|   | 
Details
   web
Records
Author Peeters, F.M.
Title Probing of the electron-phonon interaction using high magnetic fields Type A1 Journal article
Year 1997 Publication Physicalia magazine Abbreviated Journal
Volume 19 Issue Pages 187-194
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19251 Serial 2715
Permanent link to this record
 

 
Author Janssens, K.L.; Partoens, B.; Peeters, F.M.
Title Single and coupled type II quantum dots in magnetic and electric fields Type A1 Journal article
Year 2002 Publication Physicalia magazine Abbreviated Journal
Volume 24 Issue Pages 211
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:62456 Serial 3016
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex ionic crystals in superconducting films with magnetic pinning arays Type A1 Journal article
Year 2004 Publication Physicalia magazine Abbreviated Journal
Volume 26 Issue Pages 355-370
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57241 Serial 3852
Permanent link to this record
 

 
Author Milošević, M.V.; Peeters, F.M.
Title Vortex-antivortex molecules near a magnetic disk on top of a superconducting film Type A1 Journal article
Year 2003 Publication Physicalia magazine Abbreviated Journal
Volume 25 Issue Pages 185-197
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Gent Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0770-0520 ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:57240 Serial 3858
Permanent link to this record
 

 
Author Peeters, F.M.; Shi, J.M.; Devreese, J.T.
Title Magneto-optics of shallow impurities in superlattices Type H1 Book chapter
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 221-237
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication (down) Dordrecht Editor
Language Wos A1993BA34C00020 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:5789 Serial 1904
Permanent link to this record
 

 
Author Devreese, J.T.; Shi, J.M.; Peeters, F.M.
Title Magneto-polaron effect on shallow donors in 3D en Q2S systems Type H3 Book chapter
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 173-184
Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication (down) Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:20360 Serial 1908
Permanent link to this record
 

 
Author Ivanov, V.A.; Betouras, J.J.; Peeters, F.M.
Title MgB2 : superconductivity and pressure effects Type P1 Proceeding
Year 2003 Publication Abbreviated Journal
Volume Issue Pages 35-46
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We present a Ginzburg-Landau theory for a two-band superconductor with emphasis on MgB2. We propose experiments which lead to identification of the possible scenarios: whether both sigma- and pi-bands superconduct or sigma-alone. According to the second scenario a microscopic theory of superconducting MgB2 is proposed based on the strongly interacting or-electrons and non-correlated pi-electrons of boron ions. The kinematic and Coulomb interactions of sigma-electrons provide the superconducting state with an anisotropic gap of s(*)-wave symmetry. The critical temperature T-c has a non-monotonic dependence on the distance r between the centers of gravity of sigma- and pi-bands. The position of MgB2 on a bell-shaped curve T-c (r) is identified in the overdoped region. The derived superconducting density of electronic states is in agreement with available experimental and theoretical data. It is argued that the effects of pressure are crucial to identify the microscopic origin of superconductivity in MgB2. Possibilities for increase of T, are discussed.
Address
Corporate Author Thesis
Publisher Springer Place of Publication (down) Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume 106 Series Issue Edition
ISSN 1-4020-1372-8 ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:94869 Serial 2020
Permanent link to this record
 

 
Author Peeters, F.M.
Title The phase diagram Type H3 Book chapter
Year 1997 Publication Abbreviated Journal
Volume Issue Pages 17-32
Keywords H3 Book chapter; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Academic Publishers Place of Publication (down) Dordrecht Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:19261 Serial 2580
Permanent link to this record
 

 
Author Hai, G.Q.; Peeters, F.M.; Devreese, J.T.
Title Polaron cyclotron resonance spectrum with interface optical phonon modes in GaAs/AlAs quantum wells Type H3 Book chapter
Year 1993 Publication Abbreviated Journal
Volume Issue Pages 243-252
Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Kluwer Place of Publication (down) Dordrecht Editor
Language Wos A1993BY55J00024 Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record; WoS full record;
Impact Factor Times cited Open Access
Notes Approved
Call Number UA @ lucian @ c:irua:5743 Serial 2664
Permanent link to this record
 

 
Author Shanenko, A.A.; Croitoru, M.D.; Vagov, A.; Peeters, F.M.
Title Superconducting nanowires : new type of BCS-BEC crossover driven by quantum-size effects Type P1 Proceeding
Year 2011 Publication Abbreviated Journal
Volume Issue Pages 119-127
Keywords P1 Proceeding; Condensed Matter Theory (CMT)
Abstract We show that a superconducting quantum nanowire undergoes a new type of BCS-BEC crossover each time when an electron subband approaches the Fermi surface. In this case the longitudinal Cooper-pair size drops by two-three orders of magnitude down to a few nanometers. This unconventional BCS-BEC crossover is driven by quantum-size effects rather than by tuning the fermion-fermion interaction.
Address
Corporate Author Thesis
Publisher Springer Place of Publication (down) Dordrecht Editor
Language Wos 000289872900009 Publication Date 2010-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500;1874-6535; ISBN Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Belgian Science Policy (IAP) and the ESF-network: INSTANS. M.D.C. acknowledges support from the Alexander von Humboldt Foundation. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:89946 Serial 3359
Permanent link to this record
 

 
Author Croitoru, M.D.; Shanenko, A.A.; Peeters, F.M.
Title Tuning the superconducting properties of nanomaterials Type H1 Book chapter
Year 2009 Publication Abbreviated Journal
Volume Issue Pages 1-14
Keywords H1 Book chapter; Condensed Matter Theory (CMT); Electron microscopy for materials research (EMAT)
Abstract Electron continement and its effect on the superconducting-to-normal phase transition driven by a magentic field and/or a current is studied in nanowires. Our investigation is based on a self-consistent numerical solution of the Bogoliubov-de Gennes equations. We find that in a parallel magneitc field and/or in the presence of a supercurrent the transition from the superconducting to the normal phase occurs as a cascade of discontinuous jumps in the superconducting order parameter for diameters D < 10 divided by 15 nm at T = 0. The critical magentic field exhibits quantum-size oscillations with pronounced resonant enhancements as a function of the wire radius.
Address
Corporate Author Thesis
Publisher Springer Place of Publication (down) Dordrecht Editor
Language Wos 000274282900001 Publication Date 2009-07-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1874-6500; ISBN 978-90-481-3118-1 Additional Links UA library record; WoS full record
Impact Factor Times cited Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:99226 Serial 3761
Permanent link to this record
 

 
Author Moldovan, D.; Peeters, F.M.
Title Atomic Collapse in Graphene Type P1 Proceeding
Year 2016 Publication Nanomaterials For Security Abbreviated Journal
Volume Issue Pages 3-17
Keywords P1 Proceeding; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract When the charge Z of an atom exceeds the critical value of 170, it will undergo a process called atomic collapse which triggers the spontaneous creation of electron-positron pairs. The high charge requirements have prevented the observation of this phenomenon with real atomic nuclei. However, thanks to the relativistic nature of the carriers in graphene, the same physics is accessible at a much lower scale. The atomic collapse analogue in graphene is realized using artificial nuclei which can be created via the deposition of impurities on the surface of graphene or using charged vacancies. These supercritically charged artificial nuclei trap electrons in a sequence of quasi-bound states which can be observed experimentally as resonances in the local density of states.
Address
Corporate Author Thesis
Publisher Springer Place of Publication (down) Dordrecht Editor
Language Wos 000386506200001 Publication Date 2016-07-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-7593-9; 978-94-017-7591-5 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 3 Open Access
Notes ; ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:138237 Serial 4348
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 93 Issue 93 Pages 247401
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication (down) College pk Editor
Language Wos 000377802200009 Publication Date 2016-06-14
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 6 Open Access
Notes ; ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
Volume 97 Issue 20 Pages 207403
Keywords Editorial; Condensed Matter Theory (CMT)
Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
Address
Corporate Author Thesis
Publisher Amer physical soc Place of Publication (down) College pk Editor
Language Wos 000433288800015 Publication Date 2018-05-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.836 Times cited 5 Open Access
Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author Andelkovic, M.; Covaci, L.; Peeters, F.M.
Title DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 3 Pages 034004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (down) College Park, Md Editor
Language Wos 000427822700002 Publication Date 2018-03-20
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 27 Open Access
Notes ; We acknowledge financial support from the graphene FLAG-ERA project TRANS2DTMD. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:150838UA @ admin @ c:irua:150838 Serial 4964
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M.
Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
Year 2018 Publication Physical review materials Abbreviated Journal
Volume 2 Issue 7 Pages 074004
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication (down) College Park, Md Editor
Language Wos 000439435200006 Publication Date 2018-07-23
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 1 Open Access
Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128
Permanent link to this record
 

 
Author Çakir, D.; Sahin, H.; Peeters, F.M.
Title Doping of rhenium disulfide monolayers : a systematic first principles study Type A1 Journal article
Year 2014 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 16 Issue 31 Pages 16771-16779
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The absence of a direct-to-indirect band gap transition in ReS2 when going from the monolayer to bulk makes it special among the other semiconducting transition metal dichalcogenides. The functionalization of this promising layered material emerges as a necessity for the next generation technological applications. Here, the structural, electronic, and magnetic properties of substitutionally doped ReS2 monolayers at either the S or Re site were systematically studied by using first principles density functional calculations. We found that substitutional doping of ReS2 depends sensitively on the growth conditions of ReS2. Among the large number of non-metallic atoms, namely H, B, C, Se, Te, F, Br, Cl, As, P. and N, we identified the most promising candidates for n-type and p-type doping of ReS2. While Cl is an ideal candidate for n-type doping, P appears to be the most promising candidate for p-type doping of the ReS2 monolayer. We also investigated the doping of ReS2 with metal atoms, namely Mo, W, Ti, V. Cr, Co, Fe, Mn, Ni, Cu, Nb, Zn, Ru, Os and Pt. Mo, Nb, Ti, and V atoms are found to be easily incorporated in a single layer of ReS2 as substitutional impurities at the Re site for all growth conditions considered in this work. Tuning chemical potentials of dopant atoms energetically makes it possible to dope ReS2 with Fe, Co, Cr, Mn, W, Ru, and Os at the Re site. We observe a robust trend for the magnetic moments when substituting a Re atom with metal atoms such that depending on the electronic configuration of dopant atoms, the net magnetic moment of the doped ReS2 becomes either 0 or 1 mu(B). Among the metallic dopants, Mo is the best candidate for p-type doping of ReS2 owing to its favorable energetics and promising electronic properties.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000340075700048 Publication Date 2014-07-02
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 58 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-VI) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-long Marie Curie Fellowship. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2014 IF: 4.493
Call Number UA @ lucian @ c:irua:118742 Serial 752
Permanent link to this record
 

 
Author Devreese, J.T.; Verbist, G.; Peeters, F.M.
Title Large bipolarons and high-Tc materials Type H3 Book chapter
Year 1995 Publication Abbreviated Journal
Volume Issue Pages 385-391
Keywords H3 Book chapter; Condensed Matter Theory (CMT); Theory of quantum systems and complex systems
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication (down) Cambridge Editor
Language Wos Publication Date 0000-00-00
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Additional Links UA library record
Impact Factor Times cited Open Access
Notes Approved no
Call Number UA @ lucian @ c:irua:11700 Serial 1778
Permanent link to this record
 

 
Author Çakir, D.; Kecik, D.; Sahin, H.; Durgun, E.; Peeters, F.M.
Title Realization of a p-n junction in a single layer boron-phosphide Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 13013-13020
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Two-dimensional (2D) materials have attracted growing interest due to their potential use in the next generation of nanoelectronic and optoelectronic applications. On the basis of first-principles calculations based on density functional theory, we first investigate the electronic and mechanical properties of single layer boron phosphide (h-BP). Our calculations show that h-BP is a mechanically stable 2D material with a direct band gap of 0.9 eV at the K-point, promising for both electronic and optoelectronic applications. We next investigate the electron transport properties of a p-n junction constructed from single layer boron phosphide (h-BP) using the non-equilibrium Green's function formalism. The n-and p-type doping of BP are achieved by substitutional doping of B with C and P with Si, respectively. C(Si) substitutional doping creates donor (acceptor) states close to the conduction (valence) band edge of BP, which are essential to construct an efficient p-n junction. By modifying the structure and doping concentration, it is possible to tune the electronic and transport properties of the p-n junction which exhibits not only diode characteristics with a large current rectification but also negative differential resistance (NDR). The degree of NDR can be easily tuned via device engineering.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000354195300065 Publication Date 2015-04-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 104 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl), the Methusalem foundation of the Flemish government and the Bilateral program FWO-TUBITAK (under the Project No. 113T050) between Flanders and Turkey. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. D.C. is supported by a FWO Pegasus-short Marie Curie Fellowship. H.S. is supported by a FWO Pegasus Marie Curie-long Fellowship. E.D. acknowledges support from Bilim Akademisi – The Science Academy, Turkey under the BAGEP program. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number c:irua:126394 Serial 2835
Permanent link to this record
 

 
Author Ao, Z.M.; Hernández-Nieves, A.D.; Peeters, F.M.; Li, S.
Title The electric field as a novel switch for uptake/release of hydrogen for storage in nitrogen doped graphene Type A1 Journal article
Year 2012 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 14 Issue 4 Pages 1463-1467
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Nitrogen-doped graphene was recently synthesized and was reported to be a catalyst for hydrogen dissociative adsorption under a perpendicular applied electric field (F). In this work, the diffusion of H atoms on N-doped graphene, in the presence and absence of an applied perpendicular electric field, is studied using density functional theory. We demonstrate that the applied field can significantly facilitate the binding of hydrogen molecules on N-doped graphene through dissociative adsorption and diffusion on the surface. By removing the applied field the absorbed H atoms can be released efficiently. Our theoretical calculation indicates that N-doped graphene is a promising hydrogen storage material with reversible hydrogen adsorption/desorption where the applied electric field can act as a switch for the uptake/release processes.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000298754500018 Publication Date 2011-11-21
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 67 Open Access
Notes ; Financial support of the Vice-Chancellor's Postdoctoral Research Fellowship Program (SIR50/PS19184) and the ECR grant (SIR30/PS24201) from the University of New South Wales are acknowledged. This work is also supported by the Flemish Science Foundation (FWO-Vl) and the Belgian Science Policy (IAP). ; Approved Most recent IF: 4.123; 2012 IF: 3.829
Call Number UA @ lucian @ c:irua:96266 Serial 3578
Permanent link to this record
 

 
Author Mlinar, V.; Peeters, F.M.
Title A three-dimensional model for artificial atoms and molecules: influence of substrate orientation and magnetic field dependence Type A1 Journal article
Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
Volume 17 Issue 35 Pages 3687-3695
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000249080100013 Publication Date 2007-07-16
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor Times cited 7 Open Access
Notes Approved Most recent IF: NA
Call Number UA @ lucian @ c:irua:66124 Serial 3653
Permanent link to this record
 

 
Author Yang, W.; Misko, V.R.; Nelissen, K.; Kong, M.; Peeters, F.M.
Title Using self-driven microswimmers for particle separation Type A1 Journal article
Year 2012 Publication Soft matter Abbreviated Journal Soft Matter
Volume 8 Issue 19 Pages 5175-5179
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Microscopic self-propelled swimmers capable of autonomous navigation through complex environments provide appealing opportunities for localization, pick-up and delivery of micro and nanoscopic objects. Inspired by motile cells and bacteria, man-made microswimmers have been fabricated, and their motion in patterned surroundings has been experimentally studied. We propose to use self-driven artificial microswimmers for the separation of binary mixtures of colloids. We revealed different regimes of separation, including one with a velocity inversion. Our findings could be of use for various biological and medical applications.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000303208700009 Publication Date 2012-03-26
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-683X;1744-6848; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 3.889 Times cited 45 Open Access
Notes ; This work was supported by the “Odysseus” Program of the Flemish Government and the Flemish Science Foundation (FWO-V1) (Belgium), the National Natural Science Foundation of China (No. 11047111), the State Key Program of National Natural Science of China (No. 51135007), the Research Fund for the Doctoral Program of Higher Education of China (No. 20111415120002), and the Major State Basic Research Development Program of China (973) (No. 2009CB724201). ; Approved Most recent IF: 3.889; 2012 IF: 3.909
Call Number UA @ lucian @ c:irua:98326 Serial 3826
Permanent link to this record
 

 
Author Aierken, Y.; Leenaerts, O.; Peeters, F.M.
Title A first-principles study of stable few-layer penta-silicene Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 18486-18492
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Recently penta-graphene was proposed as a stable two-dimensional carbon allotrope consisting of a single layer of interconnected carbon pentagons [Zhang et al., PNAS, 2015, 112, 2372]. Its silicon counterpart, penta-silicene, however, is not stable. In this work, we show that multilayers of penta-silicene form stable materials with semiconducting or metallic properties, depending on the stacking mode. We demonstrate their dynamic stability through their phonon spectrum and using molecular dynamics. A particular type of bilayer penta-silicene is found to have lower energy than all of the known hexagonal silicene bilayers and forms therefore the most stable bilayer silicon material predicted so far. The electronic and mechanical properties of these new silicon allotropes are studied in detail and their behavior under strain is investigated. We demonstrate that strain can be used to tune its band gap.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000379486200077 Publication Date 2016-06-15
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 42 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-Vl). The computational resources used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:134942 Serial 4132
Permanent link to this record
 

 
Author Meng, X.; Pant, A.; Cai, H.; Kang, J.; Sahin, H.; Chen, B.; Wu, K.; Yang, S.; Suslu, A.; Peeters, F.M.; Tongay, S.;
Title Engineering excitonic dynamics and environmental stability of post-transition metal chalcogenides by pyridine functionalization technique Type A1 Journal article
Year 2015 Publication Nanoscale Abbreviated Journal Nanoscale
Volume 7 Issue 7 Pages 17109-17115
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf Publication Date 2015-09-24
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-3364 ISBN Additional Links UA library record; http://cmt.ua.ac.be/hsahin/publishedpapers/46.pdf; WoS full record; WoS citing articles
Impact Factor 7.367 Times cited 11 Open Access
Notes ; ; Approved Most recent IF: 7.367; 2015 IF: 7.394
Call Number UA @ lucian @ c:irua:129434 Serial 4175
Permanent link to this record
 

 
Author Çakir, D.; Peeters, F.M.
Title Fluorographane : a promising material for bipolar doping of MoS2 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27636-27641
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Using first principles calculations we investigate the structural and electronic properties of interfaces between fluorographane and MoS2. Unsymmetrical functionalization of graphene with H and F results in an intrinsic dipole moment perpendicular to the plane of the buckled graphene skeleton. Depending on the orientation of this dipole moment, the electronic properties of a physically absorbed MoS2 monolayer can be switched from n-to p-type or vice versa. We show that one can realize vanishing n-type/p-type Schottky barrier heights when contacting MoS2 to fluorographane. By applying a perpendicular electric field, the size of the Schottky barrier and the degree of doping can be tuned. Our calculations indicate that a fluorographane monolayer is a promising candidate for bipolar doping of MoS2, which is vital in the design of novel technological applications based on two-dimensional materials.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000363193800043 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 7 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRGrid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129477 Serial 4182
Permanent link to this record
 

 
Author Kang, J.; Sahin, H.; Peeters, F.M.
Title Mechanical properties of monolayer sulphides : a comparative study between MoS2, HfS2 and TiS3 Type A1 Journal article
Year 2015 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 17 Issue 17 Pages 27742-27749
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract The in-plane stiffness (C), Poisson's ratio (nu), Young's modulus and ultimate strength (sigma) along two different crystallographic orientations are calculated for the single layer crystals: MoS2, HfS2 and TiS3 in 1H, 1T and monoclinic phases. We find that MoS2 and HfS2 have isotropic in-plane stiffnesses of 124.24 N m(-1) and 79.86 N m(-1), respectively. While for TiS3 the in-plane stiffness is highly anisotropic due to its monoclinic structure, with C-x = 83.33 N m(-1) and C-y = 133.56 N m(-1) (x and y are parallel to its longer and shorter in-plane lattice vectors.). HfS2 which is in the 1T phase has the smallest anisotropy in its ultimate strength, whereas TiS3 in the monoclinic phase has the largest. Along the armchair direction MoS2 has the largest sigma of 23.48 GPa, whereas along y TiS3 has the largest sigma of 18.32 GPa. We have further analyzed the band gap response of these materials under uniaxial tensile strain, and find that they exhibit different behavior. Along both armchair and zigzag directions, the band gap of MoS2 (HfS2) decreases (increases) as strain increases, and the response is almost isotropic. For TiS3, the band gap decreases when strain is along x, while if strain is along y, the band gap increases first and then decreases beyond a threshold strain value. The different characteristics observed in these sulphides with different structures shed light on the relationship between the structure and properties, which is useful for applications in nanotechnology.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000363193800055 Publication Date 2015-09-25
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 83 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Super-computer Center (VSC), which is funded by the Hercules foundation. H.S. is supported by a FWO Pegasus-Long Marie Curie Fellowship, and J.K. by a FWO Pegasus-Short Marie Curie Fellowship. ; Approved Most recent IF: 4.123; 2015 IF: 4.493
Call Number UA @ lucian @ c:irua:129478 Serial 4204
Permanent link to this record
 

 
Author Yagmurcukardes, M.; Horzum, S.; Torun, E.; Peeters, F.M.; Senger, R.T.
Title Nitrogenated, phosphorated and arsenicated monolayer holey graphenes Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 3144-3150
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Motivated by a recent experiment that reported the synthesis of a new 2D material nitrogenated holey graphene (C2N) [Mahmood et al., Nat. Commun., 2015, 6, 6486], the electronic, magnetic, and mechanical properties of nitrogenated (C2N), phosphorated (C2P) and arsenicated (C2As) monolayer holey graphene structures are investigated using first-principles calculations. Our total energy calculations indicate that, similar to the C2N monolayer, the formation of the other two holey structures are also energetically feasible. Calculated cohesive energies for each monolayer show a decreasing trend going from the C2N to C2As structure. Remarkably, all the holey monolayers considered are direct band gap semiconductors. Regarding the mechanical properties (in-plane stiffness and Poisson ratio), we find that C2N has the highest in-plane stiffness and the largest Poisson ratio among the three monolayers. In addition, our calculations reveal that for the C2N, C2P and C2As monolayers, creation of N and P defects changes the semiconducting behavior to a metallic ground state while the inclusion of double H impurities in all holey structures results in magnetic ground states. As an alternative to the experimentally synthesized C2N, C2P and C2As are mechanically stable and flexible semiconductors which are important for potential applications in optoelectronics.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000369506000095 Publication Date 2015-12-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 36 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure). ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:132313 Serial 4214
Permanent link to this record
 

 
Author Aierken, Y.; Çakir, D.; Peeters, F.M.
Title Strain enhancement of acoustic phonon limited mobility in monolayer TiS3 Type A1 Journal article
Year 2016 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
Volume 18 Issue 18 Pages 14434-14441
Keywords A1 Journal article; Condensed Matter Theory (CMT)
Abstract Strain engineering is an effective way to tune the intrinsic properties of a material. Here, we show by using first-principles calculations that both uniaxial and biaxial tensile strain applied to monolayer TiS3 are able to significantly modify its intrinsic mobility. From the elastic modulus and the phonon dispersion relation we determine the tensile strain range where structure dynamical stability of the monolayer is guaranteed. Within this region, we find more than one order of enhancement of the acoustic phonon limited mobility at 300 K (100 K), i.e. from 1.71 x 10(4) (5.13 x 10(4)) cm(2) V-1 s(-1) to 5.53 x 10(6) (1.66 x 10(6)) cm(2) V-1 s(-1). The degree of anisotropy in both mobility and effective mass can be tuned by using tensile strain. Furthermore, we can either increase or decrease the band gap of TiS3 monolayer by applying strain along different crystal directions. This property allows us to use TiS3 not only in electronic but also in optical applications.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000378102700036 Publication Date 2016-05-05
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1463-9076 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 4.123 Times cited 24 Open Access
Notes ; This work was supported by the Fonds Wetenschappelijk Onderzoek (FWO-V1). Computational resources were provided by HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation and the Flemish Government-department EWI. ; Approved Most recent IF: 4.123
Call Number UA @ lucian @ c:irua:134628 Serial 4250
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Neek-Amal, M.; Hussein, I.A.; Madjet, M.E.; Peeters, F.M.
Title Large CO2 uptake on a monolayer of CaO Type A1 Journal article
Year 2017 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 5 Issue 5 Pages 2110-2114
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract Density functional theory calculations are used to study gas adsorption properties of a recently synthesized CaO monolayer, which is found to be thermodynamically stable in its buckled form. Due to its topology and strong interaction with the CO2 molecules, this material possesses a remarkably high CO2 uptake capacity (similar to 0.4 g CO2 per g adsorbent). The CaO + CO2 system shows excellent thermal stability (up to 1000 K). Moreover, the material is highly selective towards CO2 against other major greenhouse gases such as CH4 and N2O. These advantages make this material a very promising candidate for CO2 capture and storage applications.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000395074300035 Publication Date 2016-12-19
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 2 Open Access
Notes ; ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:142034 Serial 4556
Permanent link to this record
 

 
Author Çakir, D.; Sevik, C.; Gulseren, O.; Peeters, F.M.
Title Mo2C as a high capacity anode material: a first-principles study Type A1 Journal article
Year 2016 Publication Journal of materials chemistry A : materials for energy and sustainability Abbreviated Journal J Mater Chem A
Volume 4 Issue 16 Pages 6029-6035
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract The adsorption and diffusion of Li, Na, K and Ca atoms on a Mo2C monolayer are systematically investigated by using first principles methods. We found that the considered metal atoms are strongly bound to the Mo2C monolayer. However, the adsorption energies of these alkali and earth alkali elements decrease as the coverage increases due to the enhanced repulsion between the metal ions. We predict a significant charge transfer from the ad-atoms to the Mo2C monolayer, which indicates clearly the cationic state of the metal atoms. The metallic character of both pristine and doped Mo2C ensures a good electronic conduction that is essential for an optimal anode material. Low migration energy barriers are predicted as small as 43 meV for Li, 19 meV for Na and 15 meV for K, which result in the very fast diffusion of these atoms on Mo2C. For Mo2C, we found a storage capacity larger than 400 mA h g(-1) by the inclusion of multilayer adsorption. Mo2C expands slightly upon deposition of Li and Na even at high concentrations, which ensures the good cyclic stability of the atomic layer. The calculated average voltage of 0.68 V for Li and 0.30 V for Na ions makes Mo2C attractive for low charging voltage applications.
Address
Corporate Author Thesis
Publisher Place of Publication (down) Cambridge Editor
Language Wos 000374790700033 Publication Date 2016-03-18
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-7488; 2050-7496 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 8.867 Times cited 202 Open Access
Notes ; This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem foundation of the Flemish government. Computational resources were provided by TUBITAK ULAKBIM, High Performance and Grid Computing Center (TR-Grid e-Infrastructure), and HPC infrastructure of the University of Antwerp (CalcUA) a division of the Flemish Supercomputer Center (VSC), which is funded by the Hercules foundation. C. S. acknowledges the support from Turkish Academy of Sciences (TUBA-GEBIP). C. S acknowledges the support from Anadolu University (Grant No. 1407F335). We acknowledge the support from TUBITAK, The Scientific and Technological Research Council of Turkey (Grant No. 115F024). ; Approved Most recent IF: 8.867
Call Number UA @ lucian @ c:irua:144763 Serial 4669
Permanent link to this record