|   | 
Details
   web
Records
Author Wu, S.-M.; Liu, X.-L.; Lian, X.-L.; Tian, G.; Janiak, C.; Zhang, Y.-X.; Lu, Y.; Yu, H.-Z.; Hu, J.; Wei, H.; Zhao, H.; Chang, G.-G.; Van Tendeloo, G.; Wang, L.-Y.; Yang, X.-Y.; Su, B.-L.
Title Homojunction of oxygen and titanium vacancies and its interfacial n-p effect Type A1 Journal article
Year 2018 Publication Advanced materials Abbreviated Journal Adv Mater
Volume 30 Issue 32 Pages 1802173
Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
Abstract The homojunction of oxygen/metal vacancies and its interfacial n-p effect on the physiochemical properties are rarely reported. Interfacial n-p homojunctions of TiO2 are fabricated by directly decorating interfacial p-type titanium-defected TiO2 around n-type oxygen-defected TiO2 nanocrystals in amorphous-anatase homogeneous nanostructures. Experimental measurements and theoretical calculations on the cell lattice parameters show that the homojunction of oxygen and titanium vacancies changes the charge density of TiO2; a strong EPR signal caused by oxygen vacancies and an unreported strong titanium vacancies signal of 2D H-1 TQ-SQ MAS NMR are present. Amorphous-anatase TiO2 shows significant performance regarding the photogeneration current, photocatalysis, and energy storage, owing to interfacial n-type to p-type conductivity with high charge mobility and less structural confinement of amorphous clusters. A new homojunction of oxygen and titanium vacancies concept, characteristics, and mechanism are proposed at an atomic-/nanoscale to clarify the generation of oxygen vacancies and titanium vacancies as well as the interface electron transfer.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Weinheim Editor
Language Wos 000440813300022 Publication Date 2018-06-27
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0935-9648 ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 19.791 Times cited 39 Open Access Not_Open_Access
Notes ; This work was supported by National Key R&D Program of China (2017YFC1103800), National SFC (U1662134, U1663225, 51472190, 51611530672, 21711530705, 51503166, 21706199), ISTCP (2015DFE52870), PCSIRT (IRT_15R52), HPNSF (2016CFA033, 2017CFB487), and SKLPPC (PPC2016007). ; Approved Most recent IF: 19.791
Call Number UA @ lucian @ c:irua:153106 Serial 5105
Permanent link to this record
 

 
Author Zhang, Y.-R.; Xu, X.; Zhao, S.-X.; Bogaerts, A.; Wang, Y.-N.
Title Comparison of electrostatic and electromagnetic simulations for very high frequency plasmas Type A1 Journal article
Year 2010 Publication Physics of plasmas Abbreviated Journal Phys Plasmas
Volume 17 Issue 11 Pages 113512-113512,11
Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
Abstract A two-dimensional self-consistent fluid model combined with the full set of Maxwell equations is developed to investigate an argon capacitively coupled plasma, focusing on the electromagnetic effects on the discharge characteristics at various discharge conditions. The results indicate that there exist distinct differences in plasma characteristics calculated with the so-called electrostatic model (i.e., without taking into account the electromagnetic effects) and the electromagnetic model (which includes the electromagnetic effects), especially at very high frequencies. Indeed, when the excitation source is in the high frequency regime and the electromagnetic effects are taken into account, the plasma density increases significantly and meanwhile the ionization rate evolves to a very different distribution when the electromagnetic effects are dominant. Furthermore, the dependence of the plasma characteristics on the voltage and pressure is also investigated, at constant frequency. It is observed that when the voltage is low, the difference between these two models becomes more obvious than at higher voltages. As the pressure increases, the plasma density profiles obtained from the electromagnetic model smoothly shift from edge-peaked over uniform to a broad maximum in the center. In addition, the edge effect becomes less pronounced with increasing frequency and pressure, and the skin effect rather than the standing-wave effect becomes dominant when the voltage is high.
Address
Corporate Author Thesis
Publisher Place of Publication (up) Woodbury, N.Y. Editor
Language Wos 000285486500105 Publication Date 2010-11-22
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1070-664X; ISBN Additional Links UA library record; WoS full record; WoS citing articles
Impact Factor 2.115 Times cited 30 Open Access
Notes Approved Most recent IF: 2.115; 2010 IF: 2.320
Call Number UA @ lucian @ c:irua:84763 Serial 429
Permanent link to this record