toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Romaguera, A.R. de C.; Doria, M.M.; Peeters, F.M. doi  openurl
  Title Vortex pattern in a nanoscopic cylinder Type A1 Journal article
  Year 2007 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 460 Issue 2 Pages 1234-1235  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000249870600244 Publication Date 2007-04-23  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes Approved Most recent IF: 1.404; 2007 IF: 1.079  
  Call Number UA @ lucian @ c:irua:65698 Serial 3876  
Permanent link to this record
 

 
Author Romaguera, A.R. de C.; Doria, M.M.; Peeters, F.M. doi  openurl
  Title Vortex patterns in a superconducting-ferromagnetic rod Type A1 Journal article
  Year 2010 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 470 Issue 19 Pages 871-873  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract A superconducting rod with a magnetic moment on top develops vortices obtained here through 3D calculations of the GinzburgLandau theory. The inhomogeneity of the applied field brings new properties to the vortex patterns that vary according to the rod thickness. We find that for thin rods (disks) the vortex patterns are similar to those obtained in presence of a homogeneous magnetic field instead because they consist of giant vortex states. For thick rods novel patterns are obtained as vortices are curve lines in space that exit through the lateral surface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000282454400039 Publication Date 2010-03-04  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.404; 2010 IF: 1.415  
  Call Number UA @ lucian @ c:irua:85035 Serial 3878  
Permanent link to this record
 

 
Author Ludu, A.; Milošević, M.V.; Peeters, F.M. pdf  doi
openurl 
  Title Vortex states in axially symmetric superconductors in applied magnetic field Type A1 Journal article
  Year 2012 Publication Sn – 0378-4754 Abbreviated Journal Math Comput Simulat  
  Volume 82 Issue 7 Pages 1258-1270  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract We solve analytically the linearized Ginzburg-Landau (GL) equation in the presence of an uniform magnetic field with cylindrical boundary conditions. The solution of the non-linear GL equation is provided as an expansion in the basis of linearized solutions. We present examples of the resulting vortex structure for a solid and perforated superconducting cylinder. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000303097000009 Publication Date 2012-02-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4754; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.218 Times cited 1 Open Access  
  Notes ; ; Approved Most recent IF: 1.218; 2012 IF: 0.836  
  Call Number UA @ lucian @ c:irua:98300 Serial 3887  
Permanent link to this record
 

 
Author Peeters, F.M.; Baelus, B.J.; Milošević, M.V. doi  openurl
  Title Vortex states in mescopic superconductors Type A1 Journal article
  Year 2003 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 18 Issue Pages 312-315  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication (down) Amsterdam Editor  
  Language Wos 000183534200144 Publication Date 2003-03-26  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2003 IF: 0.930  
  Call Number UA @ lucian @ c:irua:44989 Serial 3889  
Permanent link to this record
 

 
Author Anisimovas, E.; Tavernier, M.B.; Peeters, F.M. doi  openurl
  Title Vortex structure of few-electron quantum dots Type A1 Journal article
  Year 2008 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 40 Issue 5 Pages 1621-1623  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication (down) Amsterdam Editor  
  Language Wos 000254646400215 Publication Date 2007-11-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 1 Open Access  
  Notes Approved Most recent IF: 2.221; 2008 IF: 1.230  
  Call Number UA @ lucian @ c:irua:69626 Serial 3894  
Permanent link to this record
 

 
Author van Oers, C.J.; Kurttepeli, M.; Mertens, M.; Bals, S.; Meynen, V.; Cool, P. pdf  url
doi  openurl
  Title Zeolite \beta nanoparticles based bimodal structures : mechanism and tuning of the porosity and zeolitic properties Type A1 Journal article
  Year 2014 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 185 Issue Pages 204-212  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Despite great efforts in the research area of zeolite nanoparticles and their use in the synthesis of bimodal materials, still little is known about the impact of the synthesis conditions of the zeolite nanoparticles on its own characteristics, and on the properties and the formation mechanism of the final bimodal materials. A zeolite β nanoparticles solution is applied in a mesotemplate-free synthesis method, and the influence of the hydrothermal ageing temperature of the nanoparticles solution on both the zeolitic and porosity characteristics of the final bimodal material has been studied. Transmission electron microscopy in combination with 3-dimensional reconstructions obtained by electron tomography revealed that the zeolite β nanoparticles are connected by neck-like structures, thus creating a wormhole-like mesoporous material. Considering the zeolitic properties, a clear threshold is observed in the synthesis temperature series at 413 K. Below and at this threshold, the biporous materials show no apparent zeolitic characteristics, although these materials exhibit a more condensed and uniform SiOSi network in comparison to Al-MCF. Synthesis temperatures above the threshold lead to bimodal structures with defined zeolitic properties. Moreover, the dimensions of the nanoparticles are studied by TEM, revealing an increasing particle size with increasing temperature under the threshold of 413 K, which is in agreement with a sol-mechanism. This mechanism is disturbed after the threshold due to the start of the crystallisation process.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000330930400025 Publication Date 2013-11-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811; ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 10 Open Access OpenAccess  
  Notes 262348 Esmi Approved Most recent IF: 3.615; 2014 IF: 3.453  
  Call Number UA @ lucian @ c:irua:112501 Serial 3930  
Permanent link to this record
 

 
Author Arsoski, V.V.; Čukarić, N.A.; Tadic, M.Z.; Peeters, F.M. pdf  url
doi  openurl
  Title An efficient finite-difference scheme for computation of electron states in free-standing and core-shell quantum wires Type A1 Journal article
  Year 2015 Publication Computer physics communications Abbreviated Journal Comput Phys Commun  
  Volume 197 Issue 197 Pages 17-26  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract The electron states in axially symmetric quantum wires are computed by means of the effective-mass Schrodinger equation, which is written in cylindrical coordinates phi, rho, and z. We show that a direct discretization of the Schrodinger equation by central finite differences leads to a non-symmetric Hamiltonian matrix. Because diagonalization of such matrices is more complex it is advantageous to transform it in a symmetric form. This can be done by the Liouville-like transformation proposed by Rizea et al. (2008), which replaces the wave function psi(rho) with the function F(rho) = psi(rho)root rho and transforms the Hamiltonian accordingly. Even though a symmetric Hamiltonian matrix is produced by this procedure, the computed wave functions are found to be inaccurate near the origin, and the accuracy of the energy levels is not very high. In order to improve on this, we devised a finite-difference scheme which discretizes the Schrodinger equation in the first step, and then applies the Liouville-like transformation to the difference equation. Such a procedure gives a symmetric Hamiltonian matrix, resulting in an accuracy comparable to the one obtained with the finite element method. The superior efficiency of the new finite-difference scheme (FDM) is demonstrated for a few p-dependent one-dimensional potentials which are usually employed to model the electron states in free-standing and core shell quantum wires. The new scheme is compared with the other FDM schemes for solving the effective-mass Schrodinger equation, and is found to deliver energy levels with much smaller numerical error for all the analyzed potentials. It also gives more accurate results than the scheme of Rizea et al., except for the ground state of an infinite rectangular potential in freestanding quantum wires. Moreover, the PT symmetry is invoked to explain similarities and differences between the considered FDM schemes. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000362919500003 Publication Date 2015-08-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0010-4655 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.936 Times cited 4 Open Access  
  Notes ; This work was supported by the Ministry of Education, Science, and Technological Development of Serbia (project III 45003) and the Fonds Wetenschappelijk Onderzoek (Belgium). ; Approved Most recent IF: 3.936; 2015 IF: 3.112  
  Call Number UA @ lucian @ c:irua:129412 Serial 4139  
Permanent link to this record
 

 
Author Semkina, A.; Abakumov, M.; Grinenko, N.; Abakumov, A.; Skorikov, A.; Mironova, E.; Davydova, G.; Majouga, A.G.; Nukolova, N.; Kabanov, A.; Chekhonin, V.; pdf  doi
openurl 
  Title Core-shell-corona doxorubicin-loaded superparamagnetic Fe3O4 nanoparticles for cancer theranostics Type A1 Journal article
  Year 2015 Publication Colloids and surfaces: B : biointerfaces Abbreviated Journal Colloid Surface B  
  Volume 136 Issue 136 Pages 1073-1080  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Superparamagnetic iron oxide magnetic nanoparticles (MNPs) are successfully used as contrast agents in magnetic-resonance imaging. They can be easily functionalized for drug delivery functions, demonstrating great potential for both imaging and therapeutic applications. Here we developed new pH-responsive theranostic core-shell-corona nanoparticles consisting of superparamagentic Fe3O4 core that displays high T2 relaxivity, bovine serum albumin (BSA) shell that binds anticancer drug, doxorubicin (Dox) and poly(ethylene glycol) (PEG) corona that increases stability and biocompatibility. The nanoparticles were produced by adsorption of the BSA shell onto the Fe3O4 core followed by crosslinking of the protein layer and subsequent grafting of the PEG corona using monoamino-terminated PEG via carbodiimide chemistry. The hydrodynamic diameter, zeta-potential, composition and T2 relaxivity of the resulting nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis and T2-relaxometry. Nanoparticles were shown to absorb Dox molecules, possibly through a combination of electrostatic and hydrophobic interactions. The loading capacity (LC) of the nanoparticles was 8 wt.%. The Dox loaded nanoparticles release the drug at a higher rate at pH 5.5 compared to pH 7.4 and display similar cytotoxicity against C6 and HEK293 cells as the free Dox. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000367408100131 Publication Date 2015-11-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-7765 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.887 Times cited 37 Open Access  
  Notes Approved Most recent IF: 3.887; 2015 IF: 4.152  
  Call Number UA @ lucian @ c:irua:131075 Serial 4157  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Madjet, M.E.; El-Mellouhi, F.; Peeters, F.M. pdf  doi
openurl 
  Title Effect of crystal structure on the electronic transport properties of the organometallic perovskite CH3NH3PbI3 Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 60-66  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of the crystal lattice structure of organometallic perovskite CH3NH3PbI3 on its electronic transport properties. Both dispersive interactions and spin-orbit coupling are taken into account in describing structural and electronic properties of the system. We consider two different phases of the material, namely the orthorhombic and cubic lattice structures, which are energetically stable at low (< 160 K) and high (> 330 K) temperatures, respectively. The sizable geometrical differences between the two structures in term of lattice parameters, PbI6 octahedral tilts, rotation and deformations, have considerable impact on the transport properties of the material. For example, at zero bias and for all considered electron energies, the cubic phase has a larger transmission than the orthorhombic one, although both show similar electronic densities of states. Depending on the applied voltage, the current in the cubic system can be several orders of magnitude larger as compared to the one obtained for the orthorhombic sample. We attribute this enhancement in the transmission to the presence of extended states in the cubic phase due to the symmetrically shaped and ordered PbI6 octaherdra. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication (down) Amsterdam Editor  
  Language Wos 000371944500011 Publication Date 2015-11-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 16 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133151 Serial 4163  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; El-Mellouhi, F.; Madjet, M.E.; Alharbi, F.H.; Peeters, F.M.; Kais, S. pdf  doi
openurl 
  Title Effect of halide-mixing on the electronic transport properties of organometallic perovskites Type A1 Journal article
  Year 2016 Publication Solar energy materials and solar cells T2 – 2nd International Renewable and Sustainable Energy Conference (IRSEC), OCT 17-19, 2014, Ouarzazate, MOROCCO Abbreviated Journal Sol Energ Mat Sol C  
  Volume 148 Issue 148 Pages 2-10  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Using density-functional theory in combination with the nonequilibrium Green's function formalism, we study the effect of iodide/chloride and iodide/bromide mixing on the electronic transport in lead based organometallic perovskite CH3NH3PbI3, which is known to be an effective tool to tune the electronic and optical properties of such materials. We found that depending on the level and position of the halide mixing, the electronic transport can be increased by more than a factor of 4 for a given voltage biasing. The largest current is observed for small concentration of bromide substitutions located at the equatorial sites. However, full halide substitution has a negative effect on the transport properties of this material: the current drops by an order of magnitude for both CH3NH3PbCl3 and CH3NH3PbBr3 samples. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier science bv Place of Publication (down) Amsterdam Editor  
  Language Wos 000371944500002 Publication Date 2015-12-18  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 23 Open Access  
  Notes ; ; Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:133150 Serial 4165  
Permanent link to this record
 

 
Author Huybrechts, W.; Mali, G.; Kuśtrowski, P.; Willhammar, T.; Mertens, M.; Bals, S.; Van Der Voort, P.; Cool, P. pdf  url
doi  openurl
  Title Post-synthesis bromination of benzene bridged PMO as a way to create a high potential hybrid material Type A1 Journal article
  Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 236 Issue 236 Pages 244-249  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); Laboratory of adsorption and catalysis (LADCA)  
  Abstract Periodic mesoporous organosilicas provide the best of two worlds: the strength and porosity of an inorganic framework combined with the infinite possibilities created by the organic bridging unit. In this work we focus on post-synthetical modification of benzene bridged PMO, in order to create bromobenzene PMO. In the past, this proved to be very challenging due to unwanted structural deterioration. However, now we have found a way to brominate this material whilst keeping the structure intact. In-depth structural analysis by solid state NMR and XPS shows both vast progress over previous attempts as well as potential for improvement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000385899600028 Publication Date 2016-09-10  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 7 Open Access OpenAccess  
  Notes ; The authors would like to thank financial support from the FWO-Flanders (project no G.0068.13). The authors further acknowledge financial support of the University of Antwerp through BOF GOA funding. S.B. acknowledges financial support from European Research Council (ERC Starting Grant #335078-COLOURATOM). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:135274 Serial 4228  
Permanent link to this record
 

 
Author Berdiyorov, G.R.; Bahlouli, H.; Peeters, F.M. pdf  url
doi  openurl
  Title Effect of substitutional impurities on the electronic transport properties of graphene Type A1 Journal article
  Year 2016 Publication Physica. E: Low-dimensional systems and nanostructures Abbreviated Journal Physica E  
  Volume 84 Issue 84 Pages 22-26  
  Keywords A1 Journal article; Engineering sciences. Technology; Condensed Matter Theory (CMT)  
  Abstract Density-functional theory in combination with the nonequilibrium Green's function formalism is used to study the effect of substitutional doping on the electronic transport properties of hydrogen passivated zig-zag graphene nanoribbon devices. B, N and Si atoms are used to substitute carbon atoms located at the center or at the edge of the sample. We found that Si -doping results in better electronic transport as compared to the other substitutions. The transmission spectrum also depends on the location of the substitutional dopants: for single atom doping the largest transmission is obtained for edge substitutions, whereas substitutions in the middle of the sample give larger transmission for double carbon substitutions. The obtained results are explained in terms of electron localization in the system due to the presence of impurities. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher North-Holland Place of Publication (down) Amsterdam Editor  
  Language Wos 000382489600004 Publication Date 2016-05-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-9477 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.221 Times cited 17 Open Access  
  Notes ; H.B. and F.M.P. acknowledge the support from King Fahd University of Petroleum and Minerals, Saudi Arabia, under research group project RG1329-1 and RG1329-2. G.R.B. acknowledges fruitful discussions with Dr. M.E. Madjet from Qatar Environment and Energy Research Institute. ; Approved Most recent IF: 2.221  
  Call Number UA @ lucian @ c:irua:135699 Serial 4301  
Permanent link to this record
 

 
Author Kurttepeli, M.; Locus, R.; Verboekend, D.; de Clippel, F.; Breynaert, E.; Martens, J.; Sels, B.; Bals, S. pdf  url
doi  openurl
  Title Synthesis of aluminum-containing hierarchical mesoporous materials with columnar mesopore ordering by evaporation induced self assembly Type A1 Journal article
  Year 2016 Publication Microporous and mesoporous materials: zeolites, clays, carbons and related materials Abbreviated Journal Micropor Mesopor Mat  
  Volume 234 Issue 234 Pages 186-195  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract The incorporation of aluminum into the silica columns of hierarchical mesoporous materials (HMMs) was studied. The HMMs were synthesized by a combination of hard and soft templating methods, forming mesoporous SBA-15-type silica columns inside the pores of anodic aluminum oxide membranes via evaporation induced self-assembly (EISA). By adding Al-isopropoxide to the EISA-mixture a full tetrahedral incorporation of Al and thus the creation of acid sites was achieved, which was proved by nuclear magnetic resonance spectroscopy. Electron microscopy showed that the use of Al-isopropoxide as an Al source for the HMMs led to a change in the mesopore ordering of silica material from circular hexagonal (donut-like) to columnar hexagonal and a 37% increase in specific surface (BET surface). These results were confirmed by a combination of nitrogen physisorption and small-angle X-ray scattering experiments and can be attributed to a swelling of the P123 micelles with isopropanol. The columnar mesopore ordering of silica is advantageous towards the pore accessibility and therefore preferential for many possible applications including catalysis and adsorption on the acid tetrahedral Al-sites. (C) 2016 Elsevier Inc. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000383291400020 Publication Date 2016-07-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1387-1811 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.615 Times cited 5 Open Access OpenAccess  
  Notes ; The Belgian government (Belgian Science Policy Office, Belspo) is acknowledged for financing the Interuniversity Attraction Poles (IAP-PAI). S. B. acknowledges the financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). D. V. acknowledges the Flanders Research Foundation (FWO). ; ecas_Sara Approved Most recent IF: 3.615  
  Call Number UA @ lucian @ c:irua:137108 Serial 4404  
Permanent link to this record
 

 
Author Zalfani, M.; Hu, Z.-Y.; Yu, W.-B.; Mahdouani, M.; Bourguiga, R.; Wu, M.; Li, Y.; Van Tendeloo, G.; Djoued, Y.; Su, B.-L. pdf  url
doi  openurl
  Title BiVo4/3DOM TiO2 nanocomposites : effect of BiVO4 as highly efficient visible light sensitizer for highly improved visible light photocatalytic activity in the degradation of dye pollutants Type A1 Journal article
  Year 2017 Publication Applied catalysis : B : environmental Abbreviated Journal Appl Catal B-Environ  
  Volume 205 Issue 205 Pages 121-132  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract A series of BiVO4/3DOM TiO2 nanocomposites have been synthesized and their photocatalytic activity was investigated under visible light irradiation using the RhB dye as model pollutant molecule in an aqueous solution. The effect of the amount of BiVO4 as visible light sensitizer on the photocatalytic activity of BiVO4/3DOM TiO2 nanocomposites was highlighted. The heterostructured composite system leads to much higher photocatalytic efficiencies than bare 3DOM TiO2 and BiVO4 nanoparticles. As the proportion of BiVO4 in BiVO4/3DOM TiO2 nanocomposites increases from 0.04 to 0.6, the photocatalytic performance of the BiVO4/3DOM TiO2 nanocomposites increases and then decreases after reaching a maximum at 0.2. This improvement in photocatalytic perfomance is related to 1) the interfacial electron transfer efficiency between the coupled materials, 2) the 3DOM TiO2 inverse opal structure with interconnected pores providing an easy mass transfer of the reactant molecules and high accessibility to the active sites and large surface area and 3) the effect of light sensitizer of BiVO4. Intensive studies on structural, textural, optical and surface properties reveal that the electronic interactions between BiVO4 and TiO2 lead to an improved charge separation of the coupled BiVO4/TiO2 system. The photogenerated charge carrier densities increase with increasing the BiVO4 content, which acts as visible light sensitizer to the TiO2 and is responsible for the enhancement in the rate of photocatalytic degradation. However, the photocatalytic activity is reduced when the BiVO4 amount is much higher than that of 3DOM TiO2. Two reasons could account for this behavior. First, with increasing BiVO4 content, the photogenerated electron/hole pairs are accumulated at the surface of the BiVO4 nanoparticles and the recombination rate increases as shown by the PL results. Second, decreasing the amount of 3DOM TiO2 in the nanocomposite decreases the surface area as shown by the BET results. Moreover, the poor adsorptive properties of the BiVO4 photocatalyst also affect the photocatalytic performance, in particular at higher BiVO4 content. The present work demonstrates that BiVO4/3DOM TiO2 is a very promising heterojunction system for visible light photocatalytic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000393931000013 Publication Date 2016-12-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0926-3373 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 9.446 Times cited 52 Open Access OpenAccess  
  Notes ; This work was realized with the financial support of Chinese Ministry of Education in a framework of the Changjiang Scholar Innovative Research Team Program (IRT_15R52). B. L. Su acknowledges the Chinese Central Government for an “Expert of the State” position in the Program of the “Thousand Talents” and a Clare Hall Life Member, University of Cambridge. Y. Li acknowledges Hubei Provincial Department of Education for the “Chutian Scholar” program. This work is also supported by PhD Programs Foundation (20120143120019) of Chinese Ministry of Education, the Wuhan Youth Chenguang Program of Science and Technology (2013070104010003), Hubei Provincial Natural Science Foundation (2014CFB160, 2015CFB516), the National Science Foundation for Young Scholars of China (No. 51502225) and Self-determined and Innovative Research Funds of the SKLWUT (2015-ZD-7). MZ thanks the scholarship support from the Laboratory of Inorganic Materials Chemistry ay the University of Namur. Z. Y. Hu and G. Van Tendeloo acknowledge support from the EC Framework 7 program ESTEEM2 (Reference 312483). This research used resources of the Electron Microscopy Service located at the University of Namur. This Service is member of the “Plateforme Technologique Morphologie – Imagerie”. The XPS analyses were made in the LISE, Department of Physics of University of Namur thanks to Dr. P. Louette. XRD measurements, UV-vis and photoluminescent spectroscopic analyses and N<INF>2</ INF> adsorption-desorption measurements were made with the facility of the “Plateforme Technologique Physico-Chimique”. ; Approved Most recent IF: 9.446  
  Call Number UA @ lucian @ c:irua:138601 Serial 4405  
Permanent link to this record
 

 
Author Eleftheriadis, G.K.; Filippousi, M.; Tsachouridou, V.; Darda, M.-A.; Sygellou, L.; Kontopoulou, I.; Bouropoulos, N.; Steriotis, T.; Charalambopoulou, G.; Vizirianakis, I.S.; Van Tendeloo, G.; Fatouros, D.G. pdf  url
doi  openurl
  Title Evaluation of mesoporous carbon aerogels as carriers of the non-steroidal anti-inflammatory drug ibuprofen Type A1 Journal article
  Year 2016 Publication International journal of pharmaceutics Abbreviated Journal Int J Pharmaceut  
  Volume 515 Issue 515 Pages 262-270  
  Keywords A1 Journal article; Pharmacology. Therapy; Electron microscopy for materials research (EMAT)  
  Abstract Towards the development of novel drug carriers for oral delivery of poorly soluble drugs mesoporous aerogel carbons (CAs), namely CA10 and CA20 with different pore sizes (10 and 20 nm, respectively), were evaluated. The non-steroidal anti-inflammatory lipophilic compound ibuprofen was incorporated via passive loading. The drug loaded carbon aerogels were systemically investigated by means of High-Resolution Transmission Electron Microscopy (HR-TEM), Nitrogen physisorption studies, X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), X-ray photon electron spectroscopy (XPS) and zeta-potential studies. In vitro release studies were performed in simulated intestinal fluids reflecting both fasted (FaSSIF) and fed (FeSSIF) state conditions. Cytotoxicity studies were conducted with human intestinal cells (Caco-2). Drug was in an amorphous state in the pores of the carbon carrier as shown from the physicochemical characterization studies. The results showed marked differences in the release profiles for ibuprofen from the two aerogels in the media tested whereas in vitro toxicity profiles appear to be compatible with potential therapeutic applications at low concentrations. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000389150700024 Publication Date 2016-10-08  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-5173 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.649 Times cited 7 Open Access  
  Notes Approved Most recent IF: 3.649  
  Call Number UA @ lucian @ c:irua:140231 Serial 4441  
Permanent link to this record
 

 
Author Bez, R.; Zehani, K.; Batuk, M.; Van Tendeloo, G.; Mliki, N.; Bessais, L. doi  openurl
  Title Structure and magnetic properties of Sm(Fe,Si)(9)C/alpha-Fe nanocomposite magnets Type A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 695 Issue 695 Pages 810-817  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract SmFe8.75 Si-0.25 C/alpha-Fe nanocomposites have been successfully synthesized using high energy milling, followed by annealing at 750 degrees C. The crystal structure of these compounds was characterized by the Rietveld method using powder X-ray diffraction data. By increasing the concentration of Sm, we observed a decrease in the amount of alpha-Fe phase. The morphology of the samples was determined by scanning and transmission electron microscopy. The average grain size is about 20 nm. The magnetic properties were investigated at room temperature and at 10 K. A ferromagnetic behavior was observed in all samples at both temperatures. An increase of the soft magnetic phase alpha-Fe induced an increase in the magnetization and a decrease in coercivity. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000391817600098 Publication Date 2016-10-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited 1 Open Access Not_Open_Access  
  Notes ; This work is main supported by the CNRS and the “Ministere de l'Enseignement Superieur, de la Recherche Scientifique” (LR99ES17) (Tunisia), PHC-Utique (Project 11/G 1301) and PHC-Maghreb (Project 15MAG07). The authors acknowledge the French SIE doctoral school of the University Paris Est for its support. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:140380 Serial 4448  
Permanent link to this record
 

 
Author D'Olieslaeger, L.; Pfannmöller, M.; Fron, E.; Cardinaletti, I.; Van der Auweraer, M.; Van Tendeloo, G.; Bals, S.; Maes, W.; Vanderzande, D.; Manca, J.; Ethirajan, A. pdf  url
doi  openurl
  Title Tuning of PCDTBT : PC71BM blend nanoparticles for eco-friendly processing of polymer solar cells Type A1 Journal article
  Year 2017 Publication Solar energy materials and solar cells Abbreviated Journal Sol Energ Mat Sol C  
  Volume 159 Issue 159 Pages 179-188  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract We report the controlled preparation of water processable nanoparticles (NPs) employing the push-pull polymer PCDTBT and the fullerene acceptor PC71BM in order to enable solar cell processing using eco-friendly solvent (i.e. water). The presented method provides the possibility to separate the formation of the active layer blend and the deposition of the active layer into two different processes. For the first time, the benefits of aqueous processability for the high-potential class of push-pull polymers, generally requiring high boiling solvents, are made accessible. With our method we demonstrate excellent control over the blend stoichiometry and efficient mixing. Furthermore, we provide visualization of the nano morphology of the different NPs to obtain structural information down to similar to 2 nm resolution using advanced analytical electron microscopy. The imaging directly reveals very small compositional demixing in the PCDTBT:PC71BM blend NPs, in the size range of about <5 nm, indicating fine mixing at the molecular level. The suitability of the proposed methodology and materials towards the aspects of eco-friendly processing of organic solar cells is demonstrated through a processing of lab scale NPs solar cell prototypes reaching a power conversion efficiency of 1.9%. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000388053600021 Publication Date 2016-09-19  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0927-0248 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.784 Times cited 32 Open Access OpenAccess  
  Notes ; This work was supported by BOF funding of Hasselt University, the Interreg project Organext, and the IAP 7/05 project FS2 (Functional Supramolecular Systems), granted by the Science Policy Office of the Belgian Federal Government (BELSPO). A.E. is a post-doctoral fellow of the Flanders Research Foundation (FWO). M.P. gratefully acknowledges the SIM NanoForce program for financial support. S.B. further acknowledges financial support from the European Research Council (ERC Starting Grant #335078-COLOURATOMS). The authors are thankful for technical support by J. Smits, T. Vangerven, and J. Baccus. ; ecas_sara Approved Most recent IF: 4.784  
  Call Number UA @ lucian @ c:irua:139157UA @ admin @ c:irua:139157 Serial 4450  
Permanent link to this record
 

 
Author Fernández Becerra, V.; Milošević, M.V. pdf  doi
openurl 
  Title Dynamics of skyrmions and edge states in the resistive regime of mesoscopic p-wave superconductors Type A1 Journal article
  Year 2017 Publication Physica: C : superconductivity Abbreviated Journal Physica C  
  Volume 533 Issue 533 Pages 91-95  
  Keywords A1 Journal article; Condensed Matter Theory (CMT)  
  Abstract In a mesoscopic sample of a chiral p-wave superconductor, novel states comprising skyrmions and edge states have been stabilized in out-of-plane applied magnetic field. Using the time-dependent Ginzburg-Landau equations we shed light on the dynamic response of such states to an external applied current. Three different regimes are obtained, namely, the superconducting (stationary), resistive (non-stationary) and normal regime, similarly to conventional s-wave superconductors. However, in the resistive regime and depending on the external current, we found that moving skyrmions and the edge state behave distinctly different from the conventional kinematic vortex, thereby providing new fingerprints for identification of p-wave superconductivity. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000395954100014 Publication Date 2016-07-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.404 Times cited 3 Open Access  
  Notes Approved Most recent IF: 1.404  
  Call Number UA @ lucian @ c:irua:142534 Serial 4592  
Permanent link to this record
 

 
Author Zhang, L.; Batuk, D.; Chen, G.; Tarascon, J.-M. pdf  url
doi  openurl
  Title Electrochemically activated MnO as a cathode material for sodium-ion batteries Type A1 Journal article
  Year 2017 Publication Electrochemistry communications Abbreviated Journal Electrochem Commun  
  Volume 77 Issue Pages 81-84  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Besides classical electrode materials pertaining to Li-ion batteries, recent interest has been devoted to pairs of active redox composites having a redox center and an intercalant source. Taking advantage of the NaPFG salt decomposition above 4.2 V. we extrapolate this concept to the electrochemical in situ preparation of F-based MnO composite electrodes for Na-ion batteries. Such electrodes exhibit a reversible discharge capacity of 145 mAh g(-1) at room temperature. The amorphization of pristine MnO electrode after activation is attributed to the electrochemical grinding effect caused by substantial atomic migration and lattice strain build-up upon cycling. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000399510400019 Publication Date 2017-02-28  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1388-2481 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 4.396 Times cited 8 Open Access OpenAccess  
  Notes ; This work was partially supported by the Hong Kong Research Grants Council under the General Research Fund Project #611213. L.Z. thanks the HKUST for his Postgraduate Studentship. ; Approved Most recent IF: 4.396  
  Call Number UA @ lucian @ c:irua:143648 Serial 4650  
Permanent link to this record
 

 
Author De Decker, J.; Folens, K.; De Clercq, J.; Meledina, M.; Van Tendeloo, G.; Du Laing, G.; Van Der Voort, P. pdf  url
doi  openurl
  Title Ship-in-a-bottle CMPO in MIL-101(Cr) for selective uranium recovery from aqueous streams through adsorption Type A1 Journal article
  Year 2017 Publication Journal of hazardous materials Abbreviated Journal J Hazard Mater  
  Volume 335 Issue Pages 1-9  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Mesoporous MIL-101(Cr) is used as host for a ship-in-a-bottle type adsorbent for selective U(VI) recovery from aqueous environments. The acid-resistant cage-type MOF is built in-situ around N,N-Diisobutyl-2-(octylphenylphosphoryl)acetamide (CMPO), a sterically demanding ligand with high U(VI) affinity. This one-step procedure yields an adsorbent which is an ideal compromise between homogeneous and heterogeneous systems, where the ligand can act freely within the pores of MIL-101, without leaching, while the adsorbent is easy separable and reusable. The adsorbent was characterized by XRD, FTIR spectroscopy, nitrogen adsorption, XRF, ADF-STEM and EDX, to confirm and quantify the successful encapsulation of the CMPO in MIL-101, and the preservation of the host. Adsorption experiments with a central focus on U(VI) recovery were performed. Very high selectivity for U(VI) was observed, while competitive metal adsorption (rare earths, transition metals...) was almost negligible. The adsorption capacity was calculated at 5.32 mg U/g (pH 3) and 27.99 mg U/g (pH 4), by fitting equilibrium data to the Langmuir model. Adsorption kinetics correlated to the pseudo-second-order model, where more than 95% of maximum uptake is achieved within 375 min. The adsorbed U(VI) is easily recovered by desorption in 0.1 M HNO3. Three adsorption/desorption cycles were performed. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000402948600001 Publication Date 2017-04-09  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3894 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 6.065 Times cited 35 Open Access OpenAccess  
  Notes ; The authors acknowledge the AUGent/UGent for financial support, Grant Number DEF12/AOP/008 fund IV1. ; Approved Most recent IF: 6.065  
  Call Number UA @ lucian @ c:irua:144153 Serial 4685  
Permanent link to this record
 

 
Author Pardo, J.A.; Santiso, J.; Solis, C.; Garcia, G.; Figueras, A.; Rossell, M.D. doi  openurl
  Title Thickness-dependent transport properties of Sr4Fe6O13 epitaxial thin films Type A1 Journal article
  Year 2006 Publication Solid state ionics Abbreviated Journal Solid State Ionics  
  Volume 177 Issue 5/6 Pages 423-428  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000236301000001 Publication Date 2006-01-24  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-2738 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.354 Times cited Open Access  
  Notes Approved Most recent IF: 2.354; 2006 IF: 2.190  
  Call Number UA @ lucian @ c:irua:58049 Serial 4512  
Permanent link to this record
 

 
Author Longo, R.; Ferrarotti, M.; Garcia Sánchez, C.; Derudi, M.; Parente, A. pdf  doi
openurl 
  Title Advanced turbulence models and boundary conditions for flows around different configurations of ground-mounted buildings Type A1 Journal article
  Year 2017 Publication Journal of wind engineering and industrial aerodynamics Abbreviated Journal J Wind Eng Ind Aerod  
  Volume 167 Issue Pages 160-182  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract When dealing with Atmospheric Boundary Layer (ABL) simulations, commercial computational fluid dynamics (CFD) acquires a strategic resonance. Thanks to its good compromise between accuracy of results and calculation time, RANS still represents a valid alternative to more resource-demanding methods. However, focusing on the models' performances in urban studies, LES generally outmatches RANS results, even if the former is at least one order of magnitude more expensive. Consequently, the present work aims to propose a variety of approaches meant to solve some of the major problems linked to RANS simulations and to further improve its accuracy in typical urban contexts. All of these models are capable of switching from an undisturbed flux formulation to a disturbed one through a local deviation or a marker function. For undisturbed flows, a comprehensive approach is adopted, solving the issue of the erroneous stream-wise gradients affecting the turbulent profiles. Around obstacles, Non-Linear Eddy-Viscosity closures are adopted, due to their prominent capability in capturing the anisotropy of turbulence. The purpose of this work is then to propose a new Building Influence Area concept and to offer more affordable alternatives to LES simulations without sacrificing a good grade of accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000405766600013 Publication Date 2017-05-02  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6105 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.049 Times cited 9 Open Access Not_Open_Access  
  Notes ; ; Approved Most recent IF: 2.049  
  Call Number UA @ lucian @ c:irua:145191 Serial 4713  
Permanent link to this record
 

 
Author Vladimirova, S.A.; Rumyantseva, M.N.; Filatova, D.G.; Chizhov, A.S.; Khmelevsky, N.O.; Konstantinova, E.A.; Kozlovsky, V.F.; Marchevsky, A.V.; Karakulina, O.M.; Hadermann, J.; Gaskov, A.M. pdf  doi
openurl 
  Title Cobalt location in p-CoOxIn-SnO2 nanocomposites : correlation with gas sensor performances Type A1 Journal article
  Year 2017 Publication Journal of alloys and compounds Abbreviated Journal J Alloy Compd  
  Volume 721 Issue Pages 249-260  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract Nanocomposites CoOx/SnO2 based on tin oxide powders with different crystallinity have been prepared by wet chemical synthesis and characterized in detail by ICP-MS, XPS, EPR, XRD, HAADF-STEM imaging and EDX-STEM mapping. It was shown that cobalt is distributed differently between the bulk and surface of SnO2 nanocrystals, which depends on the crystallinity of the SnO2 matrix. The measurements of gas sensor properties have been carried out during exposure to CO (10 ppm), and H2S (2 ppm) in dry air. The decrease of sensor signal toward CO was attributed to high catalytic activity of Co3O4 leading to oxidation of carbon monoxide entirely on the surface of catalyst particles. The formation of a p-CoOx/n-SnO2 heterojunction results in high sensitivity of nanocomposites in H2S detection. The conductance significantly changed in the presence of H2S, which was attributed to the formation of metallic cobalt sulfide and removal of the p – n junction. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos Publication Date  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-8388 ISBN Additional Links UA library record; ; WoS full record; WoS citing articles  
  Impact Factor 3.133 Times cited Open Access Not_Open_Access: Available from 10.10.2019  
  Notes ; This work was supported by ERA-Net.Plus grant N 096 FON-SENS. EPR experiments were performed using the facilities of the Collective Use Center at the Moscow State University. ; Approved Most recent IF: 3.133  
  Call Number UA @ lucian @ c:irua:145142 Serial 4714  
Permanent link to this record
 

 
Author Bal, K.M.; Cautereels, J.; Blockhuys, F. pdf  url
doi  openurl
  Title Structures and spectroscopic properties of sulfur-nitrogen-pnictogen chains : R2P-N=S=N-PR2 and R2P-N=S=N-AsR2 Type A1 Journal article
  Year 2017 Publication Journal of molecular structure Abbreviated Journal J Mol Struct  
  Volume 1132 Issue Pages 102-108  
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract The conformational and configurational preferences of Me2PNSNPMe2 (3) and Me2PNSNAsMe2 (4) have been identified using quantum chemical calculations at the DFT/B3LYP/6-311+G* level of theory. An approach in which energetic, structural (geometries and bond orders), electronic (analysis of the electron density) and spectroscopic properties are combined leads to the conclusion that these sulfur-nitrogen-pnictogen chains share many of the properties of their chalcogen-nitrogen analogues but that the through-space intramolecular interactions favouring the Z,Z configuration are even weaker than in these latter compounds. The results of this analysis also lead to an unambiguous assignment of the variable-temperature 31P and 15N NMR spectra of these compounds and their structures both in solution and in the solid state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000393254400015 Publication Date 2016-08-07  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2860 ISBN Additional Links UA library record; WoS full record  
  Impact Factor 1.753 Times cited Open Access Not_Open_Access: Available from 03.10.2019  
  Notes Approved Most recent IF: 1.753  
  Call Number UA @ lucian @ c:irua:145533 Serial 4726  
Permanent link to this record
 

 
Author Cautaerts, N.; Delville, R.; Dietz, W.; Verwerft, M. pdf  url
doi  openurl
  Title Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes Type A1 Journal article
  Year 2017 Publication Journal of nuclear materials Abbreviated Journal J Nucl Mater  
  Volume 493 Issue Pages 154-167  
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)  
  Abstract This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or “15-15Ti”) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium- Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 degrees C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 degrees C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 degrees C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 degrees C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000408044000018 Publication Date 2017-06-11  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3115 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.048 Times cited 5 Open Access OpenAccess  
  Notes ; ; Approved Most recent IF: 2.048  
  Call Number UA @ lucian @ c:irua:145686 Serial 4753  
Permanent link to this record
 

 
Author Vatanparast, M.; Egoavil, R.; Reenaas, T.W.; Verbeeck, J.; Holmestad, R.; Vullum, P.E. pdf  doi
openurl 
  Title Bandgap measurement of high refractive index materials by off-axis EELS Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 182 Issue Pages 92-98  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract In the present work Cs aberration corrected and monochromated scanning transmission electron microscopy electron energy loss spectroscopy (STEM-EELS) has been used to explore experimental setups that allow bandgaps of high refractive index materials to be determined. Semi-convergence and collection angles in the mu rad range were combined with off-axis or dark field EELS to avoid relativistic losses and guided light modes in the low loss range to contribute to the acquired EEL spectra. Off-axis EELS further supressed the zero loss peak and the tail of the zero loss peak. The bandgap of several GaAs-based materials were successfully determined by simple regression analyses of the background subtracted EEL spectra. The presented set-up does not require that the acceleration voltage is set to below the. Cerenkov limit and can be applied over the entire acceleration voltage range of modern TEMs and for a wide range of specimen thicknesses. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000413436500013 Publication Date 2017-06-21  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 3 Open Access Not_Open_Access  
  Notes ; The authors would like to thank Professor Shu Min Wang and Mahdad Sadeghi at the Nanofabrication Laboratory at Chalmers University, Sweden for providing the samples. The Norwegian Research Council is acknowledged for funding the HighQ-IB project under contract no. 10415201. M.V. and T.W.R. acknowledge funding from the EEA Financial Mechanism 2009-2014 under the project contract no 23SEE/30.06.2014. The research leading to these results has received funding from the European Union Seventh Framework Programme under Grant Agreement 312483 – ESTEEM2(Integrated Infrastructure Initiative-I3) through the system of transnational access. R.E. and J.V. acknowledge funding from GOA project “Solarpaint” of the University of Antwerp. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:146639UA @ admin @ c:irua:146639 Serial 4778  
Permanent link to this record
 

 
Author Grieb, T.; Krause, F.F.; Mahr, C.; Zillmann, D.; Müller-Caspary, K.; Schowalter, M.; Rosenauer, A. pdf  doi
openurl 
  Title Optimization of NBED simulations for disc-detection measurements Type A1 Journal article
  Year 2017 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 181 Issue Pages 50-60  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract Nano-beam electron diffraction (NBED) is a method which can be applied to measure lattice strain and polarisation fields in strained layer heterostructures and transistors. To investigate precision, accuracy and spatial resolution of such measurements in dependence of properties of the specimen as well as electron optical parameters, simulations of NBED patterns are required which allow to predict the result of common disc-detection algorithms. In this paper we demonstrate by focusing on the detection of the central disc in crystalline silicon that such simulations require to take several experimental characteristics into account in order to obtain results which are comparable to those from experimental NBED patterns. These experimental characteristics are the background intensity, the presence of Poisson noise caused by electron statistics and blurring caused by inelastic scattering and by the transfer quality of the microscope camera. By means of these optimized simulations, different effects of specimen properties on disc detection – such as strain, surface morphology and compositional changes on the nanometer scale – are investigated and discussed in the context of misinterpretation in experimental NBED evaluations. It is shown that changes in surface morphology and chemical composition lead to measured shifts of the central disc in the NBED pattern of tens to hundreds of grad. These shifts are of the same order of magnitude or even larger than shifts that could be caused by an electric polarisation field in the range of MV/cm. (C) 2017 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000411170800006 Publication Date 2017-05-03  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 6 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. R02057/11-1, R02057/4-2 and MU3660/1-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:146725 Serial 4792  
Permanent link to this record
 

 
Author Dabaghmanesh, S.; Neek-Amal, M.; Partoens, B.; Neyts, E.C. pdf  url
doi  openurl
  Title The formation of Cr2O3 nanoclusters over graphene sheet and carbon nanotubes Type A1 Journal article
  Year 2017 Publication Chemical physics letters Abbreviated Journal Chem Phys Lett  
  Volume 687 Issue Pages 188-193  
  Keywords A1 Journal article; Condensed Matter Theory (CMT); Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000412453700030 Publication Date 2017-09-06  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0009-2614 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 1.815 Times cited 2 Open Access Not_Open_Access: Available from 01.11.2019  
  Notes ; This work was supported by SIM vzw, Technologiepark 935, BE-9052 Zwijnaarde, Belgium, within the InterPoCo project of the H-INT-S horizontal program. The computational resources and services used in this work were provided by the Vlaams Supercomputer Centrum (VSC) and the HPC infrastructure of the University of Antwerp. ; Approved Most recent IF: 1.815  
  Call Number UA @ lucian @ c:irua:146646 Serial 4795  
Permanent link to this record
 

 
Author Alania, M.; Lobato Hoyos, I.P.; Van Aert, S. pdf  url
doi  openurl
  Title Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy : a comparison study in terms of integrated intensity and atomic column position measurement Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue A Pages 188-198  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramer-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000415650200022 Publication Date 2017-09-12  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited Open Access OpenAccess  
  Notes ; The authors acknowledge financial support from the Research Foundation Flanders (FWO, Belgium) through project fundings (G.0374.13N, G.0369.15N, and G.0368.15N). A. Rosenauer is acknowledged for providing the STEMsim program. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:147658 Serial 4877  
Permanent link to this record
 

 
Author Grieb, T.; Tewes, M.; Schowalter, M.; Müller-Caspary, K.; Krause, F.F.; Mehrtens, T.; Hartmann, J.-M.; Rosenauer, A. pdf  doi
openurl 
  Title Quantitative HAADF STEM of SiGe in presence of amorphous surface layers from FIB preparation Type A1 Journal article
  Year 2018 Publication Ultramicroscopy Abbreviated Journal Ultramicroscopy  
  Volume 184 Issue B Pages 29-36  
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)  
  Abstract <script type='text/javascript'>document.write(unpmarked('The chemical composition of four Si1-xGex layers grown on silicon was determined from quantitative scanning transmission electron microscopy (STEM). The chemical analysis was performed by a comparison of the high-angle annular dark field (HAADF) intensity with multislice simulations. It could be shown that amorphous surface layers originating from the preparation process by focused-ion beam (FIB) at 30 kV have a strong influence on the quantification: the local specimen thickness is overestimated by approximately a factor of two, and the germanium concentration is substantially underestimated. By means of simulations, the effect of amorphous surface layers on the HAADF intensity of crystalline silicon and germanium is investigated. Based on these simulations, a method is developed to analyze the experimental HAADF-STEM images by taking the influence of the amorphous layers into account which is done by a reduction of the intensities by multiplication with a constant factor. This suggested modified HAADF analysis gives germanium concentrations which are in agreement with the nominal values. The same TEM lamella was treated with low-voltage ion milling which removed the amorphous surface layers completely. The results from subsequent quantitative HAADF analyses are in agreement with the nominal concentrations which validates the applicability of the used frozen-lattice based multislice simulations to describe the HAADF scattering of Si1-xGex in STEM. (C) 2017 Elsevier B.V. All rights reserved.'));  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication (down) Amsterdam Editor  
  Language Wos 000417779800004 Publication Date 2017-10-14  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3991 ISBN Additional Links UA library record; WoS full record; WoS citing articles  
  Impact Factor 2.843 Times cited 7 Open Access Not_Open_Access  
  Notes ; This work was supported by the German Research Foundation (DFG) under Contract No. RO2057/11-1. ; Approved Most recent IF: 2.843  
  Call Number UA @ lucian @ c:irua:148500 Serial 4893  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: