|   | 
Details
   web
Records
Author Kumar, A.; Kundu, S.; Samantaray, D.; Kundu, P.; Zanaga, D.; Bals, S.; Ravishankar, N.
Title Designing diameter-modulated heterostructure nanowires of PbTe/Te by controlled dewetting Type A1 Journal article
Year 2017 Publication Nano letters Abbreviated Journal Nano Lett
Volume 17 Issue 17 Pages 7226-7233
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract <script type='text/javascript'>document.write(unpmarked('Heterostructures consisting of semiconductors with controlled morphology and interfaces find applications in many fields. A range of axial, radial, and diameter-modulated nanostructures have been synthesized primarily using vapor phase methods. Here, we present a simple wet chemical routine to synthesize heterostructures of PbTe/Te using Te nanowires as templates. A morphology evolution study for the formation of these heterostructures has been performed. On the basis of these control experiments, a pathway for the formation of these nanostructures is proposed. Reduction of a Pb precursor to Pb on Te nanowire templates followed by interdiffusion of Pb/Te leads to the formation of a thin shell of PbTe on the Te wires. Controlled dewetting of the thin shell leads to the formation of cube-shaped PbTe that is periodically arranged on the Te wires. Using control experiments, we show that different reactions parameters like rate of addition of the reducing agent, concentration of Pb precursor and thickness of initial Te nanowire play a critical role in controlling the spacing between the PbTe cubes on the Te wires. Using simple surface energy arguments, we propose a mechanism for the formation of the hybrid. The principles presented are general and can be exploited for the synthesis of other nanoscale heterostructures.'));
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington Editor
Language Wos 000418393300009 Publication Date 2017-11-29
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 11 Open Access OpenAccess
Notes ; N.R acknowledges financial support from SERB, DST, Government of India. The authors acknowledge the electron microscopy facilities at the Advanced Facility for Microscopy and Microanalysis, IISc. S.B., P.K., and D.Z. acknowledge ERC Starting Grant 335078 COLOURATOMS for financial support. ; ecas_Sara Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:148557UA @ admin @ c:irua:148557 Serial 4870
Permanent link to this record
 

 
Author Kundys, D.; Van Duppen, B.; Marshall, O.P.; Rodriguez, F.; Torre, I.; Tomadin, A.; Polini, M.; Grigorenko, A.N.
Title Nonlinear light mixing by graphene plasmons Type A1 Journal article
Year 2018 Publication Nano letters Abbreviated Journal Nano Lett
Volume 18 Issue 1 Pages 282-287
Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)
Abstract <script type='text/javascript'>document.write(unpmarked('Graphene is known to possess strong optical nonlinearity which turned out to be suitable for creation of efficient saturable absorbers in mode locked fiber lasers. Nonlinear response of graphene can be further enhanced by the presence of graphene plasmons. Here, we report a novel nonlinear effect observed in nanostructured graphene which comes about due to excitation of graphene plasmons. We experimentally detect and theoretically explain enhanced mixing of near-infrared and mid-infrared light in arrays of graphene nanoribbons. Strong compression of light by graphene plasmons implies that the described effect of light mixing is nonlocal in nature and orders of magnitude larger than the conventional local graphene nonlinearity. Both second and third order nonlinear effects were observed in our experiments with the recalculated third-order nonlinearity coefficient reaching values of 4.5 x 10(-6) esu. The suggested effect could be used in variety of applications including nonlinear light modulators, light multiplexers, light logic, and sensing devices.'));
Address
Corporate Author Thesis
Publisher Place of Publication (up) Washington Editor
Language Wos 000420000000039 Publication Date 2017-12-11
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 12.712 Times cited 12 Open Access
Notes ; This work was supported by the European Union's Horizon 2020 research and innovation programme under Grant Agreement 696656 “GrapheneCorel”, Bluestone Global Technology, and Fondazione Istituto Italiano di Tecnologia. B.V.D. is supported by a postdoctoral fellowship granted by FWO-Vl and wishes to thank Scuola Normale Superiore (Pisa, Italy) for their hospitality during the final stages of preparation of this work. ; Approved Most recent IF: 12.712
Call Number UA @ lucian @ c:irua:148457UA @ admin @ c:irua:148457 Serial 4887
Permanent link to this record