved and refined as a commensurate modulation (superspace group P112(1)/n(alpha beta 0)00) as well as a supercell (space group P2(1)/b). The superspace description allows us to consider the LZNO structure as a member of the proposed alpha-PbO(2)-Z (3 + 1)D structure type, which unifies both incommensurately and commensurately modulated structures. HRTEM reveals several types of defects in LZNO and structural models for these defects are proposed. Two new phases in Li(2)O-ZnO-Nb(2)O(5) system are predicted on the basis of this detailed HRTEM analysis. (C) 2009 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000274497600020 Publication Date 2009-12-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4596; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.299 Times cited 9 Open Access  
  Notes Iap-Vi Approved Most recent IF: 2.299; 2010 IF: 2.261  
  Call Number UA @ lucian @ c:irua:95646 Serial 3542  
Permanent link to this record
 

 
Author Gasparotto, A.; Barreca, D.; Bekermann, D.; Devi, A.; Fischer, R.A.; Fornasiero, P.; Gombac, V.; Lebedev, O.I.; Maccato, C.; Montini, T.; Van Tendeloo, G.; Tondello, E. pdf  doi
openurl 
  Title F-doped Co3O4 photocatalysts for sustainable H2 generation from water/ethanol Type A1 Journal article
  Year 2011 Publication (up) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 133 Issue 48 Pages 19362-19365  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract p-Type Co3O4 nanostructured films are synthesized by a plasma-assisted process and tested in the photocatalytic production of H2 from water/ethanol solutions under both near-UV and solar irradiation. It is demonstrated that the introduction of fluorine into p-type Co3O4 results in a remarkable performance improvement with respect to the corresponding undoped oxide, highlighting F-doped Co3O4 films as highly promising systems for hydrogen generation. Notably, the obtained yields were among the best ever reported for similar semiconductor-based photocatalytic processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000297606500027 Publication Date 2011-11-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 114 Open Access  
  Notes Approved Most recent IF: 13.858; 2011 IF: 9.907  
  Call Number UA @ lucian @ c:irua:93628 Serial 1164  
Permanent link to this record
 

 
Author Bals, S.; Batenburg, K.J.; Liang, D.; Lebedev, O.; Van Tendeloo, G.; Aerts, A.; Martens, J.A.; Kirschhock, C.E. pdf  doi
openurl 
  Title Quantitative three-dimensional modeling of zeotile through discrete electron tomography Type A1 Journal article
  Year 2009 Publication (up) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 131 Issue 13 Pages 4769-4773  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Vision lab  
  Abstract Discrete electron tomography is a new approach for three-dimensional reconstruction of nanoscale objects. The technique exploits prior knowledge of the object to be reconstructed, which results in an improvement of the quality of the reconstructions. Through the combination of conventional transmission electron microscopy and discrete electron tomography with a model-based approach, quantitative structure determination becomes possible. In the present work, this approach is used to unravel the building scheme of Zeotile-4, a silica material with two levels of structural order. The layer sequence of slab-shaped building units could be identified. Successive layers were found to be related by a rotation of 120°, resulting in a hexagonal space group. The Zeotile-4 material is a demonstration of the concept of successive structuring of silica at two levels. At the first level, the colloid chemical properties of Silicalite-1 precursors are exploited to create building units with a slablike geometry. At the second level, the slablike units are tiled using a triblock copolymer to serve as a mesoscale structuring agent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000264806300050 Publication Date 2009-03-16  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 58 Open Access  
  Notes Fwo; Iap; Esteem 026019 Approved Most recent IF: 13.858; 2009 IF: 8.580  
  Call Number UA @ lucian @ c:irua:76393 Serial 2767  
Permanent link to this record
 

 
Author Schröder, F.; Esken, D.; Cokoja, M.; van den Berg, M.W.E.; Lebedev, O.I.; Van Tendeloo, G.; Walaszek, B.; Buntkowsky, G.; Limbach, H.H.; Chaudret, B.; Fischer, R.A.; pdf  doi
openurl 
  Title Ruthenium nanoparticles inside porous (Zn40(bdC)(3)) by hydrogenolysis of adsorbed (Ru(cod)(cot)): a solid-state reference system for surfactant-stabilized ruthenium colloids Type A1 Journal article
  Year 2008 Publication (up) Journal of the American Chemical Society Abbreviated Journal J Am Chem Soc  
  Volume 130 Issue 19 Pages 6119-6130  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000255620200018 Publication Date 2008-04-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-7863;1520-5126; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 13.858 Times cited 272 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 13.858; 2008 IF: 8.091  
  Call Number UA @ lucian @ c:irua:68851 Serial 2934  
Permanent link to this record
 

 
Author de Gryse, O.; Clauws, P.; Vanhellemont, J.; Lebedev, O.I.; van Landuyt, J.; Simoen, E.; Claeys, C. pdf  doi
openurl 
  Title Characterization of oxide precipitates in heavily B-doped silicon by infrared spectroscopy Type A1 Journal article
  Year 2004 Publication (up) Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 151 Issue 9 Pages G598-G605  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Infrared absorption spectra of oxygen precipitates in boron-doped silicon with a boron concentration between 10(17) and 10(19) cm(-3) are analyzed, applying the spectral function representation of composite materials. The aspect ratio of the platelet precipitates is determined by transmission electron microscopy measurements. The analysis shows that in samples with moderate doping levels (<10(18) B cm(-3)) SiOγ precipitates are formed with the same composition as in the lightly doped case. In the heavily boron-doped (>10(18) cm(-3)) samples, however, the measured spectra of the precipitates are consistent with a mixture of SiO2 and B2O3, with a volume fraction of B2O3 as high as 0.41 in the most heavily doped case. (C) 2004 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000223622000072 Publication Date 2004-08-30  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 13 Open Access  
  Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.259; 2004 IF: 2.356  
  Call Number UA @ lucian @ c:irua:103760 Serial 330  
Permanent link to this record
 

 
Author Verbeeck, J.; Lebedev, O.I.; Van Tendeloo, G.; Cagnon, L.; Bougerol, C.; Tourillon, T. pdf  doi
openurl 
  Title Fe and Co nanowires and nanotubes synthesized by template electrodeposition: a HRTEM and EELS study Type A1 Journal article
  Year 2003 Publication (up) Journal of the electrochemical society Abbreviated Journal J Electrochem Soc  
  Volume 150 Issue 10 Pages E468-E471  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Co and Fe nanowires and/or nanotubes are electrochemically synthesized through nanoporous membranes. By combining high-resolution transmission electron microscopy (HRTEM), electron energy loss spectroscopy (EELS), and energy filtered TEM techniques, their structural and crystallographic characteristics are precisely determined. The synthesis was shown to produce cigar-shaped single monocrystalline Co and Fe nanowires with a diameter of about 60 nm. All wires were surrounded by an epitaxial oxide layer (Co3O4 or Fe3O4) of roughly 10 nm. The Fe nanotubes were built up of Fe3O4 nanocrystals. Electron diffraction showed that all nanocrystals had a common crystallographic axis, creating a pseudomonocrystalline wall in the nanotubes. (C) 2003 The Electrochemical Society.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000185639800039 Publication Date 2003-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-4651; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.259 Times cited 41 Open Access  
  Notes Approved Most recent IF: 3.259; 2003 IF: 2.361  
  Call Number UA @ lucian @ c:irua:54858UA @ admin @ c:irua:54858 Serial 1176  
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P. doi  openurl
  Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
  Year 2011 Publication (up) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 27 Issue 7 Pages 3618-3625  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000288970900054 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.833; 2011 IF: 4.186  
  Call Number UA @ lucian @ c:irua:88366 Serial 1557  
Permanent link to this record
 

 
Author Barreca, D.; Carraro, G.; Gasparotto, A.; Maccato, C.; Lebedev, O.I.; Parfenova, A.; Turner, S.; Tondello, E.; Van Tendeloo, G. pdf  doi
openurl 
  Title Tailored vapor-phase growth of CuxO-TiO2(x=1,2) nanomaterials decorated with Au particles Type A1 Journal article
  Year 2011 Publication (up) Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 27 Issue 10 Pages 6409-6417  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract We report on the fabrication of CuxOTiO2 (x = 1, 2) nanomaterials by an unprecedented vapor-phase approach. The adopted strategy involves the growth of porous CuxO matrices by means of chemical vapor deposition (CVD), followed by the controlled dispersion of TiO2 nanoparticles. The syntheses are performed on Si(100) substrates at temperatures of 400550 °C under wet oxygen atmospheres, adopting Cu(hfa)2·TMEDA (hfa =1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine) and Ti(O-iPr)2(dpm)2 (O-iPr = isopropoxy; dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) as copper and titanium precursors, respectively. Subsequently, finely dispersed gold nanoparticles are introduced in the as-prepared systems via radio frequency (RF)-sputtering under mild conditions. The synthesis process results in the formation of systems with chemical composition and nano-organization strongly dependent on the nature of the initial CuxO matrix and on the deposited TiO2 amount. The decoration with low-size gold clusters paves the way to the engineering of hierarchically organized nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington, D.C. Editor  
  Language Wos 000290292900082 Publication Date 2011-04-25  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 36 Open Access  
  Notes Fwo Approved Most recent IF: 3.833; 2011 IF: 4.186  
  Call Number UA @ lucian @ c:irua:88940 Serial 3467  
Permanent link to this record
 

 
Author Lorenz, H.; Zhao, Q.; Turner, S.; Lebedev, O.I.; Van Tendeloo, G.; Klötzer, B.; Rameshan, C.; Penner, S. pdf  doi
openurl 
  Title Preparation and structural characterization of SnO2 and GeO2 methanol steam reforming thin film model catalysts by (HR)TEM Type A1 Journal article
  Year 2010 Publication (up) Materials chemistry and physics Abbreviated Journal Mater Chem Phys  
  Volume 122 Issue 2/3 Pages 623-629  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Structure, morphology and composition of different tin oxide and germanium oxide thin film catalysts for the methanol steam reforming (MSR) reaction have been studied by a combination of (high-resolution) transmission electron microscopy, selected area electron diffraction, dark-field imaging and electron energy-loss spectroscopy. Deposition of the thin films on NaCl(0 0 1) cleavage faces has been carried out by thermal evaporation of the respective SnO2 and GeO2 powders in varying oxygen partial pressures and at different substrate temperatures. Preparation of tin oxide films in high oxygen pressures (10−1 Pa) exclusively resulted in SnO phases, at and above 473 K substrate temperature epitaxial growth of SnO on NaCl(0 0 1) leads to well-ordered films. For lower oxygen partial pressures (10−3 to 10−2 Pa), mixtures of SnO and β-Sn are obtained. Well-ordered SnO2 films, as verified by electron diffraction patterns and energy-loss spectra, are only obtained after post-oxidation of SnO films at temperatures T ≥ 673 K in 105 Pa O2. Preparation of GeOx films inevitably results in amorphous films with a composition close to GeO2, which cannot be crystallized by annealing treatments in oxygen or hydrogen at temperatures comparable to SnO/SnO2. Similarities and differences to neighbouring oxides relevant for selective MSR in the third group of the periodic system (In2O3 and Ga2O3) are also discussed with the aim of cross-correlation in formation of nanomaterials, and ultimately, also catalytic properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000278637900054 Publication Date 2010-04-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0254-0584; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.084 Times cited 15 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 2.084; 2010 IF: 2.356  
  Call Number UA @ lucian @ c:irua:83099 Serial 2699  
Permanent link to this record
 

 
Author Oró-Solé, J.; Frontera, C.; Beltrán-Porter, D.; Lebedev, O.I.; Van Tendeloo, G.; Fuertes, A. pdf  doi
openurl 
  Title Crystal structures of superconducting sodium intercalates of hafnium nitride chloride Type A1 Journal article
  Year 2006 Publication (up) Materials research bulletin Abbreviated Journal Mater Res Bull  
  Volume 41 Issue 5 Pages 934-940  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication New York, N.Y. Editor  
  Language Wos 000238116800005 Publication Date 2006-04-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0025-5408; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.446 Times cited 8 Open Access  
  Notes Approved Most recent IF: 2.446; 2006 IF: 1.383  
  Call Number UA @ lucian @ c:irua:59594 Serial 579  
Permanent link to this record
 

 
Author Lebedev, O.I.; Van Tendeloo, G.; Amelinckx, S.; Leibold, B.; Habermeier, H.U.; Phillipp, F. doi  openurl
  Title Structure and magnetotransport properties of La2/3Ca1/3MnO3 thin films prepared by pulsed laser deposition Type P1 Proceeding
  Year 1998 Publication (up) Materials Research Society symposium proceedings T2 – Symposium on Advances in Laser Ablation of Materials at the 1998 MRS, Spring Meeting, April 13-16, 1998, San Francisco, Calif. Abbreviated Journal  
  Volume Issue Pages 219-224  
  Keywords P1 Proceeding; Electron microscopy for materials research (EMAT)  
  Abstract La1-xCaxMnO3-delta (LCMO) thin films are grown by pulsed laser deposition on a (100) SrTiO3 substrate at temperatures between 530 degrees C and 890 degrees C. The magnetotransport properties show a high negative magnetoresistance and a shift of the maximum of the R(T) curve as function of temperature. The Curie temperature changes with deposition temperature and film quality in the range of 100-220K. The film quality is characterised by X-ray diffraction and transmission electron microscopy (TEM); film and target compositions were verified by atomic emission spectroscopy. The local structure of the film depends on the growth conditions and substrate temperature. TEM reveals a slight distortion of the film leading to a breakdown of the symmetry from orthorhombic to monoclinic. At the highest growth temperatures, a well defined interface is observed within the LCMO film, parallel to the substrate surface; this interface divides the film into two lamellae with a different microstructure. The lamella close to the substrate is perfectly coherent with the substrate, suggesting that it is strained as a result of the lattice parameter mismatch; the upper lamella shows a typical domain structure with unusual translation interfaces characterised by a displacement vector of the type 1/2[010](m) and 1/2[001](m) when referred ten the monoclinic lattice.  
  Address  
  Corporate Author Thesis  
  Publisher Materials research society Place of Publication Warrendale Editor  
  Language Wos 000077696000032 Publication Date 2011-04-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume 526 Series Issue Edition  
  ISSN 1946-4274; ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:95838 Serial 3283  
Permanent link to this record
 

 
Author Neira, I.S.; Kolen'ko, Y.V.; Lebedev, O.I.; Van Tendeloo, G.; Gupta, H.S.; Matsushita, N.; Yoshimura, M.; Guitian, F. pdf  doi
openurl 
  Title Rational synthesis of a nanocrystalline calcium phosphate cement exhibiting rapid conversion to hydroxyapatite Type A1 Journal article
  Year 2009 Publication (up) Materials science and engineering: part C: biomimetic materials Abbreviated Journal Mat Sci Eng C-Mater  
  Volume 29 Issue 7 Pages 2124-2132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The rational synthesis, comprehensive characterization, and mechanical and micromechanical properties of a calcium phosphate cement are presented. Hydroxyapatite cement biomaterial was synthesized from reactive sub-micrometer-sized dicalcium phosphate dihydrate and tetracalcium phosphate via a dissolution-precipitation reaction using water as the liquid phase. As a result nanostructured, Ca-deficient and carbonated B-type hydroxyapatite is formed. The cement shows good processibility, sets in 22 ± 2 min and entirely transforms to the end product after 6 h of setting reaction, one of the highest conversion rates among previously reported for calcium phosphate cements based on dicalcium and tetracalcium phosphates. The combination of all elucidated physical-chemical traits leads to an essential bioactivity and biocompatibility of the cement, as revealed by in vitro acellular simulated body fluid and cell culture studies. The compressive strength of the produced cement biomaterial was established to be 25 ± 3 MPa. Furthermore, nanoindentation tests were performed directly on the cement to probe its local elasticity and plasticity at sub-micrometer/micrometer level. The measured elastic modulus and hardness were established to be Es = 23 ± 3.5 and H = 0.7 ± 0.2 GPa, respectively. These values are in close agreement with those reported in literature for trabecular and cortical bones, reflecting good elastic and plastic coherence between synthesized cement biomaterial and human bones.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Lausanne Editor  
  Language Wos 000270159200008 Publication Date 2009-04-20  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0928-4931; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.164 Times cited 18 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 4.164; 2009 IF: NA  
  Call Number UA @ lucian @ c:irua:79312 Serial 2812  
Permanent link to this record
 

 
Author Lukashin, A.V.; Eliseev, A.A.; Zhuravleva, N.G.; Vertegel, A.A.; Tretyakov, Y.D.; Lebedev, O.I.; Van Tendeloo, G. doi  openurl
  Title One-step synthesis of shelled PbS nanoparticles in a layered double hydroxide matrix Type A1 Journal article
  Year 2004 Publication (up) Mendeleev communications Abbreviated Journal Mendeleev Commun  
  Volume Issue 4 Pages 174-176  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract The one-step preparation of capped PbS nanoparticles in an inorganic matrix via UV-induced decomposition of lead thiosulfate complexes intercalated into a hydrotalcite-type layered double hydroxide is reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000224247100025 Publication Date 2004-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9436; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.741 Times cited 9 Open Access  
  Notes Approved Most recent IF: 1.741; 2004 IF: 0.640  
  Call Number UA @ lucian @ c:irua:103735 Serial 2468  
Permanent link to this record
 

 
Author Ignatova, V.A.; Lebedev, O.I.; Wätjen, U.; van Vaeck, L.; van Landuyt, J.; Gijbels, R.; Adams, F. doi  openurl
  Title Observation of Sb203 nanocrystals in SiO2 after Sb ion implantation Type A1 Journal article
  Year 2002 Publication (up) Microchimica acta Abbreviated Journal Microchim Acta  
  Volume 139 Issue Pages 77-81  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Wien Editor  
  Language Wos 000175560300012 Publication Date 2003-03-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0026-3672;1436-5073; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.58 Times cited 3 Open Access  
  Notes Approved Most recent IF: 4.58; 2002 IF: NA  
  Call Number UA @ lucian @ c:irua:38378 Serial 2420  
Permanent link to this record
 

 
Author Meynen, V.; Cool, P.; Vansant, E.F.; Kortunov, P.; Grinberg, F.; Kärger, J.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Deposition of vanadium silicalite-1 nanoparticles on SBA-15 materials: structural and transport characteristics of SBA-VS-15 Type A1 Journal article
  Year 2007 Publication (up) Microporous and mesoporous materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 99 Issue 1/2 Pages 14-22  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000243845200003 Publication Date 2006-10-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 23 Open Access  
  Notes FWO; GOA; Inside-Pores NoE (FP-EU) Approved Most recent IF: 3.615; 2007 IF: 2.210  
  Call Number UA @ lucian @ c:irua:61567 Serial 647  
Permanent link to this record
 

 
Author van Oers, C.J.; Stevens, W.J.J.; Bruijn, E.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Formation of a combined micro- and mesoporous material using zeolite Beta nanoparticles Type A1 Journal article
  Year 2009 Publication (up) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 120 Issue 1/2 Pages 29-34  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Composite micro- and mesoporous materials are synthesized using zeolite Beta nanoparticles without the need for a structure directing agent to form the mesopores. This leads to important ecological and economical advantages. The influence of the way of cooling the aged nanoparticles solution on the formation of the composite materials has been studied. The materials have been characterized towards porosity by N2-sorption, towards zeolitic properties by TGA, DRIFT, XRD and TEM, towards aluminium content by EPMA. All prepared structures possess zeolitic properties. However, the method of cooling down of the aged seeds leads to differences in the porosity and intensity of the zeolitic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000264619200006 Publication Date 2008-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 42 Open Access  
  Notes Crp; Sfr Ua Approved Most recent IF: 3.615; 2009 IF: 2.652  
  Call Number UA @ lucian @ c:irua:74950 Serial 1254  
Permanent link to this record
 

 
Author Liu, S.; Lebedev, O.I.; Mertens, M.; Meynen, V.; Cool, P.; Van Tendeloo, G.; Vansant, E.F. pdf  doi
openurl 
  Title The merging of silica-surfactant microspheres under hydrothermal conditions Type A1 Journal article
  Year 2008 Publication (up) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 116 Issue Pages 141-146  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Post-synthesis hydrothermal treatments have been used to improve the quality of MCM-41 materials. In our latest work, merging of surfactant-containing silica microspheres during the hydrothermal treatments was observed. Mechanistic insights and the different stages that are involved in the merging process can be summarized as follows. First, the surfaces of the starting microspheres open up due to the dissolution of silica. Then the dissolved silica species provide mass source for the formation of particle necks connecting two neighboring microspheres. Gradually, surfaces of the starting microspheres are flattened to meet the needs of further growth of the necks. Finally, some chain-like highly-ordered mesoporous structures up to several micrometers are formed. The observed merging of the surfactant-containing microspheres is a re-assembling process, which is under the control of electrostatic force between the dissolved silica species and the surfactant cations. The occluded surfactant cations in the precursor spheres play important roles in the merging process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000261133600021 Publication Date 2008-04-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:72021 Serial 1997  
Permanent link to this record
 

 
Author Stevens, W.J.J.; Meynen, V.; Bruijn, E.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P.; Vansant, E.F. pdf  doi
openurl 
  Title Mesoporous material formed by acidic hydrothermal assembly of silicalite-1 precursor nanoparticles in the absence of meso-templates Type A1 Journal article
  Year 2008 Publication (up) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 110 Issue 1 Pages 77-85  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Wos 000254056200010 Publication Date 2007-09-13  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 21 Open Access  
  Notes Fwo; Crp; Inside-Pores Approved Most recent IF: 3.615; 2008 IF: 2.555  
  Call Number UA @ lucian @ c:irua:68229 Serial 1998  
Permanent link to this record
 

 
Author Verlooy, P.L.H.; Robeyns, K.; van Meervelt, L.; Lebedev, O.I.; Van Tendeloo, G.; Martens, J.A.; Kirschhock, C.E.A. doi  openurl
  Title Synthesis and characterization of the new cyclosilicate hydrate (hexamethyleneimine)4.[Si8O16(OH)4].12H2O Type A1 Journal article
  Year 2010 Publication (up) Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 130 Issue 1/3 Pages 14-20  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A new cyclosilicate hydrate with composition (C6H14N)4·[Si8O16(OH)4]·12H2O was crystallized and the structure determined by single-crystal X-ray diffraction. The structure, described by the tetragonal space group I41/a, with unit cell dimensions of a = 39.2150(2) Å and c = 14.1553(2) Å, contains columns of hydrogen-bonded cubic octamer silicate anions. The space between silicate columns holds hydrogen-bonded water and protonated hexamethyleneimine molecules compensating the negative charge of the silicate. The crystal water can be removed resulting in a rearrangement of the columns into orthorhombic symmetry. Removal of the organic moiety causes amorphisation. Flash evacuation results in a new microporous material with pore volumes typical of a zeolite.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Amsterdam Editor  
  Language Wos 000275702600003 Publication Date 2009-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access  
  Notes Approved Most recent IF: 3.615; 2010 IF: 3.220  
  Call Number UA @ lucian @ c:irua:82448 Serial 3418  
Permanent link to this record
 

 
Author Shen, Y.; Turner, S.; Yang, P.; Van Tendeloo, G.; Lebedev, O.I.; Wu, T. pdf  url
doi  openurl
  Title Epitaxy-enabled vapor-liquid-solid growth of tin-doped indium oxide nanowires with controlled orientations Type A1 Journal article
  Year 2014 Publication (up) Nano letters Abbreviated Journal Nano Lett  
  Volume 14 Issue 8 Pages 4342-4351  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Controlling the morphology of nanowires in bottom-up synthesis and assembling them on planar substrates is of tremendous importance for device applications in electronics, photonics, sensing and energy conversion. To date, however, there remain challenges in reliably achieving these goals of orientation-controlled nanowire synthesis and assembly. Here we report that growth of planar, vertical and randomly oriented tin-doped indium oxide (ITO) nanowires can be realized on yttria-stabilized zirconia (YSZ) substrates via the epitaxy-assisted vaporliquidsolid (VLS) mechanism, by simply regulating the growth conditions, in particular the growth temperature. This robust control on nanowire orientation is facilitated by the small lattice mismatch of 1.6% between ITO and YSZ. Further control of the orientation, symmetry and shape of the nanowires can be achieved by using YSZ substrates with (110) and (111), in addition to (100) surfaces. Based on these insights, we succeed in growing regular arrays of planar ITO nanowires from patterned catalyst nanoparticles. Overall, our discovery of unprecedented orientation control in ITO nanowires advances the general VLS synthesis, providing a robust epitaxy-based approach toward rational synthesis of nanowires.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000340446200022 Publication Date 2014-06-27  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 33 Open Access  
  Notes European Union Seventh Framework Programme under Grant 312483 – ESTEEM; FWOl; esteem2_ta Approved Most recent IF: 12.712; 2014 IF: 13.592  
  Call Number UA @ lucian @ c:irua:118622 Serial 1075  
Permanent link to this record
 

 
Author Gao, J.; Lebedev, O.I.; Turner, S.; Li, Y.F.; Lu, Y.H.; Feng, Y.P.; Boullay, P.; Prellier, W.; Van Tendeloo, G.; Wu, T. pdf  doi
openurl 
  Title Phase selection enabled formation of abrupt axial heterojunctions in branched oxide nanowires Type A1 Journal article
  Year 2012 Publication (up) Nano letters Abbreviated Journal Nano Lett  
  Volume 12 Issue 1 Pages 275-280  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Rational synthesis of nanowires via the vaporliquidsolid (VLS) mechanism with compositional and structural controls is vitally important for fabricating functional nanodevices from bottom up. Here, we show that branched indium tin oxide nanowires can be in situ seeded in vapor transport growth using tailored AuCu alloys as catalyst. Furthermore, we demonstrate that VLS synthesis gives unprecedented freedom to navigate the ternary InSnO phase diagram, and a rare and bulk-unstable cubic phase can be selectively stabilized in nanowires. The stabilized cubic fluorite phase possesses an unusual almost equimolar concentration of In and Sn, forming a defect-free epitaxial interface with the conventional bixbyite phase of tin-doped indium oxide that is the most employed transparent conducting oxide. This rational methodology of selecting phases and making abrupt axial heterojunctions in nanowires presents advantages over the conventional synthesis routes, promising novel composition-modulated nanomaterials.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Washington Editor  
  Language Wos 000298943100048 Publication Date 2011-12-05  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984;1530-6992; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 12.712 Times cited 25 Open Access  
  Notes Fwo Approved Most recent IF: 12.712; 2012 IF: 13.025  
  Call Number UA @ lucian @ c:irua:94209 Serial 2587  
Permanent link to this record
 

 
Author Lebedev, O.I.; Turner, S.; Liu, S.; Cool, P.; Van Tendeloo, G. pdf  doi
openurl 
  Title New nano-architectures of mesoporous silica spheres analyzed by advanced electron microscopy Type A1 Journal article
  Year 2012 Publication (up) Nanoscale Abbreviated Journal Nanoscale  
  Volume 4 Issue 5 Pages 1722-1727  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Using template-containing silica microspheres as a precursor, novel ordered mesoporous silica nanoparticles with a narrow pore size distribution and high crystallinity have been synthesized by various hydrothermal merging processes. Several architectures like chains, dumbbells, triangles, squares and flowers have been discovered. The linking mechanisms of these interacting silica spheres leading to the formation of ordered nano-structures are studied by HRTEM, HAADF-STEM and electron tomography and a plausible model is presented for several merging processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge Editor  
  Language Wos 000300433700051 Publication Date 2011-12-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 7.367 Times cited 5 Open Access  
  Notes Fwo Approved Most recent IF: 7.367; 2012 IF: 6.233  
  Call Number UA @ lucian @ c:irua:95038 Serial 2328  
Permanent link to this record
 

 
Author Ray, S.; Kolen'ko, Y.V.; Kovnir, K.A.; Lebedev, O.I.; Turner, S.; Chakraborty, T.; Erni, R.; Watanabe, T.; Van Tendeloo, G.; Yoshimura, M.; Itoh, M. pdf  doi
openurl 
  Title Defect controlled room temperature ferromagnetism in Co-doped barium titanate nanocrystals Type A1 Journal article
  Year 2012 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 23 Issue 2 Pages 025702,1-025702,10  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Defect mediated high temperature ferromagnetism in oxide nanocrystallites is the central feature of this work. Here, we report the development of room temperature ferromagnetism in nanosized Co-doped barium titanate particles with a size of around 14 nm, synthesized by a solvothermal drying method. A combination of x-ray diffraction with state-of-the-art electron microscopy techniques confirms the intrinsic doping of Co into BaTiO3. The development of the room temperature ferromagnetism was tracked down to the different donor defects, namely hydroxyl groups at the oxygen site (\mathrm {OH}\mathrm {(O)}  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000298409000011 Publication Date 2011-12-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 19 Open Access  
  Notes Esteem 026019; Fwo Approved Most recent IF: 3.44; 2012 IF: 3.842  
  Call Number UA @ lucian @ c:irua:93636 Serial 614  
Permanent link to this record
 

 
Author Krsmanovic, R.; Morozov, V.A.; Lebedev, O.I.; Polizzi, S.; Speghini, A.; Bettinelli, M.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structural and luminescence investigation on gadolinium gallium garnet nanocrystalline powders prepared by solution combustion synthesis Type A1 Journal article
  Year 2007 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 18 Issue 32 Pages 325604-325609  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocrystalline powders of undoped and lanthanide (Pr3+, Tm3+)- doped gadolinium gallium garnet, Gd3Ga5O12 (GGG), were prepared by propellant synthesis and studied by x-ray powder diffraction (XRD), electron diffraction (ED), high-resolution electron microscopy (HREM) and luminescence spectroscopy. The x-ray diffraction patterns of the GGG samples were analysed using the Rietveld method. The Rietveld refinement reveals the existence of two garnet-type phases: both are cubic (space group Ia $(3) over bar $d) with a slightly different lattice parameter and probably a slightly different composition. Electron diffraction and electron microscopy measurements confirm the x-ray diffraction results. EDX measurements for lanthanide-doped samples show that stable solid solutions with composition Gd(3-x)Ln(x)Ga(5)O(12), x approximate to 0.3 ( Ln = Pr; Tm) have been obtained. The luminescence properties of the Tm3+ -doped nanocrystalline GGG samples were measured and analysed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000248231300010 Publication Date 2007-07-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 33 Open Access  
  Notes Iap5-01 Approved Most recent IF: 3.44; 2007 IF: 3.310  
  Call Number UA @ lucian @ c:irua:104042 Serial 3195  
Permanent link to this record
 

 
Author Krsmanovic, R.; Lebedev, O.I.; Speghini, A.; Bettinelli, M.; Polizzi, S.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structural characterization and luminescence properties of nanostructured lanthanide-doped Sc2O3 prepared by propellant synthesis Type A1 Journal article
  Year 2006 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 17 Issue 11 Pages 2805-2812  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000238250300038 Publication Date 2006-05-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 22 Open Access  
  Notes IAP5-01; PRIN/Cofin Approved Most recent IF: 3.44; 2006 IF: 3.037  
  Call Number UA @ lucian @ c:irua:60046 Serial 3217  
Permanent link to this record
 

 
Author Jehanathan, N.; Lebedev, O.; Gélard, I.; Dubourdieu, C.; Van Tendeloo, G. pdf  doi
openurl 
  Title Structure and defect characterization of multiferroic <tex>ReMnO$3 films and multilayers by TEM Type A1 Journal article
  Year 2010 Publication (up) Nanotechnology Abbreviated Journal Nanotechnology  
  Volume 21 Issue 7 Pages 075705,1-075705,11  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Epitaxial rare earth manganite thin films (ReMnO3; Re = Tb, Ho, Er, and Y) and multilayers were grown by liquid injection metal organic chemical vapor deposition (MOCVD) on YSZ(111) and the same systems were grown c-oriented on Pt(111) buffered Si substrates. They have been structurally investigated by electron diffraction (ED) and high resolution transmission electron microscopy (HRTEM). Nanodomains of secondary orientation are observed in the hexagonal YMnO3 films. They are related to a YSZ(111) and Pt(111) misorientation. The epitaxial film thickness has an influence on the defect formation. TbO2 and Er2O3 inclusions are observed in the TbMnO3 and ErMnO3 films respectively. The structure and orientation of these inclusions are correlated to the resembling symmetry and structure of film and substrate. The type of defect formed in the YMnO3/HoMnO3 and YMnO3/ErMnO3 multilayers is also influenced by the type of substrate they are grown on. In our work, atomic growth models for the interface between the film/substrate are proposed and verified by comparison with observed and computer simulated images.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Bristol Editor  
  Language Wos 000273824500018 Publication Date 2010-01-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484;1361-6528; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.44 Times cited 15 Open Access  
  Notes Esteem 026019 Approved Most recent IF: 3.44; 2010 IF: 3.652  
  Call Number UA @ lucian @ c:irua:80436 Serial 3274  
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K. openurl 
  Title Corrigendum: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
  Year 2005 Publication (up) Nature materials Abbreviated Journal Nat Mater  
  Volume 4 Issue Pages 104  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited Open Access  
  Notes Approved Most recent IF: 39.737; 2005 IF: 15.941  
  Call Number UA @ lucian @ c:irua:54856 Serial 530  
Permanent link to this record
 

 
Author Moshnyaga, V.; Damaschke, B.; Shapoval, O.; Belenchuk, A.; Faupel, J.; Lebedev, O.I.; Verbeeck, J.; Van Tendeloo, G.; Mücksch, M.; Tsurkan, V.; Tidecks, R.; Samwer, K. pdf  doi
openurl 
  Title Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1-x:(MgO)x nanocomposite films Type A1 Journal article
  Year 2003 Publication (up) Nature materials Abbreviated Journal Nat Mater  
  Volume 2 Issue 4 Pages 247-252  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract 'Colossal magnetoresistance' in perovskite manganites such as La0.7Ca0.3MnO3 (LCMO), is caused by the interplay of ferro-paramagnetic, metal-insulator and structural phase transitions. Moreover, different electronic phases can coexist on a very fine scale resulting in percolative electron transport. Here we report on (LCMO)(1-x):(MgO)(x) (0 < x less than or equal to 0.8) epitaxial nano-composite films in which the structure and magnetotransport properties of the manganite nanoclusters can be tuned by the tensile stress originating from the MgO second phase. With increasing x, the lattice of LCMO was found to expand, yielding a bulk tensile strain. The largest colossal magnetoresistance of 10(5)% was observed at the percolation threshold in the conductivity at x(c) approximate to 0.3, which is coupled to a structural phase transition from orthorhombic (0 < x less than or equal to 0.1) to rhombohedral R (3) over barc structure (0.33 less than or equal to x less than or equal to 0.8). An increase of the Curie temperature for the R (3) over barc phase was observed. These results may provide a general method for controlling the magnetotransport properties of manganite-based composite films by appropriate choice of the second phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication London Editor  
  Language Wos 000182052700022 Publication Date 2003-03-31  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-1122;1476-4660; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 39.737 Times cited 177 Open Access  
  Notes Approved Most recent IF: 39.737; 2003 IF: 10.778  
  Call Number UA @ lucian @ c:irua:54855 Serial 3247  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: