toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author de Witte, K.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F.; Vansant, E.F.; Cool, P. pdf  doi
openurl 
  Title Multi-step loading of titania on mesoporous silica: influence of the morphology and the porosity on the catalytic degradation of aqueous pollutants and VOC's Type A1 Journal article
  Year 2008 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 84 Issue 1/2 Pages 125-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Titania nanoparticles have been deposited on inert porous silica supports with high specific surface area. These materials have potential applications in paint and textile industry as the titania particles selectively deposited on the inner surface of the silica supports act as a photocatalyst. The inert external surface is necessary to avoid photodegradation of the textile material or the paint components. The photocatalytic activity of the catalysts has been evaluated with two catalytic setups. One setup in aqueous phase, for the degradation of dyes such as rhodamine-6G, is commonly used. The second setup is a continuous flow gaseous phase setup which was used for the mineralization of ethanol as a representative volatile organic compound (VOC). The influence of the porosity and the morphology of the silica supports on the photocatalytic activity are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Amsterdam Editor  
  Language Wos 000260728300017 Publication Date 2008-04-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 24 Open Access  
  Notes Iwt 30916; Fwo Approved Most recent IF: 9.446; 2008 IF: 4.853  
  Call Number UA @ lucian @ c:irua:68279 Serial 2213  
Permanent link to this record
 

 
Author Ribbens, S.; Beyers, E.; Schellens, K.; Mertens, M.; Ke, X.; Bals, S.; Van Tendeloo, G.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Systematic evaluation of thermal and mechanical stability of different commercial and synthetic photocatalysts in relation to their photocatalytic activity Type A1 Journal article
  Year 2012 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 156 Issue Pages 62-72  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The effect of thermal treatment and mechanical stress on the structural and photocatalytic properties of eight different (synthetic and commercial) photocatalysts has been thoroughly investigated. Different mesoporous Ti-based materials were prepared via surfactant based synthesis routes (e.g. Pluronic 123, CTMABr = Cetyltrimethylammonium bromide) or via template-free synthesis routes (e.g. trititanate nanotubes). Also, the stabilizing effect of the NaOH/NH4OH post-treatment on the templated mesoporous materials and their photocatalytic activity was investigated. Furthermore, the thermal and mechanical properties of commercially available titanium dioxides such as P25 Evonik® and Millenium PC500® were studied. The various photocatalysts were analyzed with N2-sorption, X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) to obtain information concerning the specific surface area, pore volume, crystal structure, morphology, phase transitions, etc. In general, results show that the NaOH post-treatment leads to an increased control of the crystallization process during calcination resulting in a higher thermal stability, but at the same time diminishes the photocatalytic activity. Mesoporous materials in which pre-synthesized nanoparticles are used as titania source have the best mechanical stability whereas the mechanical stability of the nanotubes is the most limited. At increased temperatures and pressures, the tested commercial titanium dioxides lose their superior photocatalytic activity caused by a decreased accessibility of the active sites. The observed changes in adsorption capacities and photocatalytic activities cannot be assigned to one single phenomenon. In this respect, it shows the need to define a general/standard method to compare different photocatalysts. Furthermore, it is shown that the photocatalytic properties do not necessarily deteriorate under thermal stress, but can be improved due to crystallization, even though the initial material is (partially) destroyed. It is shown that the usefulness of a specific type of photocatalyst strongly depends on the application and the temperature/pressure to which it needs to resist.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Amsterdam Editor  
  Language Wos 000303625200010 Publication Date 2012-02-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 8 Open Access  
  Notes Fwo Approved Most recent IF: 3.615; 2012 IF: 3.365  
  Call Number UA @ lucian @ c:irua:96910 Serial 3466  
Permanent link to this record
 

 
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P. pdf  url
doi  openurl
  Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
  Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 185 Issue Pages 204-212  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Amsterdam Editor  
  Language Wos 000330930400025 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 10 Open Access OpenAccess  
  Notes 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453  
  Call Number UA @ lucian @ c:irua:112501 Serial 3930  
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P. pdf  doi
openurl 
  Title Formation of a Ti-siliceous trimodal material with macroholes, mesopores and zeolitic features via a one-pot templating synthesis Type A1 Journal article
  Year 2012 Publication Journal of porous materials Abbreviated Journal J Porous Mat  
  Volume 19 Issue 2 Pages 153-160  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Based on a facile one-pot templating synthesis, using a TS-1 zeolite recipe whereby part of the zeolite structure directing agent is replaced by a mesopore templating agent, a trimodal material is formed. The resulting meso-TSM material combines mesoporosity (Ti-MCM-41) with zeolitic features (TS-1) and a unique sheet-like morphology with uniform macroporous voids (macroholes). Moreover, the macrohole formation, mesoporosity and zeolitic properties of the meso-TSM material can be controlled in a straightforward way by adjusting the length of the hydrothermal treatment. This newly developed material may imply great potential for catalytic redox applications and diffusion limitated processes because of its highly tunable character in all three dimensions (micro-, meso- and macroporous scale).  
  Address  
  Corporate Author Thesis  
  Publisher Kluwer Academic Place of Publication (up) Boston, Mass. Editor  
  Language Wos 000301187600002 Publication Date 2011-03-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1380-2224;1573-4854; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.624 Times cited 2 Open Access  
  Notes Fwo; Goa Approved Most recent IF: 1.624; 2012 IF: 1.348  
  Call Number UA @ lucian @ c:irua:88367 Serial 1257  
Permanent link to this record
 

 
Author Bogaerts, A.; Snoeckx, R.; Berthelot, A.; Heijkers, S.; Wang, W.; Sun, S.; Van Laer, K.; Ramakers, M.; Michielsen, I.; Uytdenhouwen, Y.; Meynen, V.; Cool, P. pdf  openurl
  Title Plasma based co2 conversion: a combined modeling and experimental study Type P1 Proceeding
  Year 2016 Publication Hakone Xv: International Symposium On High Pressure Low Temperature Plasma Chemistry: With Joint Cost Td1208 Workshop: Non-equilibrium Plasmas With Liquids For Water And Surface Treatment Abbreviated Journal  
  Volume Issue Pages  
  Keywords P1 Proceeding; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract In recent years there is increased interest in plasma-based CO2 conversion. Several plasma setups are being investigated for this purpose, but the most commonly used ones are a dielectric barrier discharge (DBD), a microwave (MW) plasma and a gliding arc (GA) reactor. In this proceedings paper, we will show results from our experiments in a (packed bed) DBD reactor and in a vortex-flow GA reactor, as well as from our model calculations for the detailed plasma chemistry in a DBD, MW and GA, for pure CO2 as well as mixtures of CO2 with N-2, CH4 and H2O.  
  Address  
  Corporate Author Thesis  
  Publisher Masarykova univ Place of Publication (up) Brno Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 978-80-210-8318-9 ISBN Additional Links UA library record; WoS full record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:141553 Serial 4526  
Permanent link to this record
 

 
Author Smeulders, G.; Meynen, V.; van Baelen, G.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Maes, B.U.W.; Cool, P. pdf  doi
openurl 
  Title Rapid microwave-assisted synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem  
  Volume 19 Issue 19 Pages 3042-3048  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract Following extended use in organic chemistry, microwave-assisted synthesis is gaining more importance in the field of inorganic chemistry, especially for the synthesis of nanoporous materials. It offers some major advantages such as a significant shortening of the synthesis time and an improved promotion of nucleation. In the research here reported, microwave technology is applied for the synthesis of benzene bridged PMOs (periodic mesoporous organosilicas). PMOs are one of the latest innovations in the field of hybrid ordered mesoporous materials and have attracted much attention because of their feasibility in electronics, catalysis, separation and sorption applications. The different synthesis steps (stirring, aging and extraction) of the classical PMO synthesis are replaced by microwave-assisted synthesis steps. The characteristics of the as-synthesized materials are evaluated by X-ray diffraction, N2-sorption, thermogravimetric analysis, scanning- and transmission electron microscopy. The microwave-assisted synthesis drastically reduces the synthesis time by more than 40 hours without any loss in structural properties, such as mesoscale and molecular ordering. The porosity of the PMO materials has even been improved by more than 25%. Moreover, the number of handling/transfer steps and amounts of chemicals and waste are drastically reduced. The study also shows that there is a clear time (1 to 3 hours) and temperature frame (373 K to 403 K) wherein synthesis of benzene bridged PMO is optimal. In conclusion, the microwave-assisted synthesis pathway allows an improved material to be obtained in a more economical way i.e. a much shorter time with fewer chemicals and less waste.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Cambridge Editor  
  Language Wos 000265919300024 Publication Date 2009-03-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor Times cited 20 Open Access  
  Notes Fwo; Iwt Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:76844 Serial 2810  
Permanent link to this record
 

 
Author Smeulders, G.; van Oers, C.; Van Havenbergh, K.; Houthoofd, K.; Mertens, M.; Martens, J.A.; Bals, S.; Maes, B.U.W.; Meynen, V.; Cool, P. pdf  doi
openurl 
  Title Smart heating profiles for the synthesis of benzene bridged periodic mesoporous organosilicas Type A1 Journal article
  Year 2011 Publication Chemical engineering journal Abbreviated Journal Chem Eng J  
  Volume 175 Issue Pages 585-591  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA); Organic synthesis (ORSY)  
  Abstract In this study the effects of the heating rate and heating time on the formation of crystal-like benzene bridged periodic mesoporous organosilicas (PMOs) are investigated. The time needed to heat up an autoclave during the hydrothermal treatment has shown to be crucial in the synthesis of PMOs, while the total duration of heating gave rise to only minor differences. By choosing a smart heating profile, superior PMO materials can be obtained in a short time. Different heating profiles in a range from one minute to one hour are adopted by microwave equipment and compared with conventional heating methods. The heating rate has a large influence on the porosity characteristics and the uniformity of the obtained particles. Moreover, two new alternative synthetic strategies to adopt the smart heating profile are presented, in order to give some possible solutions for the expensive microwave equipment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Lausanne Editor  
  Language Wos 000297875900069 Publication Date 2011-10-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-8947; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.216 Times cited 7 Open Access  
  Notes Fwo; Goa-Bof Approved Most recent IF: 6.216; 2011 IF: 3.461  
  Call Number UA @ lucian @ c:irua:93630 Serial 3044  
Permanent link to this record
 

 
Author Meynen, V.; Busuioc, A.M.; Beyers, E.; Cool, P.; Vansant, E.F.; Bilba, N.; Mertens, M.; Lebedev, O.; Van Tendeloo, G. openurl 
  Title Nanodesign of combined micro- and mesoporous materials for specific applications in adsorption and catalysis Type H3 Book chapter
  Year 2007 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords H3 Book chapter; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Nova Place of Publication (up) New York Editor  
  Language Wos Publication Date 0000-00-00  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Additional Links UA library record  
  Impact Factor Times cited Open Access  
  Notes Approved Most recent IF: NA  
  Call Number UA @ lucian @ c:irua:63126 Serial 2251  
Permanent link to this record
 

 
Author Herregods, S.J.F.; Mertens, M.; Van Havenbergh, K.; Van Tendeloo, G.; Cool, P.; Buekenhoudt, A.; Meynen, V. pdf  doi
openurl 
  Title Controlling pore size and uniformity of mesoporous titania by early stage low temperature stabilization Type A1 Journal article
  Year 2013 Publication Journal of colloid and interface science Abbreviated Journal J Colloid Interf Sci  
  Volume 391 Issue Pages 36-44  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract The control of the formation process during and after self-assembly is of utmost importance to achieve well structured, controlled template-assisted mesoporous titania materials with the desired properties for various applications via the evaporation induced self-assembly method (EISA). The present paper reports on the large influence of the thermal stabilization and successive template removal on the pore structure of a mesostructured TiO2 material using the diblock copolymer Brij 58 as surfactant. A controlled thermal stabilization (temperature and duration) allows one to tailor the final pore size and uniformity much more precise by influencing the self-assembly of the template. Moreover, also the successive thermal template removal needs to be controlled in order to avoid a structural collapse. N2-sorption, TGA, TEM, FT-Raman spectroscopy, and small angle wide angle XRD have been used to follow the crystal growth and mesostructure organization after thermal stabilization and after thermal template removal, revealing its effect on the final pore structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) New York, N.Y. Editor  
  Language Wos 000312039000006 Publication Date 2012-10-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9797; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.233 Times cited 12 Open Access  
  Notes Approved Most recent IF: 4.233; 2013 IF: 3.552  
  Call Number UA @ lucian @ c:irua:101757 Serial 506  
Permanent link to this record
 

 
Author Collart, O.; Cool, P.; van der Voort, P.; Meynen, V.; Vansant, E.F.; Houthoofd, K.J.; Grobet, P.J.; Lebedev, O.I.; Van Tendeloo, G. pdf  doi
openurl 
  Title Aluminum incorporation into MCM-48 toward the creation of Brønsted acidity Type A1 Journal article
  Year 2004 Publication The journal of physical chemistry : B : condensed matter, materials, surfaces, interfaces and biophysical Abbreviated Journal J Phys Chem B  
  Volume 108 Issue Pages 13905-13912  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Washington, D.C. Editor  
  Language Wos 000224164000003 Publication Date 2004-09-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-6106;1520-5207; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.177 Times cited 13 Open Access  
  Notes Fwo; Iuap P5/01 Approved Most recent IF: 3.177; 2004 IF: 3.834  
  Call Number UA @ lucian @ c:irua:49014 Serial 92  
Permanent link to this record
 

 
Author Vernimmen, J.; Guidotti, M.; Silvestre-Albero, J.; Jardim, E.O.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Psaro, R.; Rodríguez-Reinoso, F.; Meynen, V.; Cool, P. doi  openurl
  Title Immersion calorimetry as a tool to evaluate the catalytic performance of titanosilicate materials in the epoxidation of cyclohexene Type A1 Journal article
  Year 2011 Publication Langmuir: the ACS journal of surfaces and colloids Abbreviated Journal Langmuir  
  Volume 27 Issue 7 Pages 3618-3625  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Washington, D.C. Editor  
  Language Wos 000288970900054 Publication Date 2011-02-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0743-7463;1520-5827; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.833 Times cited 19 Open Access  
  Notes Approved Most recent IF: 3.833; 2011 IF: 4.186  
  Call Number UA @ lucian @ c:irua:88366 Serial 1557  
Permanent link to this record
 

 
Author Ramakers, M.; Michielsen, I.; Aerts, R.; Meynen, V.; Bogaerts, A. pdf  url
doi  openurl
  Title Effect of argon or helium on the CO2 conversion in a dielectric barrier discharge Type A1 Journal article
  Year 2015 Publication Plasma processes and polymers Abbreviated Journal Plasma Process Polym  
  Volume 12 Issue 12 Pages 755-763  
  Keywords A1 Journal article; Laboratory of adsorption and catalysis (LADCA); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract This paper demonstrates that the CO2 conversion in a dielectric barrier discharge rises drastically upon addition of Ar or He, and the effect is more pronounced for Ar than for He. The effective CO2 conversion, on the other hand, drops upon addition of Ar or He, which is logical due to the lower CO2 content in the gas mixture, and the same is true for the energy efficiency, because a considerable fraction of the energy is then consumed into ionization/excitation of Ar or He atoms. The higher absolute CO2 conversion upon addition of Ar or He can be explained by studying in detail the Lissajous plots and the current profiles. The breakdown voltage is lower in the CO2/Ar and CO2/He mixtures, and the discharge gap is more filled with plasma, which enhances the possibility for CO2 conversion. The rates of electron impact excitationdissociation of CO2, estimated from the electron densities and mean electron energies, are indeed higher in the CO2/Ar and (to a lower extent) in the CO2/He mixtures, compared to the pure CO2 plasma. Moreover, charge transfer between Ar+ or Ar2+ ions and CO2, followed by electron-ion dissociative recombination of the CO2+ ions, might also contribute to, or even be dominant for the CO2 dissociation. All these effects can explain the higher CO2 conversion, especially upon addition of Ar, but also upon addition of He.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Weinheim Editor  
  Language Wos 000359672400007 Publication Date 2015-02-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1612-8850; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.846 Times cited 63 Open Access  
  Notes Approved Most recent IF: 2.846; 2015 IF: 2.453  
  Call Number c:irua:126822 Serial 799  
Permanent link to this record
 

 
Author Vernimmen, J.; Meynen, V.; Herregods, S.J.F.; Mertens, M.; Lebedev, O.I.; Van Tendeloo, G.; Cool, P. pdf  doi
openurl 
  Title New insights in the formation of combined zeolitic/mesoporous materials by using a one-pot templating synthesis Type A1 Journal article
  Year 2011 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume Issue 27 Pages 4234-4240  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Zeolitic growth is often absent or occurs in separate phases when synthetic strategies based on the combination of zeolite templates and mesopore templating agents are applied. In this work, zeolitic growth and mesopore formation have been investigated at different temperatures by applying a one-pot templating approach, based on a TS-1 zeolite synthesis whereby part of the microtemplate (tetrapropylammonium hydroxide, TPAOH) is replaced by a mesotemplate (hexadecyltrimethylammonium bromide, CTMABr). Moreover, the synthesis duration and the molar ratio of the microtemplate/mesotemplate have also been studied. The different syntheses clearly show the inherent competitive mechanism between zeolitic growth and mesopore formation. These insights have led to the conclusion that by following a one-pot templating strategy with standard, nonexotic commercial templates, i.e. CTMABr and TPAOH, it is not possible to develop a true hierarchical mesoporous zeolite, meaning a mesoporous siliceous material with highly crystalline zeolitic walls. The resultant materials are instead combined zeolitic/mesoporous composite structures with, however, highly tuneable and controllable porosity characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Weinheim Editor  
  Language Wos 000296143500014 Publication Date 2011-08-17  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 7 Open Access  
  Notes Fwo Approved Most recent IF: 2.444; 2011 IF: 3.049  
  Call Number UA @ lucian @ c:irua:91574 Serial 2315  
Permanent link to this record
 

 
Author Loreto, S.; Vanrompay, H.; Mertens, M.; Bals, S.; Meynen, V. pdf  url
doi  openurl
  Title The influence of acids on tuning the pore size of mesoporous TiO2 templated by non-ionic block copolymers Type A1 Journal article
  Year 2018 Publication European journal of inorganic chemistry Abbreviated Journal Eur J Inorg Chem  
  Volume 2018 Issue 2018 Pages 62-65  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract <script type='text/javascript'>document.write(unpmarked('We show the possibility to tune the pore size of mesoporous TiO2 templated by non-ionic block copolymers by adding different inorganic acids at well-chosen concentration. The effect of the inorganic anions on both the TiO2 cluster formation and the non-ionic block copolymers micelles is investigated to explain the experimental results.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (up) Weinheim Editor  
  Language Wos 000419706000008 Publication Date 2017-12-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-1948 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.444 Times cited 6 Open Access OpenAccess  
  Notes ; This work was supported by the Research Foundation-Flanders (FWO) (grant G.0687.13) and the University of Antwerp (BOF project). Hans Vanrompay gratefully acknowledges financial support by the Flemish Fund for Scientific Research (FWO grant 1S32617N). Sara Bals acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOMS). ; ecas_Sara Approved Most recent IF: 2.444  
  Call Number UA @ lucian @ c:irua:147897UA @ admin @ c:irua:147897 Serial 4881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: