toggle visibility
Search within Results:
Display Options:

Select All    Deselect All
 |   | 
Details
   print
  Records
Author Bogomolova, A.; Hruby, M.; Panek, J.; Rabyk, M.; Turner, S.; Bals, S.; Steinhart, M.; Zhigunov, A.; Sedlacek, O.; Stepanek, P.; Filippov, S.K.;
  Title Small-angle X-ray scattering and light scattering study of hybrid nanoparticles composed of thermoresponsive triblock copolymer F127 and thermoresponsive statistical polyoxazolines with hydrophobic moieties Type A1 Journal article
  Year 2013 Publication Journal of applied crystallography Abbreviated Journal J Appl Crystallogr
  Volume 46 Issue 6 Pages 1690-1698
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract A combination of new thermoresponsive statistical polyoxazolines, poly[(2-butyl-2-oxazoline)-stat-(2-isopropyl-2-oxazoline)] [pBuOx-co-piPrOx], with different hydrophobic moieties and F127 surfactant as a template system for the creation of thermosensitive nanoparticles for radionuclide delivery has recently been tested [Pánek, Filippov, Hrubý, Rabyk, Bogomolova, Kučka Stěpánek (2012). Macromol. Rapid Commun.33, 16831689]. It was shown that the presence of the thermosensitive F127 triblock copolymer in solution reduces nanoparticle size and polydispersity. This article focuses on a determination of the internal structure and solution properties of the nanoparticles in the temperature range from 288 to 312 K. Here, it is demonstrated that below the cloud point temperature (CPT) the polyoxazolines and F127 form complexes that co-exist in solution with single F127 molecules and large aggregates. When the temperature is raised above the CPT, nanoparticles composed of polyoxazolines and F127 are predominant in solution. These nanoparticles could be described by a spherical shell model. It was found that the molar weight and hydrophobicity of the polymer do not influence the size of the outer radius and only slightly change the inner radius of the nanoparticles. At the same time, molar weight and hydrophobicity did affect the process of nanoparticle formation. In conclusion, poly(2-oxazoline) molecules are fully incorporated inside of F127 micelles, and this result is very promising for the successful application of such systems in radionuclide delivery.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000327070000020 Publication Date 2013-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0021-8898; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 18 Open Access
  Notes 262348 Esmi; Fwo; Iap-Pai Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:112420 Serial 3042
Permanent link to this record
 

 
Author Batuk, D.; Batuk, M.; Abakumov, A.M.; Hadermann, J.
  Title Synergy between transmission electron microscopy and powder diffraction : application to modulated structures Type A1 Journal article
  Year 2015 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
  Volume 71 Issue 71 Pages 127-143
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The crystal structure solution of modulated compounds is often very challenging, even using the well established methodology of single-crystal X-ray crystallography. This task becomes even more difficult for materials that cannot be prepared in a single-crystal form, so that only polycrystalline powders are available. This paper illustrates that the combined application of transmission electron microscopy (TEM) and powder diffraction is a possible solution to the problem. Using examples of anion-deficient perovskites modulated by periodic crystallographic shear planes, it is demonstrated what kind of local structural information can be obtained using various TEM techniques and how this information can be implemented in the crystal structure refinement against the powder diffraction data. The following TEM methods are discussed: electron diffraction (selected area electron diffraction, precession electron diffraction), imaging (conventional high-resolution TEM imaging, high-angle annular dark-field and annular bright-field scanning transmission electron microscopy) and state-of-the-art spectroscopic techniques (atomic resolution mapping using energy-dispersive X-ray analysis and electron energy loss spectroscopy).
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000352166500002 Publication Date 2015-04-01
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-5206; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.032 Times cited 11 Open Access
  Notes Fwo G039211n Approved Most recent IF: 2.032; 2015 IF: NA
  Call Number c:irua:124411 Serial 3408
Permanent link to this record
 

 
Author Schowalter, M.; Rosenauer, A.; Titantah, J.T.; Lamoen, D.
  Title Temperature-dependent Debye-Waller factors for semiconductors with the wurtzite-type structure Type A1 Journal article
  Year 2009 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
  Volume 65 Issue Pages 227-231
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract We computed Debye-Waller factors in the temperature range from 0.1 to 1000 K for AlN, GaN, InN, ZnO and CdO with the wurtzite-type structure. The Debye-Waller factors were derived from phonon densities of states obtained from Hellmann-Feynman forces computed within the density-functional-theory formalism. The temperature dependences of the Debye-Waller factors were fitted and fit parameters are given.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000264927100006 Publication Date 2009-03-12
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.725 Times cited 23 Open Access
  Notes Fwo G.0425.05; Esteem 026019 Approved Most recent IF: 5.725; 2009 IF: 49.926
  Call Number UA @ lucian @ c:irua:74565 Serial 3497
Permanent link to this record
 

 
Author Arakcheeva, A.; Pattison, P.; Chapuis, G.; Rossell, M.; Filaretov, A.; Morozov, V.; Van Tendeloo, G.
  Title KSm(MoO4)2, an incommensurately modulated and partially disordered scheelite-like structure Type A1 Journal article
  Year 2008 Publication Acta crystallographica: section B: structural science Abbreviated Journal Acta Crystallogr B
  Volume 64 Issue Part 2 Pages 160-171
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The incommensurately modulated scheelite-like KSm( MoO4)(2) structure has been refined in the monoclinic superspace group I2/b(alpha beta 0)00 by the Rietveld method on the basis of synchrotron radiation powder diffraction data. The systematic broadening of satellite reflections has been accounted for by applying anisotropic microstrain line-broadening. The microstructure has been studied by transmission electron microscopy (TEM). The partial disorder of the K and Sm cations in the A position is best approximated by a combination of harmonic and complex crenel functions with (0.952Sm + 0.048K) and (0.952K + 0.048Sm) atomic domains. This combination yields a compositional wave distribution from {KMoO4} to {SmMoO4} observed in the ab structure projection along q. The specific features of KSm(MoO4)(2) and degree of the A-cation ordering are discussed in comparison with the previously reported structure of KNd(MoO4)(2).
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000253992600004 Publication Date 2008-03-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0108-7681; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 23 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:102618 Serial 3539
Permanent link to this record
 

 
Author Hadermann, J.; Van Tendeloo, G.; Abakumov, A.M.
  Title Transmission electron microscopy and structural phase transitions in anion-deficient perovskite-based oxides Type A1 Journal article
  Year 2005 Publication Acta crystallographica: section A: foundations of crystallography Abbreviated Journal Acta Crystallogr A
  Volume 61 Issue 1 Pages 77-92
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000225865500008 Publication Date 2004-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0108-7673; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.725 Times cited 18 Open Access
  Notes Approved Most recent IF: 5.725; 2005 IF: 1.791
  Call Number UA @ lucian @ c:irua:51442 Serial 3706
Permanent link to this record
 

 
Author Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J.
  Title Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations Type A1 Journal article
  Year 2016 Publication Dental materials Abbreviated Journal Dent Mater
  Volume 32 Issue 12 Pages E327-E337
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Objective. The aim was to evaluate the optical properties, mechanical properties and aging stability of yttria-stabilized zirconia with different compositions, highlighting the influence of the alumina addition, Y2O3 content and La2O3 doping on the translucency. Methods. Five different Y-TZP zirconia powders (3 commercially available and 2 experimentally modified) were sintered under the same conditions and characterized by X-ray diffraction with Rietveld analysis and scanning electron microscopy (SEM). Translucency (n = 6/group) was measured with a color meter, allowing to calculate the translucency parameter (TP) and the contrast ratio (CR). Mechanical properties were appraised with four-point bending strength (n = 10), single edge V-notched beam (SEVNB) fracture toughness (n = 8) and Vickers hardness (n = 10). The aging stability was evaluated by measuring the tetragonal to monoclinic transformation (n = 3) after accelerated hydrothermal aging in steam at 134 degrees C, and the transformation curves were fitted by the Mehl-Avrami-Johnson (MAJ) equation. Data were analyzed by one-way ANOVA, followed by Tukey's HSD test (alpha = 0.05). Results. Lowering the alumina content below 0.25 wt.% avoided the formation of alumina particles and therefore increased the translucency of 3Y-TZP ceramics, but the hydrothermal aging stability was reduced. A higher yttria content (5 mol%) introduced about 50% cubic zirconia phase and gave rise to the most translucent and aging-resistant Y-TZP ceramics, but the fracture toughness and strength were considerably sacrificed. 0.2 mol% La2O3 doping of 3Y-TZP tailored the grain boundary chemistry and significantly improved the aging resistance and translucency. Although the translucency improvement by La2O3 doping was less effective than for introducing a substantial amount of cubic zirconia, this strategy was able to maintain the mechanical properties of typical 3Y-TZP ceramics. Significance. Three different approaches were compared to improve the translucency of 3YTZP ceramics. (C) 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000389516400003 Publication Date
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0109-5641 ISBN Additional Links UA library record; WoS full record
  Impact Factor 4.07 Times cited 47 Open Access
  Notes Approved Most recent IF: 4.07
  Call Number UA @ lucian @ c:irua:140246 Serial 4447
Permanent link to this record
 

 
Author Torfs, E.; Vajs, J.; Bidart de Macedo, M.; Cools, F.; Vanhoutte, B.; Gorbanev, Y.; Bogaerts, A.; Verschaeve, L.; Caljon, G.; Maes, L.; Delputte, P.; Cos, P.; Komrlj, J.; Cappoen, D.
  Title Synthesis and in vitro investigation of halogenated 1,3-bis(4-nitrophenyl)triazenide salts as antitubercular compounds Type A1 Journal article
  Year 2017 Publication Chemical biology and drug design Abbreviated Journal Chem Biol Drug Des
  Volume Issue Pages 1-10
  Keywords A1 Journal article; Pharmacology. Therapy; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The diverse pharmacological properties of the diaryltriazenes have sparked the interest to investigate their potential to be repurposed as antitubercular drug candidates. In an attempt to improve the antitubercular activity of a previously constructed diaryltriazene library, eight new halogenated nitroaromatic triazenides were synthesized and underwent biological evaluation. The potency of the series was confirmed against the Mycobacterium tuberculosis lab strain H37Ra, and for the most potent derivative, we observed a minimal inhibitory concentration of 0.85 μm. The potency of the triazenide derivatives against M. tuberculosis H37Ra was found to be highly dependent on the nature of the halogenated phenyl substituent and less dependent on cationic species used for the preparation of the salts. Although the inhibitory concentration against J774A.1 macrophages was observed at 3.08 μm, the cellular toxicity was not mediated by the generation of nitroxide intermediate as confirmed by electron paramagnetic resonance spectroscopy, whereas no in vitro mutagenicity could be observed for the new halogenated nitroaromatic triazenides when a trifluoromethyl substituent was present on both the aryl moieties.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Copenhagen Editor
  Language Wos 000422952300027 Publication Date 2017-08-28
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1747-0277; 1747-0285; 1397-002x ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.396 Times cited 5 Open Access OpenAccess
  Notes Approved Most recent IF: 2.396
  Call Number UA @ lucian @ c:irua:147182 Serial 4794
Permanent link to this record
 

 
Author Abakumov, A.M.; Hadermann, J.; Van Tendeloo, G.; Antipov, E.V.
  Title Chemistry and structure of anion-deficient perovskites with translational interfaces Type A1 Journal article
  Year 2008 Publication Journal of the American Ceramic Society Abbreviated Journal J Am Ceram Soc
  Volume 91 Issue 6 Pages 1807-1813
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Columbus, Ohio Editor
  Language Wos 000256410700010 Publication Date 2008-04-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0002-7820;1551-2916; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 2.841 Times cited 39 Open Access
  Notes Approved Most recent IF: 2.841; 2008 IF: 2.101
  Call Number UA @ lucian @ c:irua:70088 Serial 355
Permanent link to this record
 

 
Author Van der Donck, M.; Peeters, F.M.; Van Duppen, B.
  Title Comment on “Creating in-plane pseudomagnetic fields in excess of 1000 T by misoriented stacking in a graphene bilayer” Type Editorial
  Year 2016 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 93 Issue 93 Pages 247401
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract In a recent paper [Phys. Rev. B 89, 125418 (2014)], the authors argue that it is possible to map the electronic properties of twisted bilayer graphene to those of bilayer graphene in an in-plane magnetic field. However, their description of the low-energy dynamics of twisted bilayer graphene is restricted to the extended zone scheme and therefore neglects the effects of the superperiodic structure. If the energy spectrum is studied in the supercell Brillouin zone, we find that the comparison with an in-plane magnetic field fails because (i) the energy spectra of the two situations exhibit different symmetries and (ii) the low-energy spectra are very different.
  Address
  Corporate Author Thesis
  Publisher Amer physical soc Place of Publication (down) College pk Editor
  Language Wos 000377802200009 Publication Date 2016-06-14
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9950;2469-9969; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 6 Open Access
  Notes ; ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:134601 Serial 4151
Permanent link to this record
 

 
Author Van Pottelberge, R.; Zarenia, M.; Peeters, F.M.
  Title Comment on “Impurity spectra of graphene under electric and magnetic fields” Type Editorial
  Year 2018 Publication Physical review B Abbreviated Journal Phys Rev B
  Volume 97 Issue 20 Pages 207403
  Keywords Editorial; Condensed Matter Theory (CMT)
  Abstract In a recent paper [Phys. Rev. B 89, 155403 (2014)], the authors investigated the spectrum of a Coulomb impurity in graphene in the presence of magnetic and electric fields using the coupled series expansion approach. In the first part of their paper, they investigated how Coulomb impurity states collapse in the presence of a perpendicular magnetic field. We argue that the obtained spectrum does not give information about the atomic collapse and that their interpretation of the spectrum regarding atomic collapse is not correct. We also argue that the obtained results are only valid up to the dimensionless charge vertical bar alpha vertical bar = 0.5 and, to obtain correct results for alpha > 0.5, a proper regularization of the Coulomb interaction is required. Here we present the correct numerical results for the spectrum for arbitrary values of alpha.
  Address
  Corporate Author Thesis
  Publisher Amer physical soc Place of Publication (down) College pk Editor
  Language Wos 000433288800015 Publication Date 2018-05-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2469-9969; 2469-9950 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 3.836 Times cited 5 Open Access
  Notes ; We thank Matthias Van der Donck for fruitful discussions. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem funding of the Flemish Government. ; Approved Most recent IF: 3.836
  Call Number UA @ lucian @ c:irua:152042UA @ admin @ c:irua:152042 Serial 5017
Permanent link to this record
 

 
Author Varykhalov, A.; Marchenko, D.; Sanchez-Barriga, J.; Scholz, M.R.; Verberck, B.; Trauzettel, B.; Wehling, T.O.; Carbone, C.; Rader, O.
  Title Intact dirac cones at broken sublattice symmetry : photoemission study of graphene on Ni and Co Type A1 Journal article
  Year 2012 Publication Physical review X Abbreviated Journal Phys Rev X
  Volume 2 Issue 4 Pages 041017-10
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The appearance of massless Dirac fermions in graphene requires two equivalent carbon sublattices of trigonal shape. While the generation of an effective mass and a band gap at the Dirac point remains an unresolved problem for freestanding extended graphene, it is well established by breaking translational symmetry by confinement and by breaking sublattice symmetry by interaction with a substrate. One of the strongest sublattice-symmetry-breaking interactions with predicted and measured band gaps ranging from 400 meV to more than 3 eV has been attributed to the interfaces of graphene with Ni and Co, which are also promising spin-filter interfaces. Here, we apply angle-resolved photoemission to epitaxial graphene on Ni (111) and Co(0001) to show the presence of intact Dirac cones 2.8 eV below the Fermi level. Our results challenge the common belief that the breaking of sublattice symmetry by a substrate and the opening of the band gap at the Dirac energy are in a straightforward relation. A simple effective model of a biased bilayer structure composed of graphene and a sublattice-symmetry-broken layer, corroborated by density-functional-theory calculations, demonstrates the general validity of our conclusions.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) College Park, Md Editor
  Language Wos 000312703200001 Publication Date 2012-12-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2160-3308; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 12.789 Times cited 86 Open Access
  Notes ; A. V. acknowledges helpful discussions with N. Sandler. This work was supported by SPP 1459 of the Deutsche Forschungsgemeinschaft. B. V. acknowledges support from the Research Foundation Flanders (FWO-Vlaanderen). B. T. and T. O. W. would like to thank the KITP at Santa Barbara for hospitality during the completion of this work. ; Approved Most recent IF: 12.789; 2012 IF: 6.711
  Call Number UA @ lucian @ c:irua:105964 Serial 1677
Permanent link to this record
 

 
Author Lu, A.K.A.; Houssa, M.; Luisier, M.; Pourtois, G.
  Title Impact of layer alignment on the behavior of MoS2-ZrS2 tunnel field-effect transistors : an ab initio study Type A1 Journal article
  Year 2017 Publication Physical review applied Abbreviated Journal Phys Rev Appl
  Volume 8 Issue 3 Pages 034017
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Tunnel field-effect transistors based on van der Waals heterostructures are emerging device concepts for low-power applications, auguring sub-60 mV/dec subthreshold swing values. In these devices, the channel is built from a stack of several different two-dimensional materials whose nature allows tailoring the band alignments and enables a good electrostatic control of the device. In this work, we propose a theoretical study of the variability of the performances of a MoS2-ZrS2 tunnel field-effect transistor induced by fluctuations of the relative position or the orientation of the layers. Our results indicate that although a steep subthreshold slope (20 mV/dec) is achievable, fluctuations in the relative orientation of the ZrS2 layer with respect to the MoS2 one lead to a significant variability in the tunneling current by about one decade. This arises from changes in the orbital overlap between the layers and from the modulation of the transport direction.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication (down) College Park, Md Editor
  Language Wos 000411460400001 Publication Date 2017-09-22
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2331-7019 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.808 Times cited 6 Open Access OpenAccess
  Notes Approved Most recent IF: 4.808
  Call Number UA @ lucian @ c:irua:146741 Serial 4785
Permanent link to this record
 

 
Author De Clercq, M.; Moors, K.; Sankaran, K.; Pourtois, G.; Dutta, S.; Adelmann, C.; Magnus, W.; Sorée, B.
  Title Resistivity scaling model for metals with conduction band anisotropy Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 3 Pages 033801
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract It is generally understood that the resistivity of metal thin films scales with film thickness mainly due to grain boundary and boundary surface scattering. Recently, several experiments and ab initio simulations have demonstrated the impact of crystal orientation on resistivity scaling. The crystal orientation cannot be captured by the commonly used resistivity scaling models and a qualitative understanding of its impact is currently lacking. In this work, we derive a resistivity scaling model that captures grain boundary and boundary surface scattering as well as the anisotropy of the band structure. The model is applied to Cu and Ru thin films, whose conduction bands are (quasi-) isotropic and anisotropic, respectively. After calibrating the anisotropy with ab initio simulations, the resistivity scaling models are compared to experimental resistivity data and a renormalization of the fitted grain boundary reflection coefficient can be identified for textured Ru.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication (down) College Park, Md Editor
  Language Wos 000426787600001 Publication Date 2018-03-07
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited Open Access
  Notes ; The authors acknowledge the support by the Fonds National de la Recherche Luxembourg (ATTRACT Grant No. 7556175). ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:149866UA @ admin @ c:irua:149866 Serial 4947
Permanent link to this record
 

 
Author Andelkovic, M.; Covaci, L.; Peeters, F.M.
  Title DC conductivity of twisted bilayer graphene: Angle-dependent transport properties and effects of disorder Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 3 Pages 034004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The in-plane dc conductivity of twisted bilayer graphene is calculated using an expansion of the real-space Kubo-Bastin conductivity in terms of Chebyshev polynomials. We investigate within a tight-binding approach the transport properties as a function of rotation angle, applied perpendicular electric field, and vacancy disorder. We find that for high-angle twists, the two layers are effectively decoupled, and the minimum conductivity at the Dirac point corresponds to double the value observed in monolayer graphene. This remains valid even in the presence of vacancies, hinting that chiral symmetry is still preserved. On the contrary, for low twist angles, the conductivity at the Dirac point depends on the twist angle and is not protected in the presence of disorder. Furthermore, for low angles and in the presence of an applied electric field, we find that the chiral boundary states emerging between AB and BA regions contribute to the dc conductivity, despite the appearance of localized states in the AA regions. The results agree qualitatively with recent transport experiments in low-angle twisted bilayer graphene.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication (down) College Park, Md Editor
  Language Wos 000427822700002 Publication Date 2018-03-20
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 27 Open Access
  Notes ; We acknowledge financial support from the graphene FLAG-ERA project TRANS2DTMD. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:150838UA @ admin @ c:irua:150838 Serial 4964
Permanent link to this record
 

 
Author Kalashami, H.G.; Neek-Amal, M.; Peeters, F.M.
  Title Slippage dynamics of confined water in graphene oxide capillaries Type A1 Journal article
  Year 2018 Publication Physical review materials Abbreviated Journal
  Volume 2 Issue 7 Pages 074004
  Keywords A1 Journal article; Condensed Matter Theory (CMT)
  Abstract The permeation of water between neighboring graphene oxide (GO) flakes, i.e., 2D nanochannels, are investigated using a simple model for the GO membrane. We simulate the hydrophilic behavior of nanocapillaries and study the effect of surface charge on the dynamical properties of water flow and the influence of Na+ and Cl- ions on water permeation. Our approach is based on extensive equilibrium molecular dynamics simulations to obtain a better understanding of water permeation through charged nanochannels in the presence of ions. We found significant change in the slippage dynamics of confined water such as a profound increase in viscosity/slip length with increasing charges over the surface. The slip length decreases one order of magnitude (i.e., 1/30) with increasing density of surface charge, while it increases by a factor of 2 with ion concentration. We found that commensurability induced by nanoconfinement plays an important role on the intrinsic dynamical properties of water.
  Address
  Corporate Author Thesis
  Publisher American Physical Society Place of Publication (down) College Park, Md Editor
  Language Wos 000439435200006 Publication Date 2018-07-23
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2475-9953 ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 1 Open Access
  Notes ; We acknowledge fruitful discussions with Andre K. Geim, Irina Grigorieva, and Rahul R. Nair. This work was supported by the Flemish Science Foundation (FWO-Vl) and the Methusalem program. ; Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:152409UA @ admin @ c:irua:152409 Serial 5128
Permanent link to this record
 

 
Author van Straaten, M.; Butaye, L.; Gijbels, R.
  Title Depth profiling of coated steel wires by GDMS Type P3 Proceeding
  Year 1992 Publication Abbreviated Journal
  Volume Issue Pages 629-632
  Keywords P3 Proceeding; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Wiley Place of Publication (down) Chichester Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved CHEMISTRY, PHYSICAL 54/144 Q2 # PHYSICS, ATOMIC, MOLECULAR & CHEMICAL 9/35 Q2 #
  Call Number UA @ lucian @ c:irua:4207 Serial 648
Permanent link to this record
 

 
Author Steiner, R.E.; Barshick, C.M.; Bogaerts, A.
  Title Glow discharge optical spectroscopy and mass spectrometry Type H1 Book chapter
  Year 2009 Publication Abbreviated Journal
  Volume Issue Pages 1-28
  Keywords H1 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract Optical (atomic absorption spectroscopy, AAS; atomic emission spectroscopy, AES; atomic fluorescence spectroscopy, AFS; and optogalvanic spectroscopy) and mass spectrometric (magnetic sector, quadrupolemass analyzer, QMA; quadrupole ion trap, QIT; Fourier transform ion cyclotron resonance, FTICR; and time-of-flight, TOF) instrumentation are well suited for coupling to the glow discharge (GD). The GD is a relatively simple device. A potential gradient (5001500 V) is applied between an anode and a cathode. In most cases, the sample is also the cathode. A noble gas (e.g. Ar, Ne, and Xe) is introduced into the discharge region before power initiation. When a potential is applied, electrons are accelerated toward the anode. As these electrons accelerate, they collide with gas atoms. A fraction of these collisions are of sufficient energy to remove an electron from a support gas atom, forming an ion. These ions are, in turn, accelerated toward the cathode. These ions impinge on the surface of the cathode, sputtering sample atoms from the surface. Sputtered atoms that do not redeposit on the surface diffuse into the excitation/ionization regions of the plasma where they can undergo excitation and/or ionization via a number of collisional processes. GD sources offer a number of distinct advantages that make them well suited for specific types of analyses. These sources afford direct analysis of solid samples, thus minimizing the sample preparation required for analysis. The nature of the plasma also provides mutually exclusive atomization and excitation processes that help to minimize the matrix effects that plague so many other elemental techniques. Unfortunately, the GD source functions optimally in a dry environment, making analysis of solutions more difficult. These sources also suffer from difficulties associated with analyzing nonconductingsamples. In this article, first, the principles of operation of the GD plasma are reviewed, with an emphasis on how those principles relate to optical spectroscopy and mass spectrometry. Basic applications of the GD techniques are considered next. These include bulk analysis, surface analysis, and the analysis of solution samples. The requirements necessary to obtain optical information are addressed following the analytical applications. This section focuses on the instrumentation needed to make optical measurements using the GD as an atomization/excitation source. Finally, mass spectrometric instrumentation and interfaces are addressed as they pertain to the use of a GD plasma as an ion source. GDsources provide analytically useful gas-phase species from solid samples. These sources can be interfaced with avariety of spectroscopic and spectrometric instruments for both quantitative and qualitative analysis.
  Address
  Corporate Author Thesis
  Publisher Wiley Place of Publication (down) Chichester Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN 0471976709 Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:78169 Serial 1352
Permanent link to this record
 

 
Author Pinheiro, C.B.; Abakumov, A.M.
  Title Superspace crystallography : a key to the chemistry and properties Type A1 Journal article
  Year 2015 Publication IUCrJ Abbreviated Journal Iucrj
  Volume 2 Issue 2 Pages 137-154
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract An overview is given of the recent advances in the field of modulated molecular and inorganic crystals with an emphasis on the links between incommensurability, intermolecular and interatomic interactions and, wherever possible, the properties of the materials. The importance of detailed knowledge on the modulated structure for understanding the crystal chemistry and the functional properties of modulated phases is shown using selected examples of incommensurate modulations in organic molecular compounds and inorganic complex oxides.
  Address
  Corporate Author Thesis
  Publisher Int union crystallography Place of Publication (down) Chester Editor
  Language Wos 000356865900016 Publication Date 2014-12-17
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2052-2525; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 5.793 Times cited 15 Open Access
  Notes Approved Most recent IF: 5.793; 2015 IF: NA
  Call Number c:irua:127058 Serial 3382
Permanent link to this record
 

 
Author Janssens, K.; van der Snickt, G.; Vanmeert, F.; Legrand, S.; Nuyts, G.; Alfeld, M.; Monico, L.; Anaf, W.; de Nolf, W.; Vermeulen, M.; Verbeeck, J.; De Wael, K.
  Title Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-Ray methods Type A1 Journal article
  Year 2016 Publication Topics in Current Chemistry Abbreviated Journal Topics Curr Chem
  Volume 374 Issue 374 Pages 81
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT); AXES (Antwerp X-ray Analysis, Electrochemistry and Speciation)
  Abstract Recent studies are concisely reviewed, in which X-ray beams of (sub)micrometre to millimetre dimensions have been used for non-destructive analysis and characterization of pigments, minute paint samples, and/or entire paintings from the seventeenth to the early twentieth century painters. The overview presented encompasses the use of laboratory and synchrotron radiation-based instrumentation and deals with the use of several variants of X-ray fluorescence (XRF) as a method of elemental analysis and imaging, as well as with the combined use of X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS). Microscopic XRF is a variant of the method that is well suited to visualize the elemental distribution of key elements, mostly metals, present in paint multi-layers, on the length scale from 1 to 100 μm inside micro-samples taken from paintings. In the context of the characterization of artists pigments subjected to natural degradation, the use of methods limited to elemental analysis or imaging usually is not sufficient to elucidate the chemical transformations that have taken place. However, at synchrotron facilities, combinations of μ-XRF with related methods such as μ-XAS and μ-XRD have proven themselves to be very suitable for such studies. Their use is often combined with microscopic Fourier transform infra-red spectroscopy and/or Raman microscopy since these methods deliver complementary information of high molecular specificity at more or less the same length scale as the X-ray microprobe techniques. Since microscopic investigation of a relatively limited number of minute paint samples, taken from a given work of art, may not yield representative information about the entire artefact, several methods for macroscopic, non-invasive imaging have recently been developed. Those based on XRF scanning and full-field hyperspectral imaging appear very promising; some recent published results are discussed.
  Address
  Corporate Author Thesis
  Publisher Springer international publishing ag Place of Publication (down) Cham Editor
  Language Wos 000391178900006 Publication Date 2016-11-21
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2365-0869;2364-8961; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.033 Times cited 50 Open Access
  Notes ; ; Approved Most recent IF: 4.033
  Call Number UA @ lucian @ c:irua:139930UA @ admin @ c:irua:139930 Serial 4443
Permanent link to this record
 

 
Author Lu, J.; Roeffaers, M.B.J.; Bartholomeeusen, E.; Sels, B.F.; Schryvers, D.
  Title Intergrowth of components and ramps in coffin-shaped ZSM-5 zeolite crystals unraveled by focused ion beam-assisted transmission electron microscopy Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 20 Issue 1 Pages 42-49
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Scanning electron microscopy, focused ion beam (FIB), and transmission electron microscopy are combined to study the intergrowth of 90 degrees rotational components and of ramps in coffin-shaped ZSM-5 crystals. The 90 degrees rotational boundaries with local zig-zag features between different intergrowth components are observed in the main part of crystal. Also a new kind of displacement boundary is described. At the displacement boundary there is a shift of the unit cells along the boundary without a change in orientation. Based on lamellae prepared with FIB from different positions of the ramps and crystal, the orientation relationships between ramps and the main part of the crystal are studied and the three-dimensional morphology and growth mechanism of the ramp are illustrated.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge, Mass. Editor
  Language Wos 000335378400006 Publication Date 2013-11-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 7 Open Access
  Notes Approved Most recent IF: 1.891; 2014 IF: 1.877
  Call Number UA @ lucian @ c:irua:117688 Serial 1697
Permanent link to this record
 

 
Author Idrissi, H.; Turner, S.; Mitsuhara, M.; Wang, B.; Hata, S.; Coulombier, M.; Raskin, J.-P.; Pardoen, T.; Van Tendeloo, G.; Schryvers, D.
  Title Point defect clusters and dislocations in FIB irradiated nanocrystalline aluminum films : an electron tomography and aberration-corrected high-resolution ADF-STEM study Type A1 Journal article
  Year 2011 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 17 Issue 6 Pages 983-990
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Focused ion beam (FIB) induced damage in nanocrystalline Al thin films has been characterized using advanced transmission electron microscopy techniques. Electron tomography was used to analyze the three-dimensional distribution of point defect clusters induced by FIB milling, as well as their interaction with preexisting dislocations generated by internal stresses in the Al films. The atomic structure of interstitial Frank loops induced by irradiation, as well as the core structure of Frank dislocations, has been resolved with aberration-corrected high-resolution annular dark-field scanning TEM. The combination of both techniques constitutes a powerful tool for the study of the intrinsic structural properties of point defect clusters as well as the interaction of these defects with preexisting or deformation dislocations in irradiated bulk or nanostructured materials.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge, Mass. Editor
  Language Wos 000297832300018 Publication Date 2011-10-27
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 25 Open Access
  Notes Iap; Fwo Approved Most recent IF: 1.891; 2011 IF: 3.007
  Call Number UA @ lucian @ c:irua:93627 Serial 2653
Permanent link to this record
 

 
Author Masenelli-Varlot, K.; Malchere, A.; Ferreira, J.; Heidari Mezerji, H.; Bals, S.; Messaoudi, C.; Garrido, S.M.
  Title Wet-STEM tomography : principles, potentialities and limitations Type A1 Journal article
  Year 2014 Publication Microscopy and microanalysis Abbreviated Journal Microsc Microanal
  Volume 20 Issue 2 Pages 366-375
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The characterization of biological and inorganic materials by determining their three-dimensional structure in conditions closer to their native state is a major challenge of technological research. Environmental scanning electron microscopy (ESEM) provides access to the observation of hydrated samples in water environments. Here, we present a specific device for ESEM in the scanning transmission electron microscopy mode, allowing the acquisition of tilt-series suitable for tomographic reconstructions. The resolution which can be obtained with this device is first determined. Then, we demonstrate the feasibility of tomography on wet materials. The example studied here is hydrophilic mesoporous silica (MCM-41). Finally, the minimum thickness of water which can be detected is calculated from Monte Carlo simulations and compared with the resolution expected in the tomograms.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge, Mass. Editor
  Language Wos 000337304700005 Publication Date 2014-02-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1431-9276;1435-8115; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 1.891 Times cited 9 Open Access OpenAccess
  Notes IAP-PAI; European Research Council under the 7th Framework Program (FP7); ERC grant no. 335078-COLOURATOMS.; ECAS_Sara; (ROMEO:green; preprint:; postprint:can ; pdfversion:cannot); Approved Most recent IF: 1.891; 2014 IF: 1.877
  Call Number UA @ lucian @ c:irua:118411 Serial 3915
Permanent link to this record
 

 
Author Hadermann, J.; Pérez, O.; Créon, N.; Michel, C.; Hervieu, M.
  Title The (3 + 2)D structure of oxygen deficient LaSrCuO3.52 Type A1 Journal article
  Year 2007 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 17 Issue 22 Pages 2344-2350
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000247349400020 Publication Date 2007-04-18
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 7 Open Access
  Notes Supergmr:Hprn-Ct-2000-0021 Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:64749 c:irua:64749 Serial 13
Permanent link to this record
 

 
Author Van Tendeloo, G.; Hadermann, J.; Abakumov, A.M.; Antipov, E.V.
  Title Advanced electron microscopy and its possibilities to solve complex structures: application to transition metal oxides Type A1 Journal article
  Year 2009 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 19 Issue 18 Pages 2660-2670
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract Design and optimization of materials properties can only be performed through a thorough knowledge of the structure of the compound. In this feature article we illustrate the possibilities of advanced electron microscopy in materials science and solid state chemistry. The different techniques are briefly discussed and several examples are given where the structures of complex oxides, often with a modulated structure, have been solved using electron microscopy.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000265740600002 Publication Date 2009-02-04
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 9 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:77065 Serial 68
Permanent link to this record
 

 
Author Houssa, M.; van den Broek, B.; Scalise, E.; Pourtois, G.; Afanas'ev, V.V.; Stesmans, A.
  Title An electric field tunable energy band gap at silicene/(0001) ZnS interfaces Type A1 Journal article
  Year 2013 Publication Physical chemistry, chemical physics Abbreviated Journal Phys Chem Chem Phys
  Volume 15 Issue 11 Pages 3702-3705
  Keywords A1 Journal article; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract The interaction of silicene, the silicon counterpart of graphene, with (0001) ZnS surfaces is investigated theoretically, using first-principles simulations. The charge transfer occurring at the silicene/(0001) ZnS interface leads to the opening of an indirect energy band gap of about 0.7 eV in silicene. Remarkably, the nature (indirect or direct) and magnitude of the energy band gap of silicene can be controlled by an external electric field: the energy gap is predicted to become direct for electric fields larger than about 0.5 V angstrom(-1), and the direct energy gap decreases approximately linearly with the applied electric field. The predicted electric field tunable energy band gap of the silicene/(0001) ZnS interface is very promising for its potential use in nanoelectronic devices.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000315165100002 Publication Date 2013-01-29
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 1463-9076;1463-9084; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 4.123 Times cited 74 Open Access
  Notes Approved Most recent IF: 4.123; 2013 IF: 4.198
  Call Number UA @ lucian @ c:irua:107702 Serial 94
Permanent link to this record
 

 
Author Veldeman, E.; Van 't dack, L.; Gijbels, R.; Campbell, M.; Vanhaecke, F.; Vanhoe, H.; Vandecasteele, C.
  Title Analysis of thermal waters by ICP-MS Type H3 Book chapter
  Year 1991 Publication Abbreviated Journal
  Volume Issue Pages 25-33
  Keywords H3 Book chapter; Plasma Lab for Applications in Sustainability and Medicine – Antwerp (PLASMANT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher The Royal Society of Chemistry Place of Publication (down) Cambridge Editor
  Language Wos Publication Date 0000-00-00
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN ISBN Additional Links UA library record
  Impact Factor Times cited Open Access
  Notes Approved no
  Call Number UA @ lucian @ c:irua:707 Serial 105
Permanent link to this record
 

 
Author Dendooven, J.; Devloo-Casier, K.; Ide, M.; Grandfield; Kurttepeli; Ludwig, K.F.; Bals, S.; Van der Voort, P.; Detavernier, C.
  Title Atomic layer deposition-based tuning of the pore size in mesoporous thin films studied by in situ grazing incidence small angle X-ray scattering Type A1 Journal article
  Year 2014 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 6 Issue 24 Pages 14991-14998
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract Atomic layer deposition (ALD) enables the conformal coating of porous materials, making the technique suitable for pore size tuning at the atomic level, e.g., for applications in catalysis, gas separation and sensing. It is, however, not straightforward to obtain information about the conformality of ALD coatings deposited in pores with diameters in the low mesoporous regime (<10 nm). In this work, it is demonstrated that in situ synchrotron based grazing incidence small angle X-ray scattering (GISAXS) can provide valuable information on the change in density and internal surface area during ALD of TiO2 in a porous titania film with small mesopores (3-8 nm). The results are shown to be in good agreement with in situ X-ray fluorescence data representing the evolution of the amount of Ti atoms deposited in the porous film. Analysis of both datasets indicates that the minimum pore diameter that can be achieved by ALD is determined by the size of the Ti-precursor molecule.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000345458200051 Publication Date 2014-10-13
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 41 Open Access OpenAccess
  Notes 239865 Cocoon; 335078 Colouratom; Fwo; ECAS_Sara; (ROMEO:yellow; preprint:; postprint:restricted ; pdfversion:cannot); Approved Most recent IF: 7.367; 2014 IF: 7.394
  Call Number UA @ lucian @ c:irua:122227 Serial 169
Permanent link to this record
 

 
Author Yan, L.; Niu, H.J.; Duong, G.V.; Suchomel, M.R.; Bacsa, J.; Chalker, P.R.; Hadermann, J.; Van Tendeloo, G.; Rosseinsky, M.J.
  Title Cation ordering within the perovskite block of a six-layer Ruddlesden-Popper oxide from layer-by-layer growth artificial interfaces in complex unit cells Type A1 Journal article
  Year 2011 Publication Chemical science Abbreviated Journal Chem Sci
  Volume 2 Issue 2 Pages 261-272
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract The (AO)(ABO3)n Ruddlesden-Popper structure is an archetypal complex oxide consisting of two distinct structural units, an (AO) rock salt layer separating an n-octahedra thick perovskite block. Conventional high-temperature oxide synthesis methods cannot access members with n > 3, but low-temperature layer-by-layer thin film methods allow the preparation of materials with thicker perovskite blocks, exploiting high surface mobility and lattice matching with the substrate. This paper describes the growth of an n = 6 member CaO[(CSMO)2(LCMO)2 (CSMO)2] in which the six unit cell perovskite block is sub-divided into two central La0.67Ca0.33MnO3 (LCMO) and two terminal Ca0.85Sm0.15MnO3 (CSMO) layers to allow stabilization of the rock salt layer and variation of the transition metal charge.
  Address
  Corporate Author Thesis
  Publisher Royal Society of Chemistry Place of Publication (down) Cambridge Editor
  Language Wos 000286327600010 Publication Date 2010-11-06
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2041-6520;2041-6539; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 8.668 Times cited 16 Open Access
  Notes Approved Most recent IF: 8.668; 2011 IF: 7.525
  Call Number UA @ lucian @ c:irua:88652 Serial 300
Permanent link to this record
 

 
Author Borgatti, F.; Park, C.; Herpers, A.; Offi, F.; Egoavil, R.; Yamashita, Y.; Yang, A.; Kobata, M.; Kobayashi, K.; Verbeeck, J.; Panaccione, G.; Dittmann, R.;
  Title Chemical insight into electroforming of resistive switching manganite heterostructures Type A1 Journal article
  Year 2013 Publication Nanoscale Abbreviated Journal Nanoscale
  Volume 5 Issue 9 Pages 3954-3960
  Keywords A1 Journal article; Engineering sciences. Technology; Electron microscopy for materials research (EMAT)
  Abstract We have investigated the role of the electroforming process in the establishment of resistive switching behaviour for Pt/Ti/Pr0.5Ca0.5MnO3/SrRuO3 layered heterostructures (Pt/Ti/PCMO/SRO) acting as non-volatile Resistance Random Access Memories (RRAMs). Electron spectroscopy measurements demonstrate that the higher resistance state resulting from electroforming of as-prepared devices is strictly correlated with the oxidation of the top electrode Ti layer through field-induced electromigration of oxygen ions. Conversely, PCMO exhibits oxygen depletion and downward change of the chemical potential for both resistive states. Impedance spectroscopy analysis, supported by the detailed knowledge of these effects, provides an accurate model description of the device resistive behaviour. The main contributions to the change of resistance from the as-prepared (low resistance) to the electroformed (high resistance) states are respectively due to reduced PCMO at the boundary with the Ti electrode and to the formation of an anisotropic np junction between the Ti and the PCMO layers.
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000317859400051 Publication Date 2013-03-05
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 2040-3364;2040-3372; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor 7.367 Times cited 40 Open Access
  Notes Vortex; Countatoms ECASJO_; Approved Most recent IF: 7.367; 2013 IF: 6.739
  Call Number UA @ lucian @ c:irua:108710UA @ admin @ c:irua:108710 Serial 348
Permanent link to this record
 

 
Author Vernochet, C.; Vannier, R.-N.; Huvé, M.; Pirovano, C.; Nowogrocki, G.; Mairesse, G.; Van Tendeloo, G.
  Title Chemical, structural and electrical characterizations in the BIZNVOX family Type A1 Journal article
  Year 2000 Publication Journal of materials chemistry Abbreviated Journal J Mater Chem
  Volume 10 Issue 12 Pages 2811-2817
  Keywords A1 Journal article; Electron microscopy for materials research (EMAT)
  Abstract
  Address
  Corporate Author Thesis
  Publisher Place of Publication (down) Cambridge Editor
  Language Wos 000165487800037 Publication Date 2002-07-26
  Series Editor Series Title Abbreviated Series Title
  Series Volume Series Issue Edition
  ISSN 0959-9428;1364-5501; ISBN Additional Links UA library record; WoS full record; WoS citing articles
  Impact Factor Times cited 13 Open Access
  Notes Approved Most recent IF: NA
  Call Number UA @ lucian @ c:irua:54757 Serial 351
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: